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ABSTRACT Reticle optimization is a computationally demanding task in optical microlithography for
advanced semiconductor fabrication. In this study, we explore the effectiveness of D-Wave’s quantum
annealing (QA) and hybrid steepest descent (SD) solvers in solving pixelated binary reticle optimization
problems. We show that the energy derived from the objective function depends on annealing time and
inter-sample correlation. Specifically, longer annealing times and reduced inter-sample correlations result in
lower energy. Moreover, introducing efficient pausing strategies in forward annealing could reduce the QA
runtime by approximately 100-fold while achieving similar results to long annealing times. Finally, reticles
with increased variables lead to widespread irregular values in default sorted QA energies due to quantum
chain breakages, which could potentially limit the probability of attaining the optimal solution. A hybrid
approach that applies the classical SD algorithm to the QA results increases the probability of locating the
global minimum solution and reduces runtime to about one-third compared to the classical SD solver. These
findings facilitate our comprehension of quantum computing for accelerating computational lithography in
semiconductor manufacturing.

INDEX TERMS Inverse lithography technology, optical proximity correction, quantum annealing, quantum
computing, semiconductor.

I. INTRODUCTION
Reticle modification is a resolution enhancement technique
for improving pattern fidelity in optical microlithography
by altering the size and shape of the physical circuit lay-
out on the photomask. Over the past three decades, reticle
modification methods have advanced from rule-based and
model-based optical proximity correction (OPC) to free-form
photomasks known as inverse lithography technology (ILT)
[1]. ILT is a mathematically rigorous inverse method that
converts photomask generation into an optimization problem
aimed at creating an on-wafer image that closely matches the
original design [2], [3], [4]. As a next-generation OPC, ILT is
expected to address complications in advanced-node lithog-
raphy including pushing the resolution limit and increasing
the process window for ArF 193 immersion and extreme
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ultraviolet (EUV) lithography. However, ILT faces signifi-
cant computational challenges, with computation times often
being tens of times longer than conventional OPC at advanced
CMOS nodes. To date, the demand for computing resources
can only be met by massive parallel computation [5]. Another
significant challenge associated with ILT is maintaining
data consistency, especially at reticle template boundaries.
Although various optimization algorithms, such as pixel flip-
ping [6], [7], level set [8], and gradient descent [9], have
shown the capability of correcting the entire chip layout,
these ILT solutions are still regarded as local minima. Con-
sequently, extra attention is necessary to address stitching
issues due to inconsistent correction data that can arise at
template boundaries. An objective of ILT has been find-
ing global minimal solutions that are consistent throughout.
However, a pixelated binary reticle with M-by-M elements
gives rise to M2 variables and 2M

2
possible pixel configura-

tions. As M grows, it soon becomes impossible to locate the
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global minimum using conventional methods, further com-
plicating the computational challenges associated with ILT.

Quantum computing (QC), since its proposal in the 1980s,
has promised significant speedup in solving challenging com-
putational problems with large dimensions by leveraging
quantum phenomena such as superposition and entangle-
ment. Current quantum computers are based on two main
paradigms: gate-based QC and adiabatic quantum computa-
tion (AQC), with various physical implementations including
superconductors, trapped ions, cold atoms, and photons [10],
[11], [12]. Quantum annealing (QA), as a relaxed approach
of AQC, offers a heuristic quantum optimization algorithm to
find the ground state of Ising models [13], [14], [15]. These
problems can be posed in Ising form using the {−1, 1} basis
and spin variables, or as a quadratic unconstrained binary
optimization (QUBO) problem using the {0, 1} basis and
binary variables. Quantum annealers, particularly D-Wave’s
quantum adiabatic optimizer machine using superconduct-
ing qubits, have received considerable interest due to the
number of available qubits and programmability [16], [17].
Various research and industrial applications have been tested
in fields including machine learning, scheduling, chemistry,
pharmaceutics, etc. [18], [19], [20], [21], [22], [23], [24],
[25]. Compared to classical optimization algorithms such as
genetic algorithms, particle swarm optimization, and differ-
ential evolution, QA algorithms can avoid getting trapped
in local minima and have the potential to find better global
solutions due to the tunneling and superposition nature of
qubits (Fig. 1). Moreover, QA algorithms are faster in solving
Ising models and are more robust to noise and other sources
of error than quantum-inspired algorithms [26]. With the
number of qubits scaling up on near-term quantum devices,
QA provides a practical path to harnessing quantum resources
for solving complex optimization problems like ILT. It is
therefore of practical interest to investigate the applicability
and performance of D-Wave’s QA solver in computational
lithography.

FIGURE 1. Illustration of the solution search process for classical
optimization (a) and quantum annealing (b) algorithms.

In this study, we formulate a classic ILT problem, the pixe-
lated binarymask optimization, into aQUBOmodel [27]. The
associated Hamiltonian coefficients are embedded into the
physical qubit grids on the D-Wave Advanced QA Hardware
Advantage 6 system [28], [29]. We investigate the effects of
annealing time, inter-sample correlation (ISC), and pausing

strategy of forward annealing on the quality of the solution
and the probability of locating the global minimum solution.
Since current ILT problems are largely solved by gradient-
based algorithms, we further compare the solutions provided
by QA vs hybrid QA and classic steepest descent (SD) algo-
rithms to gain insights into how QA might be integrated into
or improve upon the industry practice. The SD algorithm
iteratively minimizes the cost function by moving along the
negative gradient direction to descend to a minimum. The
step size is chosen to maximize descent at each iteration.
Finally, we increase the reticle size and further characterize
the performance of D-Wave’s QA and hybrid solvers.

II. METHOD
A. QUBO FORMULATION
Optical microlithography simulations utilize Köhler’s illumi-
nation model to calculate the optical intensity distribution,
that is, the aerial image of a photomask on a wafer. The aerial
image in a coherent imaging system can be described with the
expression of Eq. (1):

I (x) = |E (x)|2 =

∣∣∣h̃ (x) ∗ m (x)
∣∣∣2 , (1)

where I and E denote the aerial image and the electric field at
a specific coordinate x on the wafer, respectively. h̃ represents
the impulse response function of the coherent imaging system
and m the photomask function, with the ‘‘∗′′ operator denot-
ing the two-dimensional convolution operation. To model the
exposure tool as a partially coherent imaging system with an
extended illumination source, the image in Eq. (1) can be
restructured to incorporate the contributions from multiple
coherent sources as the intensity sum of individual optical
kernels. This approximation is known as the Sum of Coher-
ent System (SOCS) approach [1], [30], [31]. In this work,
we assume coherent imaging without losing much generality,
since the first kernel of a partially coherent imaging system
typically holds a much higher influence on the final aerial
image than the others.

The standard algorithm for ILT involves finding an opti-
mized photomask that minimizes the criteria of a cost
function. A common objective function for ILT can be
defined as the squared sum of the difference between the
produced aerial image and the target, as expressed in Eq. (2).

S =

∫
|It (x) − I (x)|2 d2x, (2)

where It (x) is the target aerial image inferred from the drawn
layout, I (x) the calculated aerial image, and S is the total cost
obtained by summing the squared difference between It and I
over the entire image plane. Therefore, we can formulate
the ILT as an argmin optimization problem, as expressed in
Eq. (3)

m̂ = argmin
m

S, (3)

The D-Wave QA architecture currently only allows for
unconstrained optimization problems, where constraints need
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to be incorporated into the objective function as penalty
terms. For this initial study evaluating the effectiveness of
D-Wave’s QA algorithm on an ILT problem, we have not
yet added constraints such as mask constraints or other merit
terms like photoresist contour and aerial image contrast. Our
objective function consists solely of the pixel-matching term.
This simplified form allows us to isolate the performance of
QA on the core ILT objective before introducing additional
complexities.

We next formulate the ILT problem expressed in Eq. (3)
into QUBO form by considering a binary photomask of N
pixels with element values of either 0 or 1 as expressed in
Eq. (4):

m (x) =

N∑
i=1

p (x − xi) σi, (4)

where p(x) denotes a 2D shape function of pixels, N is the
total number of pixels, and σiϵ{0, 1} represents the transmit-
tance of ith pixel located on position xi. The electric field
of the mask through a coherent imaging system is therefore
given by:

E (x) =

N∑
i=1

φ (x − xi) σi, (5)

where φ (x) ≡ h̃∗p (x) represents a single-pixel field profile.
Thus, the aerial image is the absolute square of the field
profile:

I (x) =

∣∣∣∣∣
N∑
i=1

φ (x − xi) σi

∣∣∣∣∣
2

. (6)

When attempting to convert Eq. (2) to the QUBO Hamil-
tonian with Eq. (6), we encounter a fourth-power interaction
among binary pixels. Following a similar approach to [26],
we redefine the objective function to evaluate the amplitude
profile on the wafer, as expressed in Eq. (7):

Samp =

∫
|At (x) − A (x)|2 d2x, (7)

where At (x) =
√
It (x) denotes the target amplitude image

and A (x) = |E (x)| calculated from Eq. (5). Equation (7) can
be recast into the Hamiltonian of a QUBO problem, Hqubo as
expressed in Eq. (8):

Hqubo =

∑
i,j,i̸=j

Jijσiσj +
∑
i

hiσi + C, (8)

where Jij = Jji denotes the symmetric interaction coefficient
or the quadratic coefficient between pixels ith and jth, hi is the
linear coefficient of pixel ith, and C is a constant bias.We then
expand the cost function in Eq. (7) into Eq. (9):

Samp=

∫
|At (x)|2 d2x−2

∫ (
Re (A (x))Re (At (x))
+Im (A (x)) Im (At (x))

)
d2x

+

∫
|A (x)|2 d2x, (9)

where the first, second, and third term correspond to the con-
stant (C), linear (h), and quadratic terms (J ) in Eq. (8), respec-
tively, as explicitly expressed in Eq. (10), (11), and (12):

Jij =

N∑
i

N∑
j

[
Re (φk (x − xi))Re

(
φk

(
x − xj

))
+Im (φk (x − xi)) Im

(
φk

(
x − xj

)) ]
(10)

hi = (−2)
N∑
i

[
Re (φk (x − xi))Re (At (x))
+Im (φk (x − xi)) Im (At (x))

]
(11)

C =

∫
|At (x)|2 d2x (12)

B. QUANTUM ANNEALING ALGORITHM
The QA algorithm is based on the adiabatic theorem, which
states that if a quantum system is in its ground state and
the Hamiltonian governing the system’s dynamics is changed
slowly enough, then the system will remain in its ground
state throughout the evolution. The theorem can be used for
computation by preparing a system in the ground state with
an easy-to-solve initial HamiltonianHi, and then slowly tran-
sitioning to the more complex Hamiltonian of the problem to
be solved, denoted as the time-dependent Hamiltonian Hf in
Eq. (13).

H (s) = A (s)Hi + B (s)Hf , (13)

where s represents a normalized time factor characteriz-
ing the annealing fraction, which is defined as the ratio of
the current time to the total annealing time. A (s) and B (s)
are monotonic weighting functions usually defined by the
quantum computer hardware, as shown in Fig. 2(a), such
that A (s = 0) = 1,B (s = 0) = 0, and A (s = 1) =

0,B (s = 1) = 1.As the transition fromHi toHf occurs grad-
ually, the system undergoes a transformation from its initial
(ground) state Hi, to the ground state of the problem Hamil-
tonian Hf . Throughout this process, Hi gradually diminishes
in influence, and the system is increasingly governed by Hf .
When s reaches 1, the system becomes purely classical, and
the final states of the qubits are measured. This measurement
yields the lowest (ground-state) energy of the classical QUBO
model with binary variables, following the same structure as
described in Eq. (8).

Once the problem Hamiltonian is defined, the simulation
process takes on five stages to produce solutions of inter-
est [12], [14], [15]: (1) Converting the QUBO definition into
a logical graph, where each node represents a variable, and
each edge denotes the interaction term between a pair of
variables. (2) Embedding the logical graph into the QA hard-
ware, where the logical graph is translated onto the physical
hardware graph of the QPU by selecting sets of physical
qubits to represent a single logical node and to identify the
couplings between the physical qubits that realize the correct
interactions between the logical variables. Here we use D-
wave’s default mapping in Advantage system 6, which maps
the logical variables to the physical qubits using the Pegasus
graph for optimized connectivity and improved scalability.
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FIGURE 2. (a) schematic annealing schedule which shows the change of
A(s) (red solid curve) and B(s) (blue dash curve) in D-wave advantage
system 6. (b) Schematic annealing schedules with and without pausing
are shown in green solid and blue dash curves respectively.

(3) Programming and Initialization, where programming the
quantum annealer requires setting the parameters that define
the problem to be solved, which is set as the final Hamilto-
nian. This involves setting the weights for each qubit bias (to
control the magnetic field acting on the qubit) and coupler
strength (to control the interaction between qubits). After
programming, the spin configuration of the QPU is initialized
as the lowest energy configuration of an easy-to-implement
initial Hamiltonian, where the qubits are placed in an equal
superposition of all possible states. (4) Annealing Process,
which involves solving the Ising/QUBO model by transition-
ing the system from the initial to the final Hamiltonian using
predefined annealing functions to minimize energy. It can
also serve as the central component of a hybrid approach,
where a quantum processor handles the inner loop of the cal-
culation. And finally, (5) Readout solutions and Resampling,
in which after the annealing phase, the qubits reach an eigen-
state or a superposition of eigenstates in the computational
basis, each corresponding to a potential minimum of the final
Hamiltonian. However, since QA is a heuristic approach,
there is a nonzero probability that the computation yields
a ground state of the system. To mitigate the uncertainty,
the anneal-readout sequence is repeated multiple times for
each input to acquire multiple candidate solutions through
resampling.

The calculations are performed using the D-wave Advan-
tage system 6 to explore the effects of global annealing
trajectories, also referred to as annealing time and annealing
schedule.
A. Annealing Time: It can be adjusted by scaling the

quadratic growth in B (s), thereby allowing for the
entire annealing process to occur at a faster or slower
rate (Fig. 2(b), dashed blue curve). This adjustment
provides control over the evolving rate of the quantum
system.

B. Annealing Schedule: This can be manipulated by intro-
ducing a pause through the annealing process. A pause
involves interrupting the quadratic growth of B (s)
and maintaining it at a specific scale for a particular
duration (Fig. 2(b), solid green curve). An appropriate

pausing event may increase the probability of tunneling
between the excited and the ground states.

C. PSEUDO CODES
In this section, we describe the algorithms presented in
pseudo codes. Table 1 shows the overall steps for QA using
the D-Wave quantum processor. It takes a QUBO matrix
as input and outputs the solution vector and energy after
running on the quantum annealer. The key steps are selecting
the D-Wave sampler, embedding topology, setting annealing
parameters, sampling from the quantum state, and reading out
the final state. In addition to the quantum annealer, D-Wave’s
cloud service allows the implementation of classical solvers
for binary quadratic problems [32]. The SD algorithm was
executed on Amazon Elastic Compute Cloud with Intel(R)
Xeon(R) Platinum 8175M CPU. Table 2 outlines the SD
algorithm forminimizing aQUBOobjective function. It itera-
tively flips variables to greedy reduce the energy at each step.
The gradient or flip energies are calculated to determine the
steepest descent direction. It repeats this greedy variable flip
process until reaching a minimum. Table 3 demonstrates the
hybrid approach combining QA and an SD post processing.
It first runs QA to get an initial solution state. Then it uses
this state to seed SD as a local search to refine the solution.
The hybrid approach leverages the global search capabilities
of QA and combines it with the local optimization of SD.

TABLE 1. Quantum annealing algorithm for QUBO optimization.

III. RESULTS AND DISCUSSIONS
In this section, we evaluate the effectiveness of D-Wave’s
quantum annealer in minimizing the QUBO Hamiltonian
through the identification of an optimal binary mask. The
study focuses on the Advantage 6 system, which supports up
to 5760 qubits and accommodates up to 64 logic variables
using Pegasus embedding. We explore variable configura-
tions of N =5 × 5, 6 × 6, 7 × 7, and 8 × 8. Starting with
an arbitrary binary mask, we compute its amplitude image
as the target, serving as the benchmark and global minimum
solution sought via theQA algorithm.We present results from
the QA solver with and without pauses, a hybrid approach
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TABLE 2. Classical steepest descent algorithm for QUBO optimization.

TABLE 3. Hybrid quantum annealing and steepest descent algorithm for
QUBO optimization.

that applies the classical SD algorithm to the QA results, and
insights into solution characteristics as the reticle size grows.

A. QA SOLVER
The first simulation experiment is conducted for a binary
mask in a N = 5 × 5 pixel array, where the 2D shape
function is designed as a simplified letter ‘‘A’’, as shown in
the upper row of Fig. 3(a). The amplitude image is calculated
by convolving an impulse response function with the prede-
fined mask and then normalized to the maximal amplitude
value, as shown in the bottom row of Fig. 3(a). A simulation
cycle is configured as follows: the annealing time is set to
10 µs and resampled 100 times to increase the probability
of finding the optimal solution. As a result, the quantum
processing unit (QPU) access time is 1 ms in total without
delays between samples. Fig. 3(b) to (d) show the three
lowest-energy sampled states from individual samples within
one simulation cycle; the top row shows the resulting binary

masks, and the bottom shows the corresponding amplitude
images. As depicted in Fig. 3(b) bottom row, the ampli-
tude image derived from the lowest-energy sampled solution
closely resembles the target. However, the optimized binary
mask still exhibits minor discrepancies, with two pixels fail-
ing to match the original mask.

FIGURE 3. (a) The target mask pattern, representing the ground truth for
quantum annealing, and the calculated amplitude image (bottom row).
(b) to (d) The three lowest-energy-sampled solutions resulting from
100 individual samples within one simulation cycle. The top row shows
the binary masks, and the bottom the corresponding amplitude image. All
share the common scale on the right.

Since QA is a heuristic algorithm, the lowest energies
obtained from individual samples and cycles are differ-
ent. Therefore, in addition to 100 samples within a QA
cycle, we repeat the simulation cycles 100 times to calcu-
late the average lowest energy for various annealing times:
10 µs, 20 µs, 40 µs, 100 µs, and 1000 µs. The results
are normalized to the maximal average value of the 10 µs
annealing time and plotted in the dashed blue histogram in
Fig. 4. It is observed that the normalized energy resulting
from the 100 cycles monotonically decreases with annealing
time. The longer the annealing time, the lower the average
energy.

Moreover, in D-Wave’s quantum annealer, ISC refers to the
relationship between different samples during the sampling
process. Specifically, ISC measures the degree of similarity
or dependence between these individual samples. A higher
ISC implies that samples are more correlated and more akin
to each other, potentially resulting in redundancy or limited
exploration of the solution space. Conversely, a lower ISC
suggests greater diversity among samples, allowing for a
more comprehensive exploration that potentially uncovers
better solutions. In previous simulations, the ISC is set to
off by default, meaning that there is no delay time between
individual samples. Therefore, we investigate the impact
of reduced ISC on the outcomes by adding a time delay
between different sample reads. According to the D-wave
documentation, a time delay mitigates the correlation due to
the spin-bath polarization effect [33].
After introducing a delay time to mitigate the ISC, the nor-

malized energy diminishes compared to the scenario without
delay, as depicted by the dotted red histogram in Fig. 4. In this
instance, the normalized energy is decreased by 2.64% to
7.39% in comparison to the original value. Despite this reduc-
tion, the overall average energy also continues to decline
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FIGURE 4. Comparison of the averaged lowest energies with and without
reduced inter-sample correlation (ISC) across a range of annealing times
(10 to 1000 µs). Reduced ISC involves introducing a time delay between
individual samples.

as annealing time increases, albeit with signs of saturation
around the 100 µs annealing time mark, wherein the energy
improvement becomes marginal. These findings affirm the
efficacy of ISC reduction in broadening the exploration scope
and consequently, attaining solutions that better approach
the global minimum. Consequently, reduced ISC is applied
throughout the rest of the work.

Next, we introduce pausing into the forward anneal-
ing [34], [35], [36], [37]. We perform a comprehensive
exploration of the optimized annealing schedule with pausing
at various annealing fractions and different pausing durations.
Fig. 5(a) to 5(d) show the average lowest energy plotted
against the annealing fraction for s = 0 ∼1 and a pausing
duration from 0 to 1000 µs for annealing times of 1, 5, 20,
and 100 µs, respectively. In Fig. 5(a), we observe a clear
energy valley near s = 0.36, indicating that implementing
a pause in the middle of the QA process promotes tunnel-
ing into the ground state, thereby yielding a lower energy.
The pause duration appears to have much less influence on
reducing the energy than the time fraction. As the annealing
time is extended to 5 and 20 µs, the discernible presence of
an energy valley gradually diminishes and ultimately van-
ishes for the 100 µs annealing time, as shown in Figs. 5(b)
through 5(d). These observations align with previous results
in which increasing the annealing time leads to a progressive
reduction in the average lowest energy, ultimately reaching a
saturation point around the 100 µs annealing time. In other
words, when the annealing time is as short as 1 µs, intro-
ducing pausing at position s = 0.36 may result in similar
lowest energies as those obtained with the 100 µs annealing
time. However, when the annealing time increases to 100 µs,
the benefit of pausing completely vanishes. To summarize,
pausing is beneficial for finding optimal solutions beyond the
capabilities of short annealing times but becomes ineffective
with extended annealing times.

FIGURE 5. Average energy map across pausing at time fraction s vs
duration, for different annealing times: (a) 1 µs (b) 5 µs (c) 20 µs, and
(d)100 µs.

TABLE 4. Comparison of quantum annealing (QA), steepest descent (SD),
and hybrid (QA+SD) solvers.

B. HYBRID QA AND SD SOLVER
In this section, we compare solutions obtained from the QA,
the classical SD, and hybrid (QA+SD) solvers. The hybrid
solver applies the SD post-processing to solutions derived
from the quantum annealer.We conducted 40,000 simulations
using the previous 5 × 5 binary mask with each of these
methods. Both the QA and hybrid solvers used 50 cycles of
annealing, with each cycle consisting of 800 samples (shots),
resulting in 40,000 shots for each approach. We compare
the success probabilities of finding the ground truth solution
across these methods, as shown in Table 4. The runtime per
shot represents the time required for one simulation for each
method. Additionally, we calculate the equivalent runtime
required to obtain a global minimum solution, based on
the probability of ground-truth occurrence as expressed in
Eq. (14).

Equivalent runtime =
Runtime per shot

Ground − truth Probability
. (14)

Table 4 reveals that QA as a heuristic algorithm exhibits
modest accuracy in this 25-variable binary reticle exam-
ple. However, with QA, each simulation only takes 100 µs,
which is 290 times faster than the classical SD algorithm.
Considering the ground-truth probability, QA still provides
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FIGURE 6. Schematic of the energy obtained from QA and hybrid solvers.
Initial QA results are represented by transparent dots, while solid dots
illustrate the results after the application of the SD post-processing
step.

approximately 16 times runtime reduction compared to
SD. Furthermore, the hybrid QA+SD solver only requires
30% of the classical runtime. Clearly, both approaches
benefit from the significant runtime reduction of the
quantum annealer, highlighting the importance of accel-
erating quantum computing for real-world optimization
problems.

QA has the lowest equivalent runtime to locate the global
minimum, however, the number of lowest-energy solutions
generated from each independent simulation can be mas-
sive due to the low probability of accuracy. In practice, the
hybrid solver achieves a much higher success rate in locat-
ing the ground-truth solution – almost three times higher
than the SD solver and more than 41 times higher than
the QA solver alone. Therefore, the hybrid QA+SD solver
is a more practical approach when solving real-world opti-
mization problems. We elaborate on this argument using the
schematic in Fig. 6. The QA algorithm involves tunneling
and entanglement effects that can quickly and extensively
explore the solution space. However, these solutions are often
not perfect and can be very diverse and distributed near local
and global valleys. The SD algorithm subsequently applied
to the QA solution can bring the QA solution to the near-
est valley, thereby improving the probability of finding the
global minimum solution. For example, the blue and red dots
shown in Fig. 6 represent the eigenvalues of the ground state
obtained from individual samples in QA, which may or may
not be located near valleys along other wavevector directions.
However, after the post-processing of the SD algorithm, they
all reach the nearest valley. In this illustration, the red dot
that eventually reaches the global valley is not the smallest
ground-state solution obtained from the original QA samples.
By leveraging the advantages of quantum and classical com-
puting, hybrid QA and SD solvers may provide more efficient
solutions to binary reticle optimization problems than QA or
the classical method alone.

FIGURE 7. (a)The predefined square-donut-shaped mask with varying
sizes: 5 × 5 to 8 × 8 pixels and their corresponding amplitude images,
sharing the common scale on the right. (b)-(e) The normalized ground
state energy for each mask across a range of annealing times (10 to
1000 µs).

C. LARGE RETICLES
Next, we increase the number of variables, expanding the
dimensions of the binary mask from 5 × 5 to 6 × 6, 7 × 7,
and the final configuration of 8 × 8 pixels. In Fig. 7(a),
the predefined mask configurations assume a symmetric,
square-donut shape, placed above the corresponding target
amplitude image. As evidenced in Fig. 7(b) through Fig. 7(e),
the decline in the average energy with increased annealing
time is more clearly observable for smaller reticles possessing
fewer variables, while fluctuations in energy still occur for
larger dimensions as in the reticles with 6×6 and 8×8 pixels.
Notably, within the optimized 8 × 8 reticle, the average
lowest energy experiences significant fluctuations with vary-
ing annealing times. These fluctuations could potentially be
attributed to QPU stability, particularly when the number of
logical variables approaches the upper limit of physical qubits
needed for the Pegasus embedding.

To explore this further, we plotted the lowest energies
from 500 samples within a single QA simulation cycle for
different reticle sizes. As shown in Fig. 8(a), the default sorted
energies generally increase monotonically, with some out-
liers. The number and spread of these irregular values grow
with more variables, eventually blurring the trajectory for the
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FIGURE 8. Simulated lowest energies in a single annealing cycle with 500 samples for mask sizes of 5 × 5 to 8 × 8 pixels. (a) the QA results, (b) the
SD outcomes after QA (hybrid approach).

8 × 8 case. These irregularities stem from chain breakages
in the quantum annealer, where longer chains heighten the
risk of system instability. Although bolstering chain strength
could prevent these breaks, it introduces distortions to prob-
lem states. As the implementation of ILT problems requires
densely interconnected qubits in Dwave architecture, opti-
mizing chain strength and embedding techniques emerge
as crucial factors to the solution quality, warranting deeper
exploration in future investigation.

We then applied SD post-processing to the QA results in
Fig. 8(a). As shown in Fig. 8(b), the hybrid QA+SD approach
substantially reduces the minimum energy for all cases, even
from higher starting QA values. As previously explained in
Fig. 6, the result demonstrates the power of SD refinement
following global QA sampling. Smaller 5×5 and 6×6 reticles
converge to lower average energies than larger 7× 7 and 8×

8 cases. The probability of finding the true global minimum
also drops with the larger size, indicating greater difficulty.
For 7 × 7 and 8 × 8, the hybrid solver fails to recover the
predefined solutions, limited by quantum hardware. Figure 9
shows the optimized solutions found by the QA, SD, and
hybrid solvers for the 7 × 7 and 8 × 8 reticles, along with
their corresponding amplitude images. For the 7×7 case, the
lowest normalized energies are 0.156 (QA), 0.042 (SD), and
0.027 (hybrid). For the 8×8 case, the energies are 0.228 (QA),
0.081 (SD), and 0.078 (hybrid). Although the true global min-
imum is not achieved, the hybrid solver consistently yields
lower energy solutions compared to using QA or SD indepen-
dently. The substantial energy reductions highlight the value
of the hybrid approach in tackling the complex optimization
challenges of larger binary reticles. Evenwithout reaching the

FIGURE 9. The optimal solutions of (a) 7 × 7 (b) 8 × 8 masks calculated by
QA, SD, and hybrid QA+SD solvers with corresponding amplitude images.

ground truth, combining QA and SD provides significantly
improved solutions over the individual techniques, which
underscores the potential of hybrid quantum-classical solvers
for advanced ILT optimization problems beyond the scope of
current quantum hardware capabilities.
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IV. CONCLUSION
This study delved into the efficacy of using D-Wave’s quan-
tum annealer and hybrid quantum-classical solvers for the
optimization of pixelated binary reticle problems encom-
passing 5 × 5, 6 × 6, 7 × 7, and 8 × 8 variables.
Our investigation highlights that extended annealing times,
reduced inter-sample correlation, and strategically timed
pausing during quantum annealing collectively contribute
to improved lowest-energy-sampled solutions, leading to
minimized Hamiltonian values. Furthermore, we show that
a hybrid solver approach yields an increased probability
of accuracy compared to the exclusive use of either pure
quantum or classical solvers, while also offering runtime
savings of approximately two-thirds to the classical method.
With quantum computing being a rapidly advancing field,
our findings support that D-Wave’s quantum annealer could
prove to be crucial for practical applications in computational
lithography, particularly as hardware scalability and stability
continue to improve.
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