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ABSTRACT The rapid advancement of powerful quantum computers poses a significant security risk to
current public-key cryptosystems, which heavily rely on the computational complexity of problems such
as discrete logarithms and integer factorization. As a result, CRYSTALS-Dilithium, a lattice-based digital
signature scheme with the potential to be an alternative algorithm that can withstand both quantum and
classical attacks, has been standardized as ML-DSA after NIST Post-Quantum Cryptography competition.
While prior studies have proposed hardware designs to accelerate this cryptosystem, there is room for
further optimization in the tradeoff between performance and hardware consumption. This paper addresses
these limitations by presenting an efficient low-latency hardware architecture for ML-DSA, leveraging
optimized timing schedules for its three main algorithms. The hardware implementation enables runtime
switching main operations in ML-DSA with various security levels. We design flexible arithmetic and
hash modules tailored for ML-DSA, the most time-consuming submodules and key determinants of the
scheme implementation. Combined with efficient operation scheduling to maximize the utilized time of
submodules, our design achieves the best latency among FPGA-based implementations, outperforming state-
of-the-art works by 1.27∼2.58× in terms of the area-time tradeoff metric. Therefore, the proposed hardware
architecture demonstrates its practical applicability for digital signature cryptosystems in post-quantum era.

INDEX TERMS Post-quantum cryptography (PQC), module-lattice-based digital signature standard
(ML-DSA), crystals-Dilithium, lattice-based cryptography (LBC), number theoretic transform (NTT).

I. INTRODUCTION
In recent years, the rise of quantum computing has posed
a significant threat to traditional public-key cryptographic
schemes. Shor’s algorithm [1], when executed on a suffi-
ciently powerful quantum computer, has the capability to
efficiently solve complex mathematical problems that form
the basis of widely used cryptographic algorithms such
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as RSA and Elliptic curve cryptography. This realization
prompted the National Institute of Standards and Technology
(NIST) to launch the Post-Quantum Cryptography (PQC)
standardization process in 2016, with the aim of developing
new public-key standards that are believed to be secure even
against adversaries in possession of a large-scale quantum
computer. After three rounds of evaluation and review, NIST
has selected CRYSTALS-Dilithium for digital signature
standardization to the next round of PQC standardization
process [2].
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NIST has recently released the initial public drafts
of the Module-Lattice-Based Digital Signature Standard
(ML-DSA) [3], which is based on the Dilithium submission.
Dilithium relies on the worst-case hardness of module lattice
problems [4]. It has the potential to resist both quantum and
classical attacks and offers advantages such as fast arithmetic
operations and compact keys, ciphertext and signature sizes.
Given the potential of ML-DSA to become a standard
and replace other digital signature schemes specified in
NIST Federal Information Processing Standards Publication
(FIPS) and Special Publications (e.g., FIPS 186-5 [5]),
which is ready to be used for obtaining assurances for
digital signature applications. There is a growing interest
in developing efficient implementations of this scheme
in both hardware and software. Most existing works on
implementing and evaluating Dilithium have used pure
software methods [6], [7] or hardware-software co-design
methods [8]. Developing and benchmarking software imple-
mentations of cryptographic algorithms like PQC is relatively
straightforward. However, implementing them in hardware
platforms, particularly on Field-Programmable Gate Arrays
(FPGAs), requires significant time and design effort to assess
their efficiency in terms of speed, area utilization, power
consumption and energy efficiency. By exploring FPGA
implementations, researchers can realize various ideas and
apply the tradeoff method to optimize the approach for
hardware designs to achieve desired performance goals.
FPGA implementations are a crucial and efficient tool for
gaining valuable insights into the cost and performance char-
acteristics of PQC algorithms when deployed in hardware
environments.

Several prior researches have focused on improving the
hardware designs for Round 3 Dilithium on FPGA platforms.
In these designs, two main aspects were typically considered.
The first is developing hardware architectures that could sup-
port all security levels as illustrated in [9], [10] or specifying
to a particular security level as proposed in [11], [12], [13],
[14]. We recognize that adopting a unified architecture with
a flexible mode signal to accommodate all security levels
is a more effective approach. This strategy can enhance
algorithm performance in hardware, providing flexibility
and enabling the architecture to address a broader spectrum
of applications. The second consideration is the goal of
these implementations. Some studies aimed at maximizing
performance while others focused on minimizing power
or area consumption or achieving a balance in area-time
tradeoff. As a result, these implementations were broadly
categorized as high-performance [9], [10] or lightweight
[12], [15] although the distinction is not always clear-cut
as some designs may aim for specific tradeoff directions.
For instance, a high-efficiency design [11] might primarily
focus on achieving high performance while keeping resource
utilization in comparable level.

Lightweight implementations aim to minimize hardware
utilization, allowing them to fit on even the smallest FPGA
platforms. However, current FPGA platforms support a large

amount of hardware resources, as evidenced by the unified
architecture for CRYSTALS-Kyber and Dilithium on the
UltraScale+ ZCU102 [15]. This cryptoprocessor utilizes only
a small portion of the platform’s hardware resources, utilizing
less than 10% of available resources. When implementing
Dilithium on hardware, one of the most important goals
is accelerating execution time to improve application per-
formance. Therefore, a high-performance approach is more
suitable for Dilithium hardware implementation, which is still
affordable with the available hardware resources on current
FPGA platforms. Among the high-performance designs
that fully support three security levels, the compact and
efficient hardware architecture presented in [10] achieves the
best results in resource consumption, while the architecture
proposed in [9] achieves the lowest latency. The difference
between these two architectures lies in the number of
arithmetic and hash modules used. The architecture in [10]
has one hash and arithmetic modules, that means it is slower
but more compact than the work in [9] which uses multiple
modules.

Consequently, we realized that designing efficient hash
and arithmetic modules is key factor for achieving high-
performance architecture. The latency of hardware imple-
mentations for Dilithium is mainly dominated by hashing and
polynomial arithmetic tasks, which should be continuously
executed as much as possible. Besides, the interconnection
between individual submodules in the whole architecture
should be carefully considered to avoid critical paths,
which can reduce the working frequency of the hardware
implementation. The balance between on-chip resource
utilization and performance must also be considered to
maximize the efficiency of combined architecture for all
phases. To implement a more compact architecture, [10]
does not support packing/unpacking and the final results are
stored in BRAMs. However, in public-key cryptosystems,
packing is essential for defining the data layout of the keys
and signature before transmission. This is necessary as these
applications may be implemented on diverse platforms with
varying architectures. Additionally, although the proposed
on-the-fly calculation for matrixA in [10] aims at minimizing
storage, it leads to a longer critical path as well as restricts
the design to operate at higher frequency. Conversely, [9]
provided practical support with packing/unpacking modules
featuring 64-bit ports. However, their hash modules support
multiple instances of SHA-3 and the complexity of iterative
NTT structure leads to a longer critical path. Additionally,
utilizing two arithmetic modules with only one used in
Keygen and Verify algorithms of ML-DSA, might result in
inefficient hardware utilization.

This study approaches a unified hardware design for
executing three main algorithms in NIST ML-DSA [3]. Our
design improves submodules and employs appropriate oper-
ation scheduling tailored to ML-DSA hardware implemen-
tation. Additionally, this study aims at a high-performance
implementation and achieving an optimal balance between
execution time and on-chip resource utilization.
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In summary, we make the following main contributions:
1) We propose a unified hardware architecture that

supports three algorithms of ML-DSA and can be con-
figured for NIST security levels in run-time. The com-
bined hardware design improves the submodules and
optimizes on-chip resource utilization. Furthermore,
the proposed architecture supports packing/unpacking
modules that enables efficient data exchange with other
platforms, facilitating accelerated multiple computa-
tional tasks in ML-DSA.

2) The hash and arithmetic modules are designed to
match the specific needs of ML-DSA. Specifically,
we use independent hash modules for SHAKE-128 or
SHAKE-256 and a fully pipelined NTT architecture in
the arithmetic module, resulting in an improved critical
path. Optimizing these two modules, which have the
most substantial impact on the overall execution time
of the architecture, leads to performance enhancement
for the entire cryptosystem.

3) By using flexible submodules for entire architecture,
we propose an optimal timing diagram and proper
scheduling to achieve area-time balance when execut-
ing ML-DSA processes. Comparison results show that
our design achieves the lowest latency among FPGA-
based implementations and outperforms state-of-the-
art studies in terms of area-time product (ATP) metric.

The remainder of this paper is organized as follows.
Section II provides a brief background of ML-DSA and
number theoretic transform. Section III proposes our design
decisions and details our hardware architecture as well as
the optimized modules. The implementation results and
comparison with the state-of-the-art works are given in
Section IV. Finally, Section V summarizes and concludes the
paper.

II. PRELIMINARIES
A. MODULE-LATTICE-BASED DIGITAL SIGNATURE
STANDARD OVERVIEW
ML-DSA is a digital signature scheme based on CRYSTALS-
Dilithium, amember of the Cryptographic Suite for Algebraic
Lattices (CRYSTALS) and a digital signature scheme based
on the ‘‘Fiat-Shamir with Aborts’’ approach [16]. Different
from other lattice-based algorithms recommended after round
3: Kyber and Falcon, Dilithium uses uniform sampling rather
than discrete Gaussian distribution for secret randomness
generation. This approach greatly simplifies polynomial
generation and is easily implemented in constant time. The
hard problems underlying the security of ML-DSA schemes
are Module Learning with Errors (M-LWE) and Module
Shortest Integer Solution (M-SIS) formally proved in [4].
M-LWE problem needed to protect against key-recovery

[17] and M-SIS problem for strong unforgeability [18]. The
M-LWE problem can be briefly described as follows: Let A
∈ Rk×lq be uniformly chosen s1 ∈ Rlq, s2 ∈ Rkq. Then, the
standard M-LWE problem is the public key (A, t = As1+s2)
is indistinguishable from (A, t) where t is chosen uniformly
at random. The M-SIS problem in ML-DSA is expressed

TABLE 1. Parameters sets of ML-DSA.

Algorithm 1 Key Generation KeyGen() [3]
Output: pk = (ρ, t1), sk = (ρ,K , tr, s1, s2, t0)
1: ζ ← {0, 1}256

2: (ρ, ρ′,K ) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256← H(ζ )
3: A ∈ Rk×lq := ExpandA(ρ)
4: (s1, s2) ∈ S lη × S

k
η := ExpandS(ρ′)

5: t:= As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}512 := H(ρ ∥ t1)
8: return (pk, sk)

through: from a uniformly chosen matrixA ∈ Rk×lq , that there
exists z and u such that Az+u = 0, where ∥z∥∞ ≤ 2(γ1 − β),
∥u∥∞ ≤ 4γ2 + 2 (parameters can be chosen to match NIST
security levels outlined in Table 1). In addition to 3 proposed
NIST security levels, the security ofML-DSA can be adjusted
by changing the parameters inside. The most straightforward
way to enhance or reduce security is by modifying the values
of (k , l) and then adjusting η, β and ω accordingly. Another
approach is to lower the values of γ1 and/or γ2, which
makes forging signatures more challenging since it relies on
the underlying SIS problem. Increasing (k , l) significantly
strengthens security, while adjusting γi is more suitable for
minor security tweaks. One of the most notable updates in
ML-DSA from Dilithium version 3.1 is that it contains two
versions of the signature generation algorithm: ‘‘hedged’’ and
‘‘deterministic’’ which are selected by the value rnd, as seen
in Algorithm 2. The ‘hedged’ version is a new improvement
aimed at facilitating countermeasures against side-channel
attacks and fault attacks on deterministic signatures [19].

Key generation (Keygen), Signature generation (Sign) and
Verification (Verify), three core algorithms of ML-DSA, are
shown in Algorithms 1-3 [3].
KeyGen(): Key generation algorithm generates a keypair

consisting of a private signing key (sk) and public verification
key (pk) used for signature generation and verification. In this
algorithm, two uniform seeds: public seed (ρ) and noise seed
(ρ′) are mapped to generate polynomial matrixA and vectors
s1, s2. It then computes t = As1 + s2 to generate the final
keypair. To keep size small, the public key includes the seed
(ρ) instead of matrix A and the upper bit of t. The secret key
packs the lower d bits of t, seed ρ and two byte-arrays K , tr .
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Algorithm 2 Signature Generation Sign(sk,M ) [3]
Input: sk = (ρ,K , tr, s1, s2, t0),M ∈ {0, 1}∗

Output: σ = (c̃, z, h)
1: A ∈ Rk×lq :=ExpandA(ρ)
2: µ← H(tr ∥ M ), rnd ← {0, 1}256 or {0}256

3: ρ′← H(K ∥ rnd ∥ µ)
4: κ := 0, (z, h) :=⊥
5: while (z, h) :=⊥ do
6: y ∈ S̃ lγ1 := ExpandMask(ρ′, κ)
7: w := Ay
8: w1 := HighBitsq(w, 2γ2)
9: c̃ ∈ {0, 1}2λ← H(µ ∥ w1)

10: (c̃1, c̃2) ∈ {0, 1}256 × {0, 1}2λ−256

11: c := SampleInBall(c̃1)
12: z:= y + cs1
13: r0 := LowBitsq(w - cs2, 2γ2)
14: if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
15: (z, h) :=⊥
16: else
17: h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2)
18: if ∥ct0∥∞ ≥ γ2 or

∑
hi > ω then

19: (z, h) :=⊥
20: end if
21: end if
22: κ := κ + l
23: end while
24: return σ = (c̃, z, h)

Sign(): This algorithm takes message M and secret key
to generate the signature attached with the message before
sending to verifier. Signature generation begins by generating
masking vector y and matrix A and then compute w = Ay. It
is based on generating challenge c by hashing the message
with the high order bit of w, signature as z = y+ cs1 then
and also the hints h for the verifier. The potential signature σ

consisting of (c, z, h) is checked by adapting the condition
of the polynomial max norms are within an acceptable
predefined range and the maximum number of 1’s in hint
that the signature can support which are defined by choosing
parameter of the security level in Table 1. Otherwise, the
signature must be rejected and a new attempt is made.
Verify(): The high-order bit of w1 is recovered from

message, public key and signature. It is used as a part of hash
function to generate challenge c which will be compared to
the c̃ provided in the signature to confirm the authentication
and integrity of the original message.

As a lattice-based cryptosystem, implementing ML-DSA
faces challenges in the sample generation and computation
phases, which are the two most time-consuming progresses.
To achieve high-performance hardware implementation,
efficient modules tailored to these phases are necessary.
Based on three algorithms, we observed that the Sign
algorithm requires more extensive processing compared to
the others. Previous works, as documented in citations
[10], [11], [12], [13], [14], typically followed a sequential

Algorithm 3 Verification Verify(pk,M , σ ) [3]
Input: pk = (ρ, t1),M ∈ {0, 1}∗ , σ = (c̃, z,h)
Output: Valid or Invalid
1: A ∈ Rk×lq := ExpandA(ρ)
2: µ← H( H(ρ ∥ t1) ∥ M )
3: (c̃1, c̃2) ∈ {0, 1}256 × {0, 1}2λ−256← c̃
4: c:= SampleInBall(c̃1)
5: w′

1 := UseHintq(h, Az− ct1·2d , 2γ2)
6: if ∥z∥∞ < γ1 − β &

∑
hi ≤ ω & c̃ = H(µ ∥ w′

1) then
7: return Valid
8: end if
9: return Invalid

approach, implementing the three algorithms in the order
outlined by Algorithms 1-3. In these works, various methods
were proposed, with a predominant focus on enhancing
the efficiency of arithmetic module. To speed up the
execution time of these algorithms, the use of multiple hash
and arithmetic modules becomes essential. However, this
approach increases hardware utilization, demanding careful
consideration of submodule architecture efficiency and its
impact on the overall architecture. Therefore, in hashing
tasks, we propose the use of two independent hash modules,
including a SHAKE-256 module and a double Keccak-
core Hash module for SHAKE-128 instance in ML-DSA.
These modules enhance the latency and critical path of the
overall architecture, addressing concerns raised by a unified
Keccak module proposed in previous works. Additionally,
our proposed flexible arithmetic module efficiently resolves
the challenge posed by the Sign algorithm, which requires
more extensive processing compared to the others. By
incorporating these modules into an appropriate operation
scheduling, as proposed in section III-A, we achieve improve-
ments in latency within comparable hardware resources.

B. NUMBER THEORETIC TRANSFORM
The Number Theoretic Transform (NTT) is a variant of the
Fast Fourier Transform (FFT) that operates on a finite field
and provides an efficient method for polynomial multiplica-
tion. It reduces the complexity of polynomial multiplication
from O(n2) by using school-book method to O(nlogn) by
using point-wisemultiplicationmethod. TheNTT-basedmul-
tiplication can be perform as: c = INTT(NTT(a)◦NTT(b)).
Where a, b, c could be polynomial matrix or vector ∈ Rq, ◦
denotes point-wise multiplication of polynomial coefficients.

ML-DSA, as a lattice-based cryptosystems, utilizes the
NTT for matrix-vector and vector-vector multiplications.
The NTT is performed in the ring Rq = Zq[x]/(xn + 1),
where n is a power of 2 and q is a prime number. In
ML-DSA, the modulus q is chosen such that there exists
a 2n-th root of unit (φ2n = 1753). There are two common
algorithms for implementing NTT, Cooley-Tukey (CT)
decimal-in-time (DIT) algorithm for NTT and Gentleman-
Sande (GS) decimal-in-frequency (DIF) algorithm for inverse
NTT (INTT). Applying the combination of these algorithms
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Algorithm 4 Pipelined Radix-2 NTT Algorithm
Input: a = (A0[0], A0[1],. . . , A0[n-1]) ∈ Rq, 9 contains
twiddle factor constants.
Output: A = NTT(a)
1: for(i = 1; i ≤ log2(n); i++ ) do // unrolling
2: for (j = 0; j < n/2; j++) do // pipelining
3: W← 9i[j]
4: temp← W × Ai−1[j+ n/(2i)] (mod q)
5: Ai[j+ n/(2i)]← Ai−1[j] - temp (mod q)
6: Ai[j]← Ai−1[j] + temp (mod q)
7: end for
8: return A

can accelerate computations and eliminate the need of
bit-reversal step [20].
When implementing NTT on hardware, two popular

variants of the NTT architecture are used: memory-based
and pipelined architectures. The memory-based or iterative
architecture has the advantage of requiring fewer hardware
resources, but it is limited by memory port constraints, which
restrict the number of butterfly units (BUs) that can be used
to enhance NTT speed. This is evident in works of [9],
[12], [15], which are limited to using a maximum of 4 BUs.
Additionally, the memory-based architecture requires a
complex control module to calculate the NTT layer-by-layer,
which increases the critical path. The pipelined architecture,
on the other hand, requires a large number of shift registers
to store delay units, which depend on the chosen scheme
[21]. This consumes more hardware resources, but it results
in higher performance. The pipelined NTT architecture is
more suitable for speeding up the execution time of ML-
DSA, as it is used for the most time-consuming phase of
this scheme. However, implementing this architecture in
ML-DSA requires at least eight BUs, which leads to the
drawback of overusing resources. This drawback will be
addressed by our flexible arithmetic module, proposed in
Section III. Algorithm 4 performs the pipelined radix-2 NTT
computation, where the variable i in the loop represents the
layer NTT being executed simultaneously (corresponding to
position of BUi), j is the order of coefficients in polynomials,
which are sequentially transformed via the NTT hardware
architecture.

III. ARCHITECTURE AND DESIGN DECISIONS
As the design’s goal is efficient low-latency implementation
for ML-DSA on the FPGA SoC platform, the proposed
architecture is supported to perform allML-DSA’smain algo-
rithms at three security levels as defined in its specification.
This design supports all processes including packing and
sending signature and keypair, which can cooperate with
other software or hardware platforms easily. This section
will introduce the overall high-level architecture and its
optimized modules used to improve latency. Accompany
with the efficient hardware implementation, the timing
schedules in Figs. 2-4 are proposed to optimize the work

FIGURE 1. High-level configurable architecture of ML-DSA.

of entire architecture and get low-latency aspect which
takes advantage of the most important and time-consuming
submodules (polynomial arithmetic and hash module specify
for ML-DSA).

A. HIGH-LEVEL CONFIGURABLE ARCHITECTURE
1) OVERALL HARDWARE ARCHITECTURE
The high-level architecture of our hardware design is shown
in Fig. 1. As a configurable architecture that implements
three main algorithms of ML-DSA, this figure depicts all
components used. When executing one of those algorithms
individually, some submodules can be removed. To facili-
tate seamless interoperability with other software/hardware
platforms, our architecture supports packing/unpacking tasks
with 64-bits bus width. The block inside is working in 92-bits
bus width to perform four coefficients at the same time.
A brief description of these modules and their works is
explained below:
Control unit: Functioning as a finite-state machine (FSM),

the control unit plays a vital role in overseeing various
modules. It manages these operations based on required
functionalities and sequences the entire hardware module
to execute all the primary operations of ML-DSA in their
respective orders. The control unit employs two control
signals, namely ‘mode’ and ‘sec_lvl’, to configure which
algorithm and security level the architecture is set to operate.
Depending on these signals, the parameters are adjusted to
work in accordance with the values specified in Table 1. The
value rnd is declared as an initial value in the source code,
where the default is a 256-bit string consisting entirely of
zeroes. Users have the option to change it to an arbitrary value
to enhance security.
Polynomial BRAM: This module contains six groups of

three dual-port 36Kb BRAMs used to store intermediate
values during the computation. In ML-DSA scheme, the
modulus q is 8380417, allowing for coefficients to be
represented within 23 bits. The Xilinx FPGA supports dual-
port 36Kb BRAM memory on-chip [22]. Instead of storing
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FIGURE 2. Timing diagram of key generation phase in security level 5.

FIGURE 3. Timing diagram of sign phase in security level 5.

FIGURE 4. Timing diagram of verification phase in security level 5.

each coefficient in a separate BRAM address, this module
is composed as a group of three BRAMs, each configured
as a 1024 × 36 memory. This configuration allows for four
coefficients, with a bandwidth requirement of 4 × 23 =
92 bits, to be stored in a single address of the group BRAMs,
resulting in a 25% reduction in BRAM utilization compared
to the straightforward approach. Totally, six group BRAMs
are used to save intermediate values during the computation
process.
Polynomial arithmetic module: used for all arithmetic

operations in ML-DSA, including NTT, INTT, point-wise
multiplications, additions and subtractions between polyno-
mial matrices and vectors.
Hash module: includes SHAKE-128 and SHAKE-256

modules, which function as hash functions or Extendable-
Output Functions (XOF) [23]. These modules generate hash
values of messages, random seeds and pseudorandom data,
which are then used for polynomial sampling in ML-DSA.
Sampling unit: This module consists of four submodules

responsible for generating different types of pseudorandom

samples used in ML-DSA. ExpandMatrix maps a uniform
seed to matrix A, UniformEta for generating the secret
vectors s1, s2, ExpandMask to make the masking vector y and
SampeInBall to create challenge c.
Decomposer: This module breaks up a finite field element

r in Zq into their ‘‘high-order’’ bits and ‘‘low-order’’ bits, such
that r = r1 · 2γ + r0 where 0 ≤ r0 < 2γ .
Hint: used to describe the work of both MakeHint and

UseHint functions. Given an arbitrary element r ∈ Zq and
a small element z ∈ Zq, ‘‘MakeHint’’ records a 1-bit hint h as
the ‘‘carry’’ that enables the computation of the higher-order
bits of r + z using only r and h. Conversely, ‘‘UseHint’’
utilizes the hint to recover the high-order bits of the
sum.
Encoder/decoder: To interface with other hardware or

software platforms, which typically have a bandwidth of
2n, this implementation integrates encoder/decoder units.
The encoder is responsible for packing polynomial vectors
into byte strings. The different vectors, along with their
corresponding bit widths, are packed into fixed 8-byte strings.
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The decoder can then recover the original vectors from these
byte strings.

Depending on the algorithm being performed, certain pro-
cessing units can operate in parallel to reduce overall latency,
provided there is no data flow conflict between them. From
Algorithms 1-3, the polynomial generation and computation
phases in theML-DSA scheme are the most time-consuming.
By prioritizing these tasks, the computation time of other
tasks can be masked behind these lengthy phases. This design
focuses on optimizing these tasks sequencing, enabling
continuous execution to enhance overall performance.

2) OPERATION SCHEDULING
Based on algorithms and the proposed architecture, we sug-
gest an optimized timing schedule that maximizes the uti-
lization of submodules while maintaining constant progress
on the critical path of the operations. In our architecture, the
controller operates as a FSM, ensuring sequential processing
of all hardware modules. To enhance clarity, we present the
optimized schedule specifically for level 5 of Algorithms 1-3.
Key generation and Verification: The FSM schedule for

Key generation and Verification algorithms are described
straightforwardly stage by stage in Figs. 2 and 4 cor-
responding with Algorithms 1 and 3, respectively. The
longest path among them is the computation, hashing and
sampling, which occupies around 90% total time execution.
The packing/unpacking phases are immediately executed in
parallel with the generationmatrix, vectors and computations.
Pack t0, Pack t1 perform the function Power2Round, the
straightforward bit-wise way to break up t into 13-bits high-
order t1 and 10-bits low-order t0, in line 6 of Algorithm 1.
The key generation progress is finished after packing their
ingredients. In verification, the validity of the signature
depends on the result of the comparison described in line 6
of Algorithm 3, which is implemented in stage 7 as depicted
in Fig. 4.
Signature generation: This is the most complex main

algorithm in ML-DSA. It consists of two phases: precom-
putation and rejection loop, as shown in Fig. 3. During
the precomputation phase, the secret key and message are
unpacked and the necessary calculations are performed prior
to the while loop in Algorithm 2. This phase is executed
only once. The rejection loop is responsible for generating
the signature until it satisfies the requirements specified in
the algorithm. The average number of loops can be found in
[3]. Inspired by the approach proposed by Beckwith et al.
[9], the polynomial arithmetic module is divided into two
independent parts, functioning as described in mode 2 of this
module. The first part is used to create the vector w and
executes the functions from lines 6 to 8, while the remaining
functionswithin the loop are performed in the secondmodule.

B. HASHING AND SAMPLING
ML-DSA scheme utilizes SHAKE-128 and SHAKE-256 as
its hashing functions, both belonging to the XOF category
within the Secure Hash Algorithm 3 (SHA-3) family. These
functions are based on the same Keccak permutation with a

FIGURE 5. Sampling for matrix A.

state size of 1600 bits [23]. In this context, matrixA ∈ Rk×lq is
the output stream of SHAKE-128. The other sample vectors
in ML-DSA are generated by SHAKE-256, described in
section II, including polynomial secret vectors s1, s2, masking
vector y, challenge c and other hashing tasks. Due to the
shared Keccak-f[1600] core with a 24-round permutation,
the unified SHAKE128/256 approach has been employed
in prior works. However, in our work, we propose using
two independent Keccak-based Hash modules, customized to
suit ML-DSA’s unique requirements. This proposed method
allows for the simultaneous execution of multiple tasks,
such as generating matrix A and other vectors, resulting in
reduced estimated execution times for the scheme. Moreover,
implementing dedicated hash modules tailored to specific
requirements can reduce the complexity of this module and
the entire architecture, potentially leading to an increase in
the maximum achievable frequency of the entire system.

ML-DSA’s security primarily depends on the dimensions
(k, l) of the vectors and matrices in the scheme, leading to
a substantial demand for pseudorandom data, corresponding
to longer execution times in this phase and entire algorithm.
Especially, in the hardest security level, where matrix A
necessitates 56 polynomial samples, totaling 344 kbits,
without considering the rejection rate for each sampling. To
address this challenge, we employ double 96-bit datapath
Keccak cores in the SHAKE-128 module, while the SHAKE-
256 module employs a single 64-bit core, as illustrated
in Fig. 5. This design aligns with the characteristics of
ML-DSA, optimizing the execution time of the sampling
phase while minimizing resource utilization. Ourmodules are
modified from the high-performance Keccak implementation
core developed by the Keccak team [24]. The Keccak
control unit manages the internal signals to control module
operations and facilitate transitions between the absorb and
squeeze phases. Taking the example of sampling matrix A,
depicted in Fig. 5, the SHAKE-128 module needs 4 clock
cycles (CCs) to absorb 256 bits of seed and 16-bit nonce
before transitioning to the squeeze phase, where sampling and
hashing processes operate continuously. With the SHAKE-
128 rate r = 1344 and 96-bits datapath of this core, the
output of each squeezing phase necessitates 14 cycles, which
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FIGURE 6. Flexible polynomial arithmetic module in mode 1.

can occur simultaneously within 24 cycles required for the
Keccak permutation in the subsequent squeezing phase. In
summary, considering that the coefficients in matrix A fall
within Zq (where q is the modulus), the acceptable rate is
q/223, which is close to 1. Consequently, this module requires
approximately 144 cycles to generate two polynomials, each
with 256 coefficients.

The remaining hashing tasks and sampling vectors in
ML-DSA are implemented in the SHAKE-256 module
in a similar manner. This module consists of a single
64-bits data-path core controlled by the Keccak control unit,
specifically designed for SHAKE-256. It interfaces with the
corresponding sampling units to generate the required vectors
based on their rejection conditions and received data widths,
as outlined in Table 1. The selection of a 64-bit datapath
is well-suited for the width of the output samples, making
it compatible with integration with other software/hardware
platforms.

C. FLEXIBLE POLYNOMIAL ARITHMETIC MODULE
As discussed in Section II, one of the critical considera-
tions is the extensive computational demands in the Sign
algorithm, particularly during the rejection loop phase. To
improve performance in this phase, we propose an approach
inspired by [9] to distribute the calculations across two
polynomial arithmetic (PolyArith) modules. However, since
our architecture unifies all three main algorithms of ML-
DSA, implementing two PolyArith modules when Verify
and Keygen algorithms only require one is an unnecessary
resource allocation. Hence, our arithmeticmodule is designed
based on the radix-2 MDC FFT pipelined architecture [21]
featuring eight Processing Elements (PE), which includes
butterfly unit and other sub-units, to handle all polynomial
arithmetic operations in ML-DSA. This module offers two
modes that can be flexibly adapted to suit the specific
characteristics of ML-DSA, both of them are configurable
to support NTT/INTT operations with the data flow pass
through the black and faint lines, respectively, in Figs. 6, 7.
Fully pipelined mode: In this mode, we use eight PEs

corresponding to the eight layers of ML-DSA for N=256,

FIGURE 7. Flexible polynomial arithmetic module in mode 2.

as outlined in Algorithm 4. BUi take the input from its
previous BU consequently, the twiddle factors have been
precomputed and saved in corresponding ROM address. The
stall delay length from input to output is 153 CCs, after
that each polynomial requires 128 cycles for NTT/INTT. The
BUs can be reused for all polynomial arithmetic, processing
8 coefficients in parallel. This mode is employed in the
Keygen and Verify.
Folding transform mode: In this mode, we divide our

module into two independent modules, each equipped with
four PEs. By applying the folding transformation method
[25], each PE is responsible for calculating two adjacent NTT
layers in a time-sliced fashion. This enables us to employ four
PEs to implement radix-2 MDC NTT in ML-DSA, similar to
the approach in [10]. In this mode, during NTT/INTT, the PEs
handle the odd stages in odd cycles and the even stages in even
cycles. This mode has a delay of 281 CCs from input to output
and requires 256 CCs to transfer a single polynomial during
NTT/INTT. It also supports the processing of 4 coefficients
per cycle during polynomial arithmetic. This mode is used for
Sign operation, one module to compute vector y and w, the
other for remaining computations as shown in Fig. 3.

To optimize memory and efficiently store twiddle factors
(TFs), this module uses six registers dedicated to storing
precomputed TFs for the two first layers of NTT/INTT. These
registers are directly connected to PE1 and PE4. Additionally,
it utilizes two 36KbBRAMconfigurations in a 72×512mode
to store TFs associated with the remaining six PEs. The
addresses in BRAM are carefully arranged in accordance
with their order of use. Shift registers are used to implement a
FIFO unit for saving intermediate values during NTT/INTT.

1) BUTTERFLY UNIT
The butterfly unit plays a crucial role in the arithmetic module
for performing various operations. In the proposed design,
a configurable BU architecture is presented, supporting
both the CT BU and GS BU methods, as depicted in
Fig. 8. The proposed butterfly unit consists of one modular
multiplier, one modular adder and one modular subtractor,
without requiring any additional modular multiplier, adder,
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FIGURE 8. Proposed butterfly unit.

or subtractor compared to a dedicated CT or GS butterfly
configuration. The proposed BU takes a, b and ω as input,
the NTT/INTT control signal in the blue line acts as a
selection signal for the multiplexers, configuring the BU to
operate as either a GS or CT butterfly configuration. the BU
architecture enables it to handle point-wise multiplication,
addition and subtraction through the corresponding internal
unit. A and B denote the output ports when performing
point-wise multiplication or subtraction, the result is taken
from port B, while port A is utilized for addition using the
CT butterfly configuration.

In [26] Zhang et al. proposed a technique to eliminate
the multiplication of resulting coefficients with n−1(mod q)
after the INTT operation. The output can be seen as (A, B):=
(2-1(a + b), (a - b)ω). For an odd prime q, x/2 (mod q) can
be performed as shown in Eqn. 1. In this work, we adopt
this technique by inserting divide 2 operation integrated into
addition unit and pre-processed the twiddle factor for the
inverse NTT to incorporate the factor 2-1.

x/2 (mod q) = (x ≫ 1)+ x[0].(q+ 1)/2 (1)

2) MODULAR MULTIPLICATION
Modular multiplication, addition and subtraction are the
fundamental arithmetic components inside the butterfly unit.
The reference implementation on software platforms of
ML-DSA [3] usesMontgomery reduction after multiplication
and Barrett reduction for addition and subtraction. Both
of these can apply to hardware and have been adopted in
some related works but not seem to be the best choice.
While Montgomery needs to transfer from normal domain
to Montgomery domain leading to additional multiplications,
Barret reduction does not exploit the specification of modulus
q in ML-DSA. In [13], Land proposes the reduction method
by recursively exploit the relation 223 ≡ 213 − 1:

s[45 : 0] ≡ 223s[45 : 23]+ s[22 : 0]

≡ 213s[45 : 23]− s[45 : 23]+ s[22 : 0]

≡ 223s[45 : 33]+ 213s[32 : 23]− s[45 : 23]+ z

≡ 213(s[45 : 43]+ s[42 : 33]+ s[32 : 23])

− (s[45 : 43]+ s[45 : 33]+ s[45 : 23])+ z

(2)

FIGURE 9. Architecture of modular multiplication unit.

Following careful consideration, we decided to incorporate
this technique into our modular reduction unit. However,
as subtraction is not as hardware-friendly as addition,
we employ the additive inverse with s̄ representing the
negative of s, to transform the equation into:

s[45 : 0] ≡ s̄[45 : 23]+ (213s[32 : 23]+ s̄[45 : 33])

+ (213(s[42 : 33]+ s̄[45 : 43])+ 213s[45 : 43]

+ z+ 50331648

≡ s̄[45 : 23]+ {s[42 : 33], 10′b0, s̄[45 : 43]}

+ {s[32 : 23], s̄[45 : 33]} + 213s[45 : 43]+z+m

(3)

Since the result of the reduction at this point falls within the
interval (-q, 3q), we can simplify the hardware architecture
for our modular multiplication based on this equation,
as shown in Fig. 9. In this figure, m = 50331648 and {}
denotes concatenated function.

IV. IMPLEMENTATION RESULTS AND COMPARISON
A. RESOURCES UTILIZATION AND PERFORMANCE
RESULTS
Table 2 provides an overview of the resource consumption
for the entire design and its submodules. The complete
design utilizes 49753 LUTs, 23477 FFs, 27.5 BRAMs and
16 DSPs, working at the maximum frequency of 300 MHz
and total power consumption is 5.24W. To achieve the low
latency target, we selected the Virtex Ultrascale+ platform
and all the resource data was generated by Xilinx Vivado
2022.2. Due to our data-path employing four parallel paths
to execute four coefficients per cycle, the resource usage is
higher compared to other Lightweight target works. Two hash
modules account for approximately 29% and 42% of the LUT
usage, making them the most resource-intensive components.
The design utilizes a total of 27.5 BRAMs, with 10.5 BRAMs
allocated for storing matrix A and 15 BRAMs used for
intermediate values during computation. The polynomial
arithmetic module requires 2 BRAMs to store twiddle factors
and 16 DSPs for eight PEs. As a combined architecture, some
units are only utilized in specific algorithms and are not called
when performing other tasks. For example, the Hint module
is not involved in the Keygen. However, the hash modules,
ExpandA, PolyArith, encoder/decoder and polynomial RAM
can be fully shared among different algorithms, consuming
55% LUTs, 66% FFs and 100% DSPs.
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TABLE 2. Resource utilization of submodules in the architecture.

In terms of latency, we have compiled statistics on the
overall execution time, including the data input, unpack and
pack signature and keypair processes. From the average
statistics of 1000 executions, we obtained the following
specific parameters. The Keygen operation requires an
average of 3320, 5330 and 8226 CCs for three security levels.
The interval between each sample depends on the rejection
rate of matrix A and secret vectors s1 but remains relatively
small due to the high acceptance rate. The Verify operation
consumes around 4137, 5846 and 8062 CCs for three NIST
levels. In this operation, only valid samples are calculated,
because the invalid sample is processed much faster and does
not show total time execution of this operation. The interval
time also depends on the rejection condition in generating
matrix A. The number of cycles required for the Sign
algorithm varies widely due to the rejection loop in signature
generation. The best-case scenario occurs when the signature
is accepted after the first iteration, resulting in a time of
10804, 14859 and 21199 CCs for three security levels. The
processing time of input message is determined by the size of
the message and operates at a rate of 8 bytes per cycle. Based
on the parameters in the ML-DSA specification, an average
of 4.25 attempts is required for level 2, 5.1 attempts for level
3 and 3.85 for level 5. The average time to execute one attempt
is 5665, 7658 and 10340 CCs, leading to average times of
signature generation are 29219, 46274 and 50848 CCs for
three security levels.

B. COMPARISON WITH RELATED WORKS
ML-DSA was recently introduced with slight updates to
the earlier version of CRYSTALS-Dilithium, including
minor parameter changes and the ‘‘hedged’’ versions in
Algorithm 2, as explained in the ML-DSA specification [3].
Despite some minor differences, to compare the efficacy
of our implementation, several state-of-the-art full hardware
implementations for Round-3 Dilithium based on FPGA plat-
forms with the best results are listed in Table 3. As mentioned
above, these implementations vary in their approaches, such
as Lightweight, High-performance, or others. To compare
the effectiveness of these implementations, we employ the

area-time tradeoff metric. The ATP values are calculated by
multiplying the latency with the number of utilized LUTs,
FFs, DSPs and BRAMs denoted as ATP_LUT, ATP_FF,
ATP_DSP and ATP_BRAM, respectively. In this metric,
our work serves as the ‘‘center point’’ for comparison,
with a value set to 1. Lower values indicate better per-
formance, as both area and time consumption should be
minimized. Additionally, to ensure a fair comparison despite
differences in hardware platforms, we use an equivalence
conversion method. This method, previously used in [27],
approximates the number of LUTs, FFs, DSPs, and BRAMs
to equivalent slices (EqS). By this way when comparing
results implemented on 7 series FPGAs platforms, such as
Artix-7, they can be evaluated with half of the equivalent
results on UltraScale+ platforms. Due to the lack of power
consumption data in previous works [9], [10], [11], [12],
[13], we do not evaluate the power efficiency between FPGA-
based implementations.

The implementations in our work and in [9], [10] represent
full hardware designs for all three security levels of Dilithium.
On the other hand, in [11], [13], the authors propose
independent designs for each security level. The Lightweight
architecture in [12] is the smallest hardware accelerator
for Dilithium, but it only supports level 5. Therefore, our
architecture complexity is nearly equivalent to [9], [10],
but higher than other implementations dedicated to specific
security levels. Additionally, with the same lattice-based
structure, Aikata et al. [15] propose a combined architecture
for Kyber and Dilithium schemes. For a comprehensive
comparison of resource utilization and performance in
Keygen, Sign and Verify in our implementation and related
works are listed in Table 3. As discussed earlier, the execution
time of the Sign algorithm varies depending on the rejection
loop conditions. Therefore, in Table 3, the parameters for the
Sign column are split into the best-case scenario and average
case, respectively. For an effective evaluation of the design,
Figs. 10-13 present a fair comparison using the ATP and EqS
metrics for corresponding parameters of level 5-the highest
security level supported by Dilithium. These figures present
a comparative analysis of the ATP_LUT, ATP_FF, ATP_DSP
and ATP_BRAM parameters among the four most advanced
designs available.

The work of Land [13] is one of the earliest designs for
Round 3 Dilithium. This design has several non-optimized
aspects, such as the use of separated NTT/INTT blocks and
multiplication blocks, which could be combined to achieve
efficiency without increasing algorithm execution time.Thus,
based on the data in Table 3, even with the EqS metric,
it is evident that our design achieves significantly better
performance than this design, especially in security level 5.

In [12], Naina proposed a lightweight implementation for
level 5Dilithium on the ZynqUltrascale+ hardware platform.
With a focus on minimizing hardware utilization, this design
achieves the best results in terms of LUTs and FFs. However,
regarding execution time, this design only provides data
for the best-case scenario of the Sign algorithm without
specific information about the average execution time of this
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TABLE 3. Comparison of FPGA-based implementations for Dilithium signature scheme.

algorithm. Despite the differences in design approach, as our
design supports various security levels, our implementation
demonstrates better efficiency in almost all statistics when
evaluated using the ATP metric, as shown in Figs. 10-13.

Wang et al. [11] used three independent cores for the
corresponding Dilithium’s security levels. This work is soft-
ware/hardware codesign, where bit packing and unpacking
are not included in the hardware part. Therefore, when
comparing by ATP metric in level 5, a direct comparison
may not be totally fair as our design, which supports
3 levels, is more complex and resource-consuming. However,
our implementation showcases a slight improvement in
terms of memory utilization and an significant performance
enhancement.

Zhao et al. [10] presents a compact design for Dilithium
on the low-end Artix-7 platform. Although it also supports all
three levels, it lacks the flexibility of our design. Unlike our
design, its results are stored only in its memory and it does not
support the packing and sending of results to connect with
external hardware/software platforms. Dilithium is a public
key cryptosystem and the ability to pack and send public
keys and digital signatures to other platforms is fundamental.
Without this capability, the system loses much of its practical-
ity. In terms of latency, their average execution time statistics
do not include the data input receiving and sending processes.

FIGURE 10. Comparison of Area × Time metric (LUTs × s).

The execution time for Verify algorithm is calculated only
in cases where the public key remains unchanged. In similar
cases, our work only requires 3179, 4819 and 7232 CCs for
the three levels. This work also suffers from the complexity
of the hash module, leading to a low operating frequency.
Therefore, even with different platforms, our work offers
improved latency and the potential for higher operating
frequency, resulting in enhanced time execution, while
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FIGURE 11. Comparison of Area × Time metric (FFs × s).

maintaining equivalent hardware consumption in ATP_LUT
and ATP_DSP parameters, using ATP and EqS metrics.

The work of [9] presented a design similar to ours,
provides support for three security levels. However, it uses
the Minerva tool [28] to determine the maximum frequency,
which represents a different benchmark compared to other
designs. By enhancing the versatility of the arithmeticmodule
and optimizing the hash module, specifically tailored for
Dilithium, our architecture has achieved a 2× improvement
in all ATP parameters during Keygen and Verify algorithms.
Our results also showcase improved Sign algorithm execution
times and more efficient resource utilization, detailed in
Table 3.
Recently, a notable unified architecture for Kyber and

Dilithium was introduced by Aikata et al. [15]. When the
overall area consumption of this work is analyzed in Table 3,
it utilizes 22184 LUTs, 8596 FFs, 4 DSPs, and 24 BRAMs for
the hardware part without the submodules solely supporting
Kyber. When evaluated using the ATP metric based on these
statistics, our work exhibits substantial improvements in
almost all parameters, as shown in Figs. 10-13.
In summary, our implementation exhibits the lowest

latency in both clock cycle and time execution compared
to the other designs. Furthermore, when compared to
the combined architecture supporting all security levels
of Dilithium in [9], our design demonstrates efficiency
improvements ranging from 1.27∼2.58×, as evaluated by the
ATP metric.

In comparison to the software implementation, our hard-
ware implementation in this work demonstrates significant
performance improvements. Seo et al. [6] reported an
optimized NEON implementation on an 8-core ARM v8.2
64-bit CPU mounted on Jetson AGX Xavier. For Dilithium
level 5, their implementation takes 542µs for Keygen, 625µs
for Verify and 1001µs for the best-case scenario of Sign. In
the same tasks, our hardware implementation outperforms
their software implementation, achieving a speed-up of
19.8×, 23.2× and 14.2×, respectively. Additionally, Becker
et al. [7] presented a software implementation on high-end
CPUs, specifically the ARMv8 Apple M1 Firestorm core
at 3.2GHz. Their reported execution times for the three
main algorithms of Dilithium-III are 48µs, 114µs and 33µs.

FIGURE 12. Comparison of Area × Time metric (DSPs × s).

FIGURE 13. Comparison of Area × Time metric (BRAMs × s).

In terms of time execution, our hardware implementation
achieves improvements of 2.7×, 0.74× and 1.7× for Keygen,
Sign and Verify, respectively. The similarly significant results
are showcased when compared with one of the most notable
Dilithium implementations on the RISC-V CVA6 core on the
Xilinx ZCU106 evaluation board [8], where the execution
times of highest security level Dilithium are 56.21ms for
Keygen, 176.3ms and 59.37ms for Sign and Verify.

V. CONCLUSION
In this paper, we present an efficient and low-latency hard-
ware implementation of ML-DSA, which supports all main
algorithms at three security levels of NIST. Our implemen-
tation enables the complete execution of all ML-DSA tasks
independently or in interaction with other software/hardware
platforms to accelerate specific processes. When compared
with the state-of-the-art hardware architecture for all three
security levels of ML-DSA, we achieve the lowest latency
and efficiency in terms of area/performance tradeoffs, with
a significant improvement of 1.27 to 2.58× as evaluated by
the ATP metric. Additionally, this work introduces optimized
arithmetic operations and hashing & sampling modules
tailored to the characteristics of ML-DSA, enhancing the
overall efficiency of the scheme. These modules can also
work independently as accelerators to support software
platforms, handling the two most time-consuming parts of
these algorithms. In summary, our proposed architecture
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exhibits potential adaptability to diverse applications of
digital signatures, offering resilience against both quantum
and classical attacks.
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