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ABSTRACT This paper proposes the Set-Membership sign-NLMS (SM-sign-NLMS) adaptive filter, which
combines the ability for data censoring (offered by Set-Membership schemes) with robustness against
impulsive noise (provided by signed schemes). The algorithm can present a much lower steady-state
probability of update than the standard SM-NLMS algorithm when impulsive noise is present in the system.
It is derived from a local deterministic optimization problem modulated by a minimum disturbance cost
function combined with a bounded error criterion. Several stochastic models are proposed in order to
extract insights and a time-variant step size extension of the algorithm. The first of them, based on energy
conservation arguments, leads to a fixed-point analytic equation whose solution predicts the asymptotic
performance of the algorithm. Further, a transient analysis based on a statistical decoupling of the radial
and (discrete) angular distributions of the input vector is derived. Based on such an analysis, an efficient
time-variant step-size version of the algorithm is proposed. Additionally, such an analysis is also utilized to
obtain a fixed-point formula whose solution describes the asymptotic performance when the unknown plant
that the filter intends to match varies according to a first-order Markovian model. Lastly, a novel stochastic
model is advanced for the description of the algorithm learning behavior under a deficient-length scenario
for a white input signal, which provides some insights about the asymptotic performance of the algorithm.
The findings are confirmed by extensive simulations.

INDEX TERMS Set-membership, adaptive filtering, data censoring, computational complexity, stochastic
models.

I. INTRODUCTION

Signals are often contaminated by unwanted artifacts and
noise that affect the performance of adaptive filters. Such
filters, originally derived from the optimal prediction and
filtering method for solving the Wiener-Hoff equation, play
a relevant role in advanced signal processing and control
schemes [1], [2]. The optimization problem they solve
is intrinsically related to their learning features, such as
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stability, computational cost and robustness against impulsive
noise that may be found in the measurement noise. The
latter phenomenon may occur due to a plethora of possible
causes, ranging from a large number of drum shrimp family
organisms in hydroacoustic channels [3] to double-talk in
acoustic echo cancellation systems [4] and atmospheric phe-
nomena in telecommunication systems [5]. Applications that
have to deal with impulsive interferences range from echo
cancellation to signal prediction and location tracking [6].
In this paper, a novel Set-membership signed-error
normalized LMS (SM-sign-NLMS) algorithm is derived
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from a minimum disturbance optimization problem. The
algorithm operates, in some scenarios, in an attractive
point of the ubiquitous trade-off between convergence rate,
asymptotic performance and computational burden. Namely,
the method blends the reduction of computational cost from
the Set-membership approach (due to its data censoring capa-
bilities) with the robustness against impulsive noise provided
by the signed-error strategies.! It is noteworthy that such a
reduction is crucial in applications that demand thousands
of adaptive taps (e.g., in the acoustic echo cancellation
task [7]). Furthermore, the data-dependent selective update
of the Set-membership schemes evaluates the incoming data
in terms of their contribution to the estimation procedure [8].

One weakness of traditional adaptive filtering schemes
with £>-norm-based cost functions is their vulnerability to
disturbances such as the ones that occur with impulsive
noise [9], [10]. In this context, signed variants receive great
attention, since the occurrence of impulsive noise causes high
fluctuations of the error signal, resulting in updates in the
wrong direction (or even divergence) in traditional adaptive
schemes [9], [11]. The signed-error variants utilize nonlinear
correlation multipliers [12] that can offer robustness against
impulsive noise. Typically, such a disturbance does not induce
a high misalignment in the adaptive estimator when the sign
of the error is used, instead of the error signal [13].

This paper advances a framework that is able to furnish
an algorithm that combines both Set-membership and signed
approaches. The proposed algorithm eliminates the need
for parameter selection by leveraging prior knowledge of
the noise, a feature shared by both correntropy-based and
the least mean p-th power algorithms [14], [15]. Despite
its simple update equation and low computational burden,
the learning behavior of the advanced algorithm is very
sophisticated (a feature it shares with adaptive algorithms
in general). This fact demands the right level of theorizing
craft, in order to comply with the demands of both accurate
predictions and extraction of relevant insights about different
aspects of the algorithm learning mechanism.

Models that allow for more hypothesis usually translate
into simpler equations that lose adherence to the original
data. Accordingly, the model needs to be precisely calibrated,
such that concise equations allowing for insight extraction are
obtained but, at the same time, they are not too simplified
so as to provoke a lack of adherence to real behaviour. This
leads to the choice of a specific model that operates in a
set point of the explanation versus prediction dimensions.
Since each model has its weaknesses, distinct stochastic
models are employed in this paper, in order to attain a
broader spectrum of insights regarding the performance of the
proposed algorithm. Those theoretically-based perceptions
have attracted attention from the scientific community,
since they offer i) useful guidelines for the algorithm
designer; ii) novel relationships with remaining adaptive

1Signed—error variants may reduce the computational burden of the filter,
but this is not the case with our method, due to its normalization procedure.
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schemes; iii) interpretable cause-effects relations; iv) new
ways of explaining some phenomenon in a more transparent
manner; and v) suggest further questions or generalizations
of practical interest.

This paper is structured as follows. The novel algorithm,
that combines the advantageous features of Set-membership
and signed-variants schemes, is derived in Section II
through a deterministic and purely local optimization prob-
lem. A fixed-point equation whose solution estimates its
asymptotic mean square performance is obtained through
energy-conservation arguments in Section III. A transient
analysis that simplifies the joint statistics of the input vector
is advanced in Section IV to obtain a modal description of
its transient behavior. Since the model for the input excludes
its Gaussianity (except possibly for the radial distribution),
which does not allow the utilization of the Price theorem,
the recently proposed Price heuristics [16] is adopted in the
model. Such a model is utilized in Section V for proposing
a practical variable step-size (VSS) scheme tailored for the
algorithm, which does not requires additional adjustable
parameters (i.e., a novel nonparametric VSS is proposed,
see [17]). The advanced VSS scheme significantly improves
the rate convergence compared to its original fixed step-size
version. The analysis of Section IV is extended in Section VI
to describe its steady-state performance when the unknown
plant varies according to a first-order Markovian model.
In Section VII-B, the asymptotic mean squared deviation in
the case of a deficient-length adaptive filter is also obtained
as a solution of two coupled fixed-point equations, utilizing a
stochastic model based on a recursion of the autocorrelation
matrix of the deviation coefficients.

A. MATHEMATICAL NOTATION

Throughout this paper, vector and matrices are represented
with lowercase and uppercase bold fonts, respectively, while
scalars are denoted by italics. [x||2 denotes the squared
Euclidean norm of vector x, and E[-] is the expectation
statistical operator. (-)7 denotes transpose and Tr[A] is
the trace of matrix A. All vectors are of column type.
The function sign(x) determines the output value based on
whether the input argument x is positive, negative, or zero,
returning 41 for positive, —1 for negative, and O for zero
input. Symbol ~ indicates that a random variable (or random
vector) is distributed according to the same probability
density function as another given random variable. Prob{.4}
represents the probability of event .4 occurring. Expression
Vwf computes the gradient of the scalar function f(w) w.r.t.
the vector w.

Il. THE SM-SIGN-NLMS ALGORITHM

In a system identification setting, Set-membership Filtering
(SMF) approaches exploit the hypothesis of a bounded
noise process v(k) immersed in a linear-in-the-parameters
model [18]:

d(k) = [w*]" x(k) + v(k), (1)
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FIGURE 1. Block diagram of the structure of an adaptive filtering
algorithm applied to a system identification task.

where d(k) € R is the reference signal, w* € RN contains
the ideal (and unknown) set of coefficients the adaptive
filter intends to estimate and x(k) comprises N consecutive
samples of the input signal x(k) at the k-th iteration:

x(k) 2 [x(kh) xtk— 1) ... xk—N+D]". @

where a transversal structure is assumed.
In each iteration, the adaptive filter generates an output
sample y(k) € R, computed through an inner product:

(k) = wh (k)x(k), 3)
where w(k) € R" contains the adaptive taps at the k-iteration:
w(k) 2 [wotk) wi(k) ... wy—1(0)]" o)

which should be adapted in an iterative manner by a specific
adaptation rule. The difference between the reference signal
and the filter output is the error signal e(k) € R:

e(k) & d(k) — wT (k)x(k). 4)

The overall system identification task this paper focuses on is
depicted in Figure 1.

The SMF aims to guarantee a prescribed bound on the
magnitude of the error within the relevant time frame. In this
sense, any update of the adaptive vector that provides an
absolute value of the error less than the adjustable bound
y is considered to be a feasible solution for the iterative
learning procedure. Moreover, such a methodology bounds
the worst-case error achieved by the filter, with prior error-
bound specification [8], [19]. Typically, the threshold
depends on the variance of the additive noise 03 through [20]

7 = o2 ©)

where t € Ry is an adjustable parameter. The effectiveness
of SMF methodologies is tied to the specification of ¥, a task
that may be challenging in real-world scenarios owing to the
lack of knowledge regarding the environment and its dynamic
intricacies [21]. In spite of that, it should be noted that the
literature in general shows that SM algorithm outperform
their non-SM counterparts [22].

VOLUME 12, 2024

Consider S as the dataset containing the pairs {x(k), d(k)}
available for the learning scheme. The constraint set H,, is the
set of adaptive weight vectors that are consistent with

Hi 2w e RN 1 jdk) —w (x| <7}, (D

which defines a region enclosed by parallel hyperplanes and
suggests the usage of more constraint-sets in the update
mechanism [18], [23]. The standard SM-NLMS algorithm
solves the following optimization problem [24]:

min [[w(k + 1) — w(k)|2
w(k+1)
s.t. w(k + 1) € Hg, 8)

where the output error is bounded by a prespecified bound
(see (7)). The non-relaxed solution of (8) is

W) + ey 7. if elh)] > 7
Wik +1) = Ix(0]
w(k), otherwise,
©)

which demands fewer updates to reach steady state [24].
By utilizing the SMEF, it becomes possible to lessen computa-
tional complexity in adaptive filtering, given that updates to
filter coefficients happen only when the estimated error goes
beyond the pre-established upper threshold [25].

The term ||[w(k + 1) — w(k)||> minimized in (8) derives
from the conservative minimum disturbance principle, which
assumes that the previous updates contain more information
than the one brought by the current input vector, and therefore
the current solution w(k) should be slightly perturbed in a
reasonable learning process.

The standard sign-LMS algorithm is typically derived
from a stochastic gradient procedure based on a {{-norm
optimization [26]:

w(k + 1) = w(k) — BVw)le(k)] (10)
= w(k + 1) = w(k) + px(k)sign[e(k)], (11)

where the update term Bx(k)sign[e(k)] is a clipped function
of the noise and the adaptive taps that replaces the error
signal by its polarity [27], [28]. The hard limiter in
Equation (11) complicates the stochastic modelling of the
resulting algorithm, often requiring significant analytical
ingenuity for a theoretical analysis to be conducted satisfac-
torily [29].

It is not trivial to design a linear-in-parameter filter whose
space of feasible solutions for the updates combines the
SMEF data censoring capabilities and the robustness against
impulsive noise offered by signed schemes. This is due to the
fact that whereas the SMF approach employs the minimum
disturbance criterion, the signed strategy usually adopts the
stochastic gradient optimization method in its derivation.
By taking the structure and constraints of the problem into
account and using the conceptual links between the minimum
disturbance principle and the stochastic gradient offered by

32741



IEEE Access

J. V. G. De Souza et al.: Stochastic Modeling of the Set-Membership-Sign-NLMS Algorithm

[30], [31], [32], and [33], this issue is circumvented in this
paper by the following advanced optimization:

1 2
Jnin E||w(k + 1) —w)|l
e(k), if le(k)| <y
s.t.ep(k) = B : =
[1 — |e(k)|i| e(k), ifle(k)| > ¥,

where e,(k) denotes the a posteriori error, obtained after the
update with the current data {d(k), x(k)}:

(12)

ep(k) £ d(k) — w" (k + Dx(k). (13)

Observe that the second constraint of (12) (i.e., ep(k) =
Ll - Ie{;k)l] e(k)) imposes diminishing returns on the impact
that the error e(k) has on the update intensity. Such a feature
is responsible for the desirable robustness against impulsive
noise presented by the algorithm.

Theorem. The solution of (12) defines the following novel
adaptive update:

W), for Je®)] < 7
Wk D=1 Ly ﬂ%e)(”’?]x(k), for le()] > 7,
(14)

which combines the advantages of both Set-Membership and
signed strategies.

Proof: Solving (12) by the Lagrange multipliers technique,
the solution of (12) can be converted into the following
unconstrained and equivalent optimization problem:

1
Flwlk+ D] = S Iwlk +1) — w()|I?

B
A ky—|[1- k. (s
#fat—[1- 5 w09
Zeroing the gradient of (15) leads to:
w(k + 1) = w(k) + Ax(k). (16)

If |e(k)| < ¥, the solution of (12) is trivial, since setting
w(k + 1) = w(k) 17)

complies with the constraint ep(k) = e(k) and minimizes
the term %llw(k + 1) — w(k)||*>. This possibility imposes
the condition A = 0 in (16) and explains the advantageous
reduction of the computational burden, since the update of the
adaptive weight is avoided when the current data is redundant.
Further, this implicit evaluation of the information content
of the input data is also responsible for the data censoring
capability of the resulting algorithm.

In the case |e(k)| > ¥, one may apply (16) in the second
constraint of (12), leading to:

A = Bsign[e(k)]. (18)
Bringing together equations (16), (17), and (18) takes one
to (14). O
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For our purposes of analytical description of the learning
behavior of our novel method, a more adequate description
of it is

x(k)

k+1)=wk —
w(k + 1) = w( )+ﬂ”X(k)”2f[

e(k)], 19)

where

0, for |e(k)| <V,
sign[e(k)] for |e(k)| > V.

The proposed algorithm, as well as typical Set-membership
algorithms, utilizes a metric projection onto a closed convex
set (convex projection). Unfortunately, the nonlinearity of the
convex projection poses a challenge to theoretical analysis.
In the following sections, distinct stochastic models are
employed in order to extract insights about the algorithm
performance.

From a computational complexity perspective, the number
of scalar sums/subtractions (resp. scalar multiplications) of
the advanced algorithm is 2N + 2 (resp. 2N + 1), when there
is an update. Only one scalar division for update is demanded.
Note that such a complexity is very similar to the LMS
algorithm, which requires 2N scalar sums/subtractions and
2N + 1 scalar multiplications per iteration. In fact, in practice
the computational burden of the advanced algorithm is even
less than this, since it does not update the weight vector in all
iterations.

flet)] = (20)

IIl. STEADY-STATE ANALYSIS

The SM-sign-NLMS algorithm involves two nonlinearities:
the data normalization [34] and the error nonlinearity [35].
Treating these nonlinearities at the same time makes the
performance analysis difficult [36]. Thus, some stochastic
assumptions will be introduced to overcome such hurdle.

In this section, energy-conservation arguments, that com-
prise one of the most powerful analyses (based on energy
conservation arguments), are adopted for the purpose of
obtaining a prediction for the steady-state performance of the
algorithm. Consider the deviation vector described by

Wk +1) 2 w* — w(k). 1)

where w* € RY is the optimal solution.
Using (19) and definition (21), one has:

w4 D=0 - -8 rewn. @)
= o !

The left multiplication of both sides of (22) by x7 (k) leads
to:

ep(k) = ea(k) — pf[e(k)], (23)
where the following error measures are considered:
ep(k) & xT (kyW(k + 1), (24)
ea(k) 2 xT (kyw(k). (25)
The application of (23) in (22) reveals that
- x(k)ea(k - x(k)ep(k
Wik + 1)+ —”(sz)ﬁz) = w(k) + —|szk§ﬁ2)’ (26)

VOLUME 12, 2024



J. V. G. De Souza et al.: Stochastic Modeling of the Set-Membership-Sign-NLMS Algorithm

IEEE Access

which implies:

) T®eak) T - x(k)ea(k)
T4 1 L][ P —]
[W( O o YT koo
T —_ -
X Ry [ x(k)epac)]
= k _— k — . 27
[W OF TP ] O e | #
After some manipulations, one obtains:
2 p—
ok + 1 2 ea(k) — Wk 2 ep(k) 7 28
19+ DI+ o = PO+ op @

which provides a description without approximations of
the energy flow through each iteration of the advanced
algorithm. Note that (28) holds even in the case of a colored
measurement noise. The groundwork for (28) is based on
a basic energy conservation relationship that was originally
established in [37], while dealing with the robustness analysis
of adaptive filters.

The application of the expectation operator [E[-] in both
sides of (28) results in

2
~ 2 ea(k)
E [k + D] + B [nx(k)nz}

=2
_ PN (k)
=E[I50I?] +E [”X(k)nz] . (29)

Assuming that the algorithm operates in steady-state
under a stable condition enables one to derive that
E[IW(k + DI?] = E[IW(k)|%]. Thus:

A(k) } e (k)
E|l- 22— |[=FE| 12— . 30
[IIX(k)II2 IIx(k)|I> G0

When the filter presents a large number of taps and
considering that the denominator in (30) is equal to Ix(%)|12,
the expected value of the ratio can be approximated by
the ratio of the expected values. This is a reasonable
approximation, since at the steady state the errors e, (k) and
ep(k) exhibit low sensitivity to the input data [38]. Therefore,
the identity (30) collapses to

2 ~ T [z2
E[e®)] ~E[em)]. (31)

The derivation of a closed-form that predicts the
steady-state MSE requires some additional steps. Since the
errors {ep(k), es(k), e(k)} are related by (see (1) and (5)):

ep(k) = eq(k) — Bf [e(k)], (32)

one has
er(k) = ep(k) — 2Bea(k)f [e(k)] + B°f [e(k)].  (33)
After the application of (33) in (31), one arrives at:
2E {eak)f e(k)]} = BE {r2[e(]} (34)

Thus, it is assumed that e,(k) and e(k) are jointly Gaussian
(a reasonable assumption for long adaptive filters [35]). Let
one consider

LR [e2<k>] (35)
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and
p £ ea(k)e(k). (36)

Employing the Price Theorem [39], one is led to:

dp
. [aea(m 8f[e(k)]}
n dea(k) de(k)
_ /°° [3le(t) = 7) + Olek) + 71 [_@}de(k)
=/ =z e
_oe[ k| rew| k] zew| k] 37
= InE - V2mE 7

which takes one to:

2 =2
E {ea(b) [0} = [ —cexp [_;_s] E [ea(k)e(k)]. (38)

Assuming that the error is distributed according to a
Gaussian distribution results in

00 2
E {f?[e(k)]} =28 ! exp _€® de(k) (39)
2 \/27'[%' 2%'

_ 2 (= A v

= ﬁ % exp (—u )du = erfc («/_2_5) ,
where
erfc(x) £ 2 / - exp(—t2)dr. (40)
NE

The utilization of equations (38), (39) and (34) brings one

to:
[ 2 y? 2 7|
2 ]T—Eexp |:_E:| & — Eexp [—E:| o,
= Berfc (\/12_5) , 41

where o2 denotes the variance of the measurement noise
v(k), supposed to be zero-mean, independent, identically
distributed and independent of the input signal. From (41)
one arrives to the following fixed-point equation for the
asymptotic mean square error:

§ Y
,3 D) er > )
£=o2+ R 5/, (42)
exXp [——jg]

Remark: Equation (42) is the main contribution of this
section. It is a nonlinear equation whose positive solution is a
theoretical approximation of the steady-state MSE of the SM-
sign-NLMS algorithm. Interestingly, Equation (42) implies
that the statistics of the input signal (e.g., its variance) do not
impact the asymptotic performance of the algorithm.
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IV. TRANSIENT ANALYSIS

In order to cope with the nonlinear characteristics of the
update equation of the SM-sign-NLMS algorithm, a simple
model for the input signal is adopted such as to evaluate
its convergence analysis. The model originates a description
of the modal behavior of the second-order behavior of
the algorithm. The resulting description permits one to
extract novel perceptions about the eigenvalue-distribution-
dependent convergence behavior of the SM-sign-NLMS
algorithm.

The model utilizes the ubiquitous independence assump-
tion [40], which implies that vectors x(k) are independent and
identically distributed. The eigendecomposition of the input
autocovariance matrix R

N—1
RLE [x(k)xT(k)] = VAV = > avl @3)
i=0

emphasizes two import quantities for the following analysis:
the eigenvalues A; € R+ (fori € {0, 1,...,N — 1}) and the
orthonormal eigenvectors v; € RN (fori e {0,1,...,N—1)}).

A simple model that fits the first- and second-order
moments of x(k) is [41]:

X(k) = sgriv(k), (44)

where statistically-independent random variables® s (sig-
nal), r; (radial distribution) and V(k) (discrete angular
distribution) are distributed according to

1

Probls; = +1} = . (45)
r(k) ~ |Ix(k)|, (46)
Prob{¥(k) = v} = %, (47)

where (46) means that (k) emulates the distribution of the
original (i.e., obtained in a tapped-delay structure) x(k). Note
that the Gaussianity of x(k) can be partially inserted into the
model, which motivates the Price heuristic [16] that will be
adopted.

In order to advance a second-order model for the SM-sign-
NLMS algorithm, consider the multiplication of both sides
of (22) by their transpose. Using the expectation operator, one
arrives at the following recursion:

w()xT (k) ]

Ry (k + 1) = Ry (k) — BE
(k+1) ()ﬁ[||(k)”2f()]

-2 o]
+ BE [ Xﬁki:ﬁf)f le(k )]} (48)
where
Ry(k) £ E [ WiOw' (0] (49)

2In the case of v(k), the adequate expression is ‘“‘random vector”.

32744

is the weight-error autocorrelation matrix. This matrix plays
a fundamental role for the prediction of the MSE, because it
permits the computation of

ri(k) £ v Rz (k)v;, (50)

from which, with the independence assumption and the
common assumptions for the measurement noise, the MSE
can be obtained:

§0) 2E[@0)] = o +E[IW (x()?
=062+ Tr [EVTR‘;,V]
N-1

=02+ Z Airi(k). (51)

i=0

Equation (51) implies that predicting the dynamics of ;(k)
allows one to estimate the evolution of the MSE. Thus,
multiplying (48) on the left by ViT and on the right by v;, one
has:

vIw(k)xT (k)v;
t 7 7 k
ixor )]]

1

vIx(kyw! (k)v;
— BE Wf[e(k)] (52)

11
Tx(k)xT (k)v;
2 | Vi XOX Wi
tr [ O

ur

ritk + 1) = Aik) — ,BIE[

The analytic computation of terms I-III is a challenging
task, especially due to the presence of the nonlinear terms.
In order to circumvent such an issue, two simplifying
assumptions are adopted: the model (45)-(47) and the Price
heuristic (discussed in [16]). Briefly, the Price heuristic
utilizes the Price theorem [42] (which is strictly valid only
when jointly Gaussian random variables are involved in the
expectation) when the input vector is generated according to
the model described by (45)-(47). Therefore, term I in (52)
can be expressed as:

= p | Zep| T || YN OF Mxv;
f 2¢ Ix (k)12
2 72 Ai
=B,/ Eexp |:_E:| TrR] Li(k). (53)

whereas terms II and III can be simplified to

Tyl _
" [Vl- X)W (k)f[e(k)]vl}

lIx(k)]I1>

2 V2 vIx(kyw! (k)xT (kyw(k)v;
=—-B./—exp|—=— |E 5
\ & 28 x|
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P IS Bl BRI (54)
BT s Tr[R]""
T T
o Vi x(k)x" (k)v; 5
Il ~ B°E [—”X(k)”4 ]IE [Freqwon)
:ﬁ%m(57)%§ 3 BISIE [r] v vy vi
J2E &5 THR] E[s¢]E[r]v] v
y Ai
_ Rerfe ( \/_) . (55)

The combination (52)- (55) of yields the subsequent

recursion:
- - 72|
Aik + 1) = Ai(k) — 2 gﬁe p[ 2{;} THR] Aik)
Y A
+ plerfe ( ﬁ) e (56)

where one observes that the dynamics of the modes are
coupled, since & depends on all Xl-(k) (see (51)). Using (56)
and (51), it is possible to predict the evolution of the MSE.
Therefore, a model for the transient behavior of the algorithm
was obtained.

Such a model is also valid in asymptotic regime. In this
case, assuming that the algorithm operates in a stable manner,
one has that A;(k + 1) = X;(k) and

erfc
Sik) = /3 / TlFﬂ:]
exp []

Which implies that in steady-state:

(57)

i erfc L 2
E=o0)+ D hiki(k) =0} + (JE) {Tr[R]}

i—0 exp (_Z_;) E[r4] ,

(58)

an identity similar to the one obtained with energy-conservation
arguments (see (42)).

Remark: 1t is possible to elucidate under which conditions
Equations (58) and (42) are equivalent. Assume that the input
vector derives from a white Gaussian process. Hence,

r (N+n)

E [Ix)ll3] = 2"F oN ——2 L, (59)
r(*)
where o2 is the variance of x and
oo
rx) 2 / *~lexp(—1)dt. (60)
0
Thus,
N+
TrRT}2 r(&4=

E[] 2 F(NT+)

VOLUME 12, 2024

Since
(62)

both equations are equivalent for large values of N.

V. DESIGN OF A VARIABLE STEP-SIZE SM-SIGN-NLMS
This section addresses the issue of deriving a time-varying
step size in order to tackle the compromise between low
asymptotic MSE and fast convergence rate. The obtained
step-size sequences agrees with intuition and are obtained
based on the theoretical model described in Section I'V.

Consider a time-variant step size B(k) in (56). The
minimization of A;(k 4+ 1) can be enforced by

aii(k+1):_2 2 exp| 7?2 Ai L)
9B(k) & (k) 26(k) | Tr[R] ™

L 28k erfe ( 63)

L) M 0
V2Ek) ) E[r]

Therefore, in order to maximize the convergence rate of the
algorithm, the following theoretically-based choice can be

made:
ElrY] [ 2 [ 7’ }imk)
Bk) = exXp | — =< . (64)
k 28(k) | Tr[R
erfc( 2};(1()) m&(k) & (k) r[R]

Unfortunately, (64) is not a feasible choice in practice,
because Xi and Tr[R] are not observable. Hence, some
approximations should be performed. Assuming a white input
signal, one may write:

£—o?
N 9

rilk) ~ ool ~ (65)
where U»% is the variance of the deviations Vviz(k), supposed
to be constant along the taps. Combining (65) with the
approximation E[r*] ~ N 20 leads to

=2
2 o [‘2500] +2
Pom(k) = < ew-6t]. 0
2409 erfc( 4 )
V2§ (k)
where 82 is an estimate of cr . Note that cr is already

estimated in the Set- membershlp approach (see (6)) and & (k)
can be estimated in an online manner through

E(k 4+ 1) = 2E(k) + (1 — MeX(k), (67)
where
_ 1
A=1-— Ik (68)

with K > 2. In fact, the resulting variable step size is almost
insensitive to the value of K, so that one can impose K = 2 in
order to avoid the adjustment of an additional parameter [17].
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VI. TRACKING
The ability to operate in a nonstationary setting is one
of the most desirable features of adaptive filtering algo-
rithms [40]. The learning behavior of an adaptive filter is
more sophisticated in this case, since time-varying plants
cause a “lag” in the adaptive learning process. Thus, the
tracking capabilities of an algorithm are enhanced when the
step size has large values, whereas the variance of the adaptive
estimator diminishes under small values of 8. This implies
that asymptotic performance is optimized when this trade-off
is taken into account.

A time-variant feature of the ideal plant is explicitly
introduced by the following first-order stochastic multivariate
Markovian random walk model:

w*(k + 1) = w*(k) + q(k), (69)

where (k) is a zero-mean random vector that is statistically
independent from the remaining random variables. It also has
the following covariance matrix

Q=E[ak)a’ (0] = o]y (70)

Remark: The random walk model is popular in the area of
adaptive filtering. Its suitability is discussed in more detail
in [43]. It should be noted that first-order perturbations (69)
are encountered in applications such as acoustic echo
cancellation and transmission systems [40], in such a manner
that its use is not due solely to analytical convenience.
Under (69), a new formulation is called for Equation (22):

w(k + 1) =w(k) — B e(k)] + q(k). (71)

x(k)
L
x|l
In a similar manner, Equation (48) can be restated in the form
of:

T
Ri(k + 1) = Ry(k) — BE [ Wﬁ"z,f)”(f WX ®) (k)]] +Q
x(k)wT (k) ]
— BE k 72
B [ TFIE ——————fle(k)] (72)
x(k)x? (k) ., ]
E e(k
& [ o 1]

Thus, a revision is needed for equation (73) to read:

= oz 2 Y Aj 2
)w(k‘f‘ ]) - )&z(k)“"ﬂ (k)erfc(m) E[r ] +Gq

—2 =Bk 7| g,
s<k> P T2 k) ‘

(73)

Through various mathematical manipulations (akin to those
that gave rise to Equation (58)), one comes to the subsequent
fixed-point equation describing the asymptotic behavior of
the algorithm in the non-stationary setting:

., BJEE erfe ( J5z) (meimyy?
5—01;2“‘ 2\/— expl:—g:l E[r4]
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Nm& Tr[R] 52
228 exp[5]
NJ7€ Ti[R]
2V28 exp[_

analytical contribution of the Markovian perturbation q(k) to
the asymptotic performance of the algorithm.

(74)

where the novel additive term —F 7 o2 contains the

q

VII. DEFICIENT-LENGTH ANALYSIS

In practice, the length of the ideal plant is greater than
the adaptive filter length. Sometimes, the designer chooses
such a configuration in order to deal with computational
limitations [44] or when the convergence rate should be
increased [45]. Thus, it is important to characterize the
algorithm performance under suboptimal operation [46].
In the following, a theoretical approach distinct from the
previous ones is described. The stochastic modeling is
divided in two parts: i) first-order analysis; and ii) second-
order analysis.

A. FIRST-ORDER BEHAVIOR

In the deficient-length configuration, the desired signal can
be described as

dik) = [w]" xtb) + [W]" X +vk),  (75)
where w* € RE and
X(k)2[x(k — Ny(k =N — 1).x(k —N — L+ 1D)]", (76)

where the ideal vector has length N + L (with N denoting
the length of the adaptive filter, as before). In this setting,
recursion (22) is still valid when the error is written as

e(k) = W' (k)x(k) + [W*]" X(k) + v(k). (77)

Thus, using (22) and (77), applying the expectation
operator and the Prize heuristic alongside the independence
noise assumption leads to:

5 —2
E[Wk + D] = E[w(b)] - ﬁ\/;e"p [_ zg(k)] 4

(78)
where
N x(k)xT (k) _ iT(k)w—"x(k) x(k)v(k)
A=E 1 —w(k .
Inx(k)n2 AT ||x<k>||2}
(79

Using the approximation E [IIX(11<)II2] ~ # yields:
E[W(k + 1)] = BE [W(k)]
, 80
-F né(k) ( zsac)) e

B(1I-8 R (81)
B \ né(k Zé(k) ’
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and
E [X (kyw*x(k)]

B &
NUXZ

(82)

Assuming a white input, Equation (81) implies that the SM-
sign-NLMS algorithm is unbiased, in the sense that the
adaptive weight vector converges in the mean to the first N
elements of the ideal plant:

E [w(c0)] =0 = E[w(c0)] = w*. (83)

white

B. SECOND-ORDER ANALYSIS
The second-order behavior of the algorithm is more involved.
Using (77) leads to:

(k) = w! ()x(k)xT (kyw(k) + 2w (k)x(k)X" (k)w*
+[7] xEX" W +12(K) + Olv(k)].  (84)

After the application of the expectation operator and the usual
statistical assumptions, one has:

E [e2(k)] = o2+ [W]" Ry_uW* + 2b7E [W(k)]

+Tr (RRy ()}, (85)
where

bLE {[iT(k)W*] x(k)} , (86)

Ry u 2 E [i(k)iT(k)] . (87)

Multiplying (22) by its transpose and applying the expecta-
tion operator with the usual simplifying assumptions leads
to, after some mathematical manipulations:

Ry (k + 1) = Ry (k) — gR5 (k)R — gRRg (k)
— B [W]E {x" 0 {[]" %)} }

+ ﬂ—Zerfc (L) , (88)
E[~] \V2E®

where

= P 2 exp | — v (89)
§ T E[Ix®IP] =& P | 28 |

Assuming a white input signal, utilizing the approximation
E [llx(k)||2] =N sz and applying the trace operator in (88)
yields:

0k +1)=0(k 2b 2 v’ 0k
(k1) =000 = 0 [ e | =51 060

+ Nﬂz erfc( 4 ) (90)
E[r4] V2ER) )’
where
(k) £ Tr[Rg (k)] , 91

is the mean square deviation (MSD) of the algorithm.
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The assumption of a white Gaussian input signal simplifies
the recursion to:

0k +1)=0(k 2b 2 v’ 0k
k+1) =00 — 7 | —sewn | 5 [06)

pr (M) 7
20;”‘ (1%) erfc (m) , (92)

where 0(k) and & (k) are related by:

+

E(k) = o2 + o2 |WII* + o 20(k). (93)

Equations (92) and (93) specify a coupled pair of fixed-
point equations. This implies that the asymptotic MSD and
MSE can be estimated through an iterative refinement of an
initial guess for 6(k). At each iteration, the current estimation
of the MSD 6(k) leads to a novel estimate of the MSE & (k)
through (93) and the current estimates of £(k) and 6(k) can
be utilized for updating the estimate of 8(k) through (92).
Thus, Equations (92) and (93) provides theoretical estimates
for both asymptotic MSD and MSE of the advanced
SM-sign-NLMS algorithm. Note that g presents a strong
stochastic coupling with the random vectors E [W(k)] and

E {XT(k) {[W]T i(k)l }, which, by simplicity, was neglected
in the stochastic analysis. This independence assumption
unfortunately restricts the analysis for configurations where
the step size is small.

VIIl. RESULTS

In the absence of explicit instructions to the contrary,
the number of independent Monte Carlo trials was set
to K/ = 1000 for all experiments. Three distinct input
signals are adopted in the different scenarios considered.
The first of them is sampled from an unit-variance zero-
mean white Gaussian process (UZWG). Other alternatives
are a fourth-order autoregressive (AR(4)) process computed
through x(k) = 0.75x(k —1)+0.19x(k —2)4-0.09x(k — 3) —
0.5x(k —4)+ g(k), where g(k) is a zero-mean white Gaussian
noise with unit variance (see [47]) or a MA(2) process, where
the input signal is obtained by filtering an UZWG by the filter
1 — 0.8z7' + 0.2z72. The unknown plants to be identified
are the ones measured and described in [48]. Unless stated
to the contrary, the noise signal v(k) is zero mean, white and
Gaussian. In all experiments, the adaptive filter is initialized
with zeros, and its length is the same than the one of the ideal
plant (except in the deficient-length configuration).

A. COMPARISON WITH THE STANDARD SM-NLMS
ALGORITHM

The advantage of the advanced algorithm in an environment
subject to impulsive noise can be observed in a very simple
setup. Consider the unknown plant to be the sixth one of [48]
(N = 120). Additionally, T = 35, BsMmsign = 0.01 and
Bsm = 0.03. Learning coefficients were picked to ensure
the same asymptotic performance of the algorithms. The
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FIGURE 2. Evolution of the MSE and probability of update of both
SM-sign-NLMS and SM-NLMS algorithms. (a) MSE; (b) Probability of
update. The curves were computed through 10 independent Monte Carlo
trials.

variance of the additive noise is equal to 2 = 107°. Besides
the measurement noise v(k), an impulsive noise n(k) is
introduced into the reference signal d (k). The impulsive noise
is created as n(k) = wyN, where w; follows a Bernoulli
process with a success probability of P [w; = 1] = 0.1, and
Ny is a zero-mean Gaussian noise with a variance equal to
03 = 0.1. Figure 2 depicts the results. Note that the advanced
algorithm presents better rate convergence than the original
SM-NLMS algorithm. Furthermore, it presents a much lower
asymptotic probability of update (34.49%), less than half than
the one obtained by the SM-NLMS algorithm (74.87%). This
indicates that the proposed algorithm shows great potential in
terms of reducing computational burden, as well as in its data
censoring abilities.

B. STEADY-STATE BEHAVIOR

To assess the stochastic model against experimental data,
choose a configuration involving the first plant of [48]
(N = 64), with y = 5 and 62 = 107°. The fixed-
point equation (42) was iterated from an initial value & =
1072 until the absolute difference between two consecutive
estimates of the MSE is less than 10~!°. Based on Figure 3,
one can infer that the theoretical model demonstrates
strong agreement with the data, for both white and colored
input signals. The largest deviation between the theoretical
prediction and simulated results is observed at 8 = 1, with a
discrepancy of 0.0961 dB (resp. 0.2862 dB) for white (resp.
colored) input signals. The increased discrepancy between
theoretical predictions and simulated data at higher 8 values
is attributed to the fact that, in this case, e, (k) and ep (k) exhibit
a stronger stochastic coupling with respect to the input data,
resulting in a less accurate approximation (31).

C. TRANSIENT BEHAVIOR
The ability of the devised stochastic model for predicting the
transient behavior is assessed in a setup where the ideal plant
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FIGURE 3. Steady-state MSE (dB) of the advanced algorithm. (a) White
input signal; (b) AR(4) input signal.
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FIGURE 4. Transient behavior of the proposed algorithm. (a) White input
signal; (b) MA(3) input signal. Solid blue: simulated. Dashed red:
theoretical prediction.

is the second one of [48] (N = 96), with 8 = 0.5 and
t = 2. The comparison between the actual MSE curve
and the predicted one can be seen in Figure 4. One may
observe that the proposed model fits well the simulated
curve, except in the case of a colored input signal, where
model has some disparity in the final part of the transient
regime. Nevertheless, it is important to observe that the
model remains highly accurate during the early iterations,
as well as in the steady state. Colored input signals elevate the
stochastic coupling among the adaptive coefficients, making
it difficult for certain theoretical models to precisely capture
the behavior of the learning algorithm.

D. VARIABLE STEP-SIZE SCHEME

As the SM-sign-NLMS algorithm is introduced in this paper,
there are no prior time-varying learning rate techniques
that can be applied to it. Therefore, we will assess the
performance of the proposed VSS method with various
choices of the learning rate parameter (assumed to be fixed

VOLUME 12, 2024
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FIGURE 5. Transient behavior of the VSS-SM-sign-NLMS algorithm,
compared against the original version with a fixed step size (for

B € {0.1, 0.5, 1}). The input signal is AR(4). (a) estimated noise variance

62 = o2; (b) estimated noise variance 52 = 202

across iterations). It is known that small values of g favor
asymptotic performance, while higher values accelerate the
convergence rate. Consider T = 3, 02 = 107% and the
unknown plant being the third one of [48] (with N =
96). Figure 5 demonstrates that the VSS-based scheme
outperforms the fixed step size version, with distinct values
of B. The benefit persists even when the estimated variance
of the noise variance is wrong (see Fig. 5.(b)). Thus, the VSS
presents better asymptotic performance, without reduction in
the convergence rate. The fact that the performance of the
VSS version of the algorithm remains largely unchanged in
the presence of a significant error in noise variance estimation
is relevant, given that the process of estimating this variance
is not straightforward.

E. TRACKING

Equation (74) provides a theoretical estimate of the
steady-state performance of the SM-sign-NLMS algorithm.
For the theoretical prediction, it was iterated from an initial
value & = 1072 until the absolute difference between
two consecutive estimates of the MSE is less than 1010,
In this section, its accuracy is assessed for both white and
colored input signals. Three distinct scenarios are taken into
account:

1%

o Scenarioll: T = 4, 01)2 = 10_6, qu =1077;

o Scenario lll: T =3,07 =5x 107,07 =8 x 107°.

The fourth plant of [48] (with N = 128) was adopted as
the ideal system. Note that a high degree of non-stationarity
was imposed, since a,f (the variance of the i.i.d. Gaussian
Markovian perturbation) is higher than the usual in the
literature (see, e.g., [49], [50]). Figure 6 depicts the results.
Note that the theoretical model predicts in an accurate manner
the asymptotic performance of the algorithm, for both white
and colored input signals.

e Scenariol: T =5,02=5x 1079, aq2 =2x1079;
-5.
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FIGURE 6. Steady-state performance of the advanced algorithm for
distinct values of g and three different scenarios. (a) White input signal;
(b) MA(3) input signal.
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FIGURE 7. Mean behavior of the weights w; (k) (fori € {2,5,9}) of a
deficient-length configuration of the sign-SM-NLMS algorithm. The input
signal is white.

F. FIRST-ORDER ANALYSIS OF THE DEFICIENT-LENGTH
SCENARIO

Equation (83) implies that the proposed algorithm is
asymptotically unbiased in the deficient-length case, in the
sense that the coefficients of the adaptive filter converge
to the first N coefficients of the optimal vector.’ In order
to quantitatively assess such a prediction, consider the case
where the ideal solution contains the first 30 elements of the
fifth plant of [48], whereas the adaptive filter operates with
N = 20 adaptive taps. In this simulated scenario, T = 2, ovz =
1075, and B = 5 x 1073, Figure 7 depicts the asymptotic
convergence in the mean of three adaptive weights to the
corresponding coefficient of the optimal solution, as expected
by the devised theoretical model.

3Note that the derivation of (83) assumed a white input signal.
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Iteration number

FIGURE 8. Theoretical prediction (dashed red horizontal lines) versus the
MSE along the iterations (in blue solid), for the deficient-length
configuration. The input signal is white.

G. SECOND-ORDER ANALYSIS OF THE
DEFICIENT-LENGTH SCENARIO

The solution of the coupled pair of fixed-point Equations (92)
and (93) provides a theoretical estimate of the asymptotic
MSE of the deficient-length configuration. In order to assess

the theoretical prediction, consider a setup with t = 2,
02 =10"% =103 and

w! = exp (—0.2i) cos(0.3i), (94)

for i € {0,...,39}. The quantities & and & are
initialized with the value 1072, They are iterated through
Equations (92) and (93) until the absolute difference between
two consecutive estimates of the MSE is lesser than 10710,
Figure 8 allows one to conclude that the theoretical model
described in Section VII-B is able to estimate the asymptotic
performance of distinct suboptimal lengths of the adaptive
filter. Note however that the theoretical prediction slightly
overestimates the asymptotic performance of the algorithm.
Indeed, the difference between the experimental steady-state
performance of the algorithm and the theoretical prediction is
0.593 dB (resp. 0.8034 dB) when N = 30 (resp. N = 32).

IX. CONCLUSION

This paper advances a novel algorithm that combines the
Set-membership filtering concept with a signed normalized
adaptive filter. The update equation is derived from a
minimum disturbance description. A theoretical fixed-point
equation that estimates its asymptotic MSE was derived,
based on energy-conservation arguments. A transient analysis
of the algorithm was provided, utilizing a simplified model
for the input vector, which divorces its radial distribution from
its (discrete) angular distribution. The transient analysis was
employed to derive an efficient and nonparametric variable
step size scheme that combines a faster convergence rate with
better steady-state performance. Such an analysis also was
generalized in order to capture the asymptotic behavior of the
algorithm when the ideal plant is nonstationary and subjected
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to a first-order Markovian perturbation. A novel stochastic
model for the deficient-length configuration was described,
that predicts the unbiasedness of the algorithm when the input
signal is white. Further, the mean square behavior of the
algorithm in the suboptimal-length setting was also predicted
from a stochastic model. The findings were confirmed by
extensive simulations.
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