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ABSTRACT In the multimedia arena, image tampering is an uncontrollable process that necessitates content
authentication and tamper detection in a variety of applications. One method that is recommended for
meeting all of those needs in the multimedia arena is watermarking. Mobile cameras may now be used
to effortlessly take high dynamic range (HDR) photographs, which increase the image’s visual quality
and realism. Watermark visibility and recognition algorithms built for standard images may be affected
by this introduction of perceptual variations in the image relative to the source. In order to overcome those
shortcomings, we introduced a novel, an optimal semi-blind watermarking technique that works for both
colour and HDR compressed JPEG images. A unique quaternion dual-tree complex wavelet transform
technique is used to extract the highly informative features from the original image. The optimal embedding
region in the low frequency sub-band is determined using the maximal entropy random walk (MERW)
algorithm. In order to detect tampering and to localize the tampered region a watermark is generated
using the swin transformer model and watermark embedding is carried out in the selected optimal blocks.
A dual scrambled image is encoded in the effective principal component coefficient values of the singular
value decomposition (SVD) Transform in order to authenticate the watermarked image prior to watermark
extraction. The semi-blind extraction process is intended to confirm the content’s authenticity by comparing
the recovered scrambled watermark with the regenerated original watermark. The process of extraction is
merely the opposite of the process of embedding. When compared to previous research, the experimental
results demonstrated good imperceptibility with an average PSNR of 65 dB and SSIM of 0.999 and strong
robustness against attacks.

INDEX TERMS High dynamic image, maximum entropy random walk algorithm, quaternion dual-tree
complex wavelet transform, Swin transformer.

I. INTRODUCTION
The vulnerability of multimedia content has grown in recent
decades as its usage has grown. Due to the fast-developing
digital technology, it urges to secure multimedia images
against tampering applications. Watermarking is recom-
mended as a highly concerned strategy for securing multime-
dia content [1], [2]. Digital watermarking is the process where
the image visual quality is maintained by embedding the
additional information in the original image. The additional
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information used as a watermark is either an image or meta-
data or a binary logo.Much research has been done in the past
two decades concentrating on copyright protection [3] and
content authentication applications and currently, it focuses
on color images and high dynamic range (HDR) images for
tamper detection applications. In the current trend due to the
advancement of photographic technology and the availability
of less-cost mobile cameras, high quality HDR images are
produced with more color and detail pixel information.

Most modern mobile cameras have an HDR mode or
an Auto HDR feature in the camera settings to capture
an HDR image and compress the final HDR image into a
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JPEG format. In the early stage, multi-exposure low dynamic
images (LDR) are captured and combined using software
resulting in HDR images. But in the current digital world, the
JPEG (Joint Photographic Experts Group) is a widely used
file format for storing digital images, including HDR images.
Some advanced camera apps or newer mobile devices may
offer the option to save HDR images in other formats, such
as HEIF (High-Efficiency Image Format) or DNG (Digital
Negative). Thus, the rising trend of HDR images on real-time
applications increases demand for securing multimedia data
against intentional or unintentional attacks.

Few studies have been done explicitly to analyse HDR
images against tone mapping attacks; in particular, very
few studies have examined HDR images against image
processing attacks employing watermarking approaches.
At the very first, in HDR based watermarking technique
Yu et al. [4] presented a spatial domain-based distortion-free
data concealing approach. Using a secret key in the spatial
domain homogeneity value of the superpixel, the secret
message is directly placed on the 32-bit RGBE image format.
Since every HDR image has a unique wide dynamic range
and every pixel has an infinite number of decimal values,
it is difficult to directly alter the pixels in an HDR image [5].
To get over this problem, bilateral filtering techniques based
on HDR images are used, followed by a logarithmic wavelet
domain to classify the scalable high-frequency image [6].
Their objective is only to detect watermarks using threshold
values for which a unique method is used to compute them.
The HDR image watermarking approaches utilised in this
literature, which processed the images in three formats—
RGBE [7], LogLuv [8], and OpenEXR format [9] —are
mostly focused on tone mapping attacks. To defend against
tone mapping attacks, Perez-Daniel et al. [10] presented a
spatial domain watermarking technique. The super-pixels in
the Y channel are separated according to their texture, colour,
and semantic content. To insert the binary visible watermark
in the adaptable area, a luma fluctuation tolerance threshold
curve based on the transfer function is utilised. Luminance
sensitivity in each luma code area found in the Y-channel
is used to incorporate the watermark to accomplish invisible
HDR watermarking. Several tone mapping operators and a
few signal processing attacks were investigated in the experi-
ment. Using Tucker decomposition, an auto-regressive robust
watermarking model is presented in [11]. The auto-regressive
model is used to calculate the local similarity among the
initial feature map of Tucker Decomposition and to remove
the non-adaptive zone to embed the watermark in a suitable
region. A spatial domain image watermarking method for
HDR images in the OpenEXR extension was presented by
Lin et al. [9]. The HVS features take advantage of an adaptive
low luminance region, where the watermark bits are encoded
in a 10-bit mantissa with three channels. The outcomes
demonstrated that there were no perceived variations in the
visual quality between the generated watermarked HDR
image and its tone-mapped low dynamic range (LDR)

images and that a high embedding capacity was attained.
It is evident from the description above that distortion-free
systems (i.e., virtually undetectable watermarking systems),
higher payload systems, and watermark detecting systems are
offered. However, the above solution is still underperforming,
because it does not take the robustness requirements into
account. As a solution, Bakhsh andMoghaddam [8] proposed
an artificial bee colony (ABC) optimisation technique to
create a robust HDR image watermarking system. The
watermark is embedded in the LH and HL sub-bands of the
discrete wavelet (DWT) transform, and the best embedding
block is chosen using an optimization technique. Recently,
a saliency detection method was used to investigate a
trade-off watermarking system [12]. The saliency object is
generated using a unique ResNet architecture on an HDR
image. The original and watermarked images’ foreground
and background are divided into distinct sections based on
the saliency mask. The quantized index modulation approach
is used to include the permuted random segment watermark
blocks into the lifting wavelet transform (LWT) host image
bit plane. Better results were obtained while using different
metrics to evaluate the experiment result in order to examine
the trade-off performance.

The challenges in HDR images are (i) Tone Mapping
techniques that compress the wide dynamic range into a
standard dynamic range by altering the image’s character-
istics, including color and contrast. (ii) When tone mapped
and saved as JPEG the bit depth is reduced from 10 or 12-
bit to 8-bit per channel, potentially impact on watermark
imperceptibility and robustness. (iii) Due to more visually
appealing and realistic representation of the HDR image
produces higher perceptual differences than to the low
dynamic image (LDR) image, which affects the watermark
visibility of the algorithms designed for standard images [6].
(iv) Research on HDR images is not exposed much in the
case of robustness, content authentication, tamper detection,
and localization applications. This motivated us to attempt a
tamper detection based HDR image watermarking system by
embedding the watermark features.

Further the existing color image watermarking techniques
where the better resulted techniques and the challenges still
exist are discussed in detail. Generally, the watermarking
is categorized based on its types namely, Robust water-
marking [13], [14], Fragile watermarking, and Semi-fragile
watermarking [15], [16]. Notably, a powerful watermarking
system can endure attacks related to signal processing, but
it cannot withstand against original image manipulations or
pinpoint the tampered region, instead, it verifies whether
the image has been tampered with or not and it is termed
as ‘‘Robust watermarking’’. Eventhough the watermark fails
to be robust against unintentional attacks, it can effectively
detect tampering, which is termed as ‘‘Fragile watermark-
ing’’. The Semi-fragile watermarking addresses the flaws
of both watermarking systems. It stays robust by tolerating
image processing attacks and fragile for intentional attacks.
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As a result, the semi-fragile system has been suggested for
content authentication, and tamper detection system.

Whereas, domain of embedding is classified as, spatial and
transform domain. Compared with spatial domain, transform
domain has highly suggested because spatial domain fails to
provide robustness and imperceptibility. In the literature, var-
ious transform domain techniques are proposed, namely Dis-
crete Fourier Transform (DFT), Discrete Cosine Transforms
(DCT), Discrete Wavelet Transform [17], Integer Wavelet
Transform (IWT) [18], StationaryWavelet Transform (SWT)
[19] and Dual-Tree Complex Wavelet Transforms [20],
Discrete Contourlet Transforms [5], Curvelet Transform [21],
[22]. Mathematical tool transform are namely Singular
Value Decomposition (SVD) [23], QR Decomposition [19],
and hybrid of these transform such as, DWT-SVD [24],
DCT-DWT-SVD [25], Hilbert-IWT [26], DWT-BAM [27].
These transform domain techniques are able to process
grayscale and colour images with qualities like impercep-
tibility, resilience, and capacity. However, they are unable
to handle colour information in an image effectively. Thus,
it’s critical to preserve the colour information prior to
watermark insertion. To preserve the color information,
a color processing model has been suggested by many
researchers, where the luminance Y component is considered
when embedding the watermark. However, the disadvantage
of ignoring the correlation between the color channels makes
the system vulnerable towards color attacks. To avoid this
problem, quaternion form of transform domain techniques
is suggested. They are Quaternion Fourier Transform (QFT)
[28], Quaternion Discrete Cosine Transform [29], Quaternion
Wavelet Transform (QWT) [30], Quaternion Curvelet trans-
forms [31], Quaternion Hadamard Transform [32], Quater-
nion Singular Value Decomposition [23] and so on. Hence,
to treat the color images in a holistic manner the Quaternion
Discrete Fourier Transform (QDFT) is introduced using
quaternions algebraic form by Li et al. [28] for copyright
protection system. An additional tensor decomposition is
used after a third order tensor is created from the three
imaginary frequencies of QFT. Odd-even quantization is the
technique used to incorporate the watermark. To improve
the extraction process accuracy, the geometric distortion is
rectified by multiple output least squares support vector
regression (MLS–SVR) network model and pseudo-Zernike
moment features. The experimental results shown better
imperceptibility and robustness for image-processing and
geometric attacks.Multi-level andmulti-region watermarking
systems are presented in [33]. The experimental results show
better results, but selecting an optimal SURF keypoint is a
challenge as it affects the texture region during the extraction
process.

Chen et al. [23] provided a strong dual-color watermarking
that protects the copyright by utilising quaternion singular
value decomposition (QSVD). This scheme resulted in highly
correlated color channels through quaternion form which not
only has strong anti-attack performance but is also robust

and imperceptible to some common attacks.In addition to the
above, an optimal system needs to be adapted to balance and
enhance the performance of watermark characteristics using
popular optimization techniques in [17], [25], and [31].

In watermarking techniques, watermark embedding,
extraction, and watermark generation are the major key
aspects. Most of the researchers used a different image, logo,
partial image feature as a watermark. For instance, different
images like RGB, Grayscale, or binary logo, and partial
image features like transform domain feature, block-based
average feature values are generated as watermarks. Many
studies have been conducted in the tamper detection field
in recent years, revealing that, when compared to standard
watermarking systems, deep learning-based watermarking
systems are more efficient in the watermark embedding
and extraction process due to their learnable traits [34].
As a result, watermark embedding and extraction are
carried out using the CNN model to design a robust and
blind watermarking system. Thirteen CNN layers have
preprocessing, embedding, and extraction networks are
designed. The binary watermark is properly embedded in the
host images using an adaptive scaling factor. The resultant
showed high invisibility and robustness against pixel-value
change attacks and geometric attacks. Yu et al. [35]
recently proposed a convolutional-neural-network (CNN)-
based multiple residuals learning model for a robust median
filter forensic approach using compressed JPEG and lower-
size images. Reference [36] presented a deep learning-based
image forgery detection technique focused on splicing and
copy-move detection using CNN-SRM hybrid model. The
resultant feature is then input into an SVM classifier using
a feature fusion method. According to the aforementioned
study, content privacy and tamper detection challenges
received more attention in the CNN model than tamper
location and recovery.

To solve the above issue, Lee et al. [21] proposed an
algorithm that generates the watermark from CNN features
due to its traits. The VGG16 network is suggested to
generate a mask decoder using the high-frequency image
traits. The low-frequency sub-band images and the root mean
squared high-frequency feature are provided as input to the
VGG16 model from the stationary wavelet transform. Using
two batch-normalized inception-based mask deconvolutions
followed by bilinear upsampling and two simple bilinear
upsamplings, the mask decoder model detects tamper local-
ization.

For more than a decade, convolutional neural networks
(CNN), have demonstrated persistent success in the field of
computer vision. In recent times, the Transformer model has
demonstrated its dominance in numerous applications, such
as text summarization and machine translation [22], [37].
The transformer model relies on self-attention rather than
convolution, which is a straightforward parallel processing
technique that outperformed the CNN models performance.
Currently, Transformer models are intentionally designed for
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NLP applications to address long term dependency issue.
The essential self-attention mechanism that picks up on
global traits, is what drives the evolution of the transformer
model. Attention is the key advantage in transformer model,
which is extended to deep learning models like convolution.
By marrying both the models advantage together, it is termed
as convolution-attention model. Reference [38] presented
a tamper detection and recovery system using convolution
attentionmodel. Later from the transformer models the image
classification model is proposed by only using the encoder
block, which is a an image-specific model called Vision
and Swin Transformer exists. Vision Transformers have
recently demonstrated ground-breaking performance in a
number of different tasks, including image classification [39],
object detection [40], and semantic segmentation [41].
A transformer-based watermarking model was attempted by
Palani and Loganathan [19] for tamper detection applications.
Using the transformer model, multi-image watermark fea-
tures are generated. The DWT-QR decomposition is used for
embedding, and stationary wavelet transform (SWT) tech-
niques are then applied. For attacks like image processing,
better outcomes were obtained. While the authentication key
is embedded in the LH sub-band of the singular value matrix,
the most important six-bit vision feature maps are embedded
in the Schur decomposition matrix. Because of its effective
deep global features performance versus the tamper detection
system, this system has demonstrated improved outcomes in
terms of robustness and better-tampered image recoverability.

Later a compromised image recovery system, where
a vision transformer-based multi-watermark feature map
is used to detect localize tampering and to recover the
region [18]. Embedding is done using schur decomposition
and singular value decomposition transforms. As the feature
learning process is limited to local patches, a hierarchical
extended vision transformer, also referred as Swin trans-
former, produces deeper global characteristics than vision
through shifted window traits. Due to its strong potential,
we incorporated the Swin transformer model in the proposed
work to extract the watermark feature map.

A. LIMITATIONS AND CONTRIBUTIONS
From the above literature, the flaws (or) limitations of the
existing system are listed as,

1) Most of the existing quaternion-based color image
watermarking systems suggested for robust watermark-
ing system [23], [32].

2) Apart from robustness most of the system have
not concentrated on content authentication, Tamper
detection applications [29], [33].

3) Robust global characteristics of the original image have
not been taken into consideration as awatermark by any
of the existing methods.

4) The majority of HDR image research work focused on
various Tone mapping attacks, with very few systems
evaluated for unintentional attacks and none of the
systems evaluated for intentional attacks [9].

5) Lack of research on HDR images in the areas of tamper
detection, location and content authentication [8].

The above research results are widely explored in
hand-crafted conventional watermark features generated
through transform domain techniques. These features make it
difficult to express the characteristics of the entire host image.
The key factor for improving the robustness is by, generating
a robust global watermark feature instead of embedding an
image or a logo that depicts the characteristics of the host
image. Taking this factor into consideration, convolution
watermarkingmodels were designed to embed and extract the
watermark, and few systems employed convolution features
or convolution masks as watermarks due to their feature
learning traits. Thus, the deep learning-based watermarking
system attained better results in terms of content privacy and
tampered image prediction. The flaw with the convolution
model is that the existing system learns local features using
kernels that are connected locally. In contrast, the Trans-
former model learns features globally using self-attention for
all the tokens. The difference between CNN and Transformer
is the feature interacting mechanism [42]. The computational
complexity increases when a large number of tokens are
processed. To solve this issue, several recent works, such
as Swin Transformer which works locally inside the patch
window. We intend to generate robust deep global watermark
features that express the characteristics of the original image.
The Swin transformer model is effective in learning deep
global features by shifting and windowing processes. The
Swin transformer traits match our intention, which motivated
us to incorporate the Swin-based optimal watermarking
model in our proposed system.

In addition, to address the difficulties of HDR images, it’s
important to consider watermarking techniques specifically
designed to handle the limitations and characteristics of JPEG
and HDR-compressed JPEG images. Adaptive watermarking
algorithms, robust feature extraction methods, and careful
consideration of compression parameters and quality set-
tings can help improve the performance and resilience of
watermarks in these challenging scenarios. The contributions
towards this work are listed below:

1) Design an adaptive and robust feature extraction
watermarking techniques to handle both the color
image and compressed HDR images against tamper
detection and localization application.

2) Attempted Swin transformer-based watermark gener-
ation model for the first time on color and HDR
images, which extracts invariant global feature maps
as watermarks to achieve robustness against intentional
and unintentional attacks and achieved better results for
tamper detection applications.

3) The optimal region is determined using a novel
maximum entropy random walk algorithm.

4) Quaternion dual complex tree wavelet transform tech-
nique is derived tomaintain the color information intact
and also to embed the watermark, where the correlation
among color channels is maintained.

37760 VOLUME 12, 2024



P. Aberna, L. Agilandeeswari: Optimal Semi-Fragile Watermarking

5) Payload is improved by embedding the watermark
features repeatedly to enhance the tamper detection
accuracy.

6) The effectiveness and efficiency of the Swin features is
evaluated in terms of robustness and imperceptibility
metrics for various attacks on both RGB and HDR
images.

B. ARTICLE ORGANIZATION
The rest of the article is organized as: Section II discussed
the materials and methods, an overview of proposed model
is discussed in Section III. Section IV explicates the
Experimental Results and comparative Analysis in Section V.
Finally concludes with future scope in Section VI.

II. MATERIALS AND METHODS
A. SWIN TRANSFORMER
Swim transformer [41], [43] is a hierarchical mechanism that
processes images using the concept of shifted windowing.
Fixed image patches are inappropriate attributes for image
processing transformer models since it increases the number
of tokens for high-resolution images, resulting in quadratic
computational complexity. Swin transformers are built to
avoid such issues where a hierarchical dense feature maps
are generated by combining image patches represented
by window shifting traits, where the model’s performance
is limited by self-attention computation within the local
window as well as cross windowing connections. In addition,
swin transformer has the advantages of hierarchy, locality,
translation invariance and an inductive bias that suits for task
targeting [44]. Therefore, it is suitable for large datasets that
generalize the process by learning features. The architecture
selected in this paper, is the Swin Transformer Base, and its
structure is shown in Fig. (2).

According to swin transformer block as in Fig. (2), first
the original image is divided into patches of size 4 × 4
through the patch partition module where each patch ‘Xi’
treated as ‘‘tokens’’. The features of each channel are
linearly embedded by flattening it with dimension H

4 ×
W
4 ×C . After linear embedding four stages of Swin modules
with self-attention are applied on each patch to construct
different size feature maps. So, the number of original image
patches and the linear embedding layer together referred
as ‘‘Stage 1’’. Apart from Stage 1, the last three stacked
Swin modules are downsampled by patch merging layer
which reduce the number of tokens into halves. This first
hierarchical patch merging layer combine the features into
2 × 2 patches and apply linear layer which downsample the
number of tokens by 2 × C. The Swin transformer block
is applied on resultant patch merged tokens with resolution
of H

8 ×
W
8 represented as ‘‘Stage 2’’. The process was

repeated twice in stage 3 and stage 4 with patch dimension
of H

16 ×
W
16 and H

32 ×
W
32 . The Swin transformer blocks

comprises of four components namely, multilayer perceptron
(MLP), window multi-head self-attention (W-MSA), shifted

window-based multi-head self-attention (SW-MSA), layer
normalization (LN) and Drop-Path. The W-MSA and SW-
MSA are the key components of Swin used together for
each Swin module. The LN will normalize the feature
distribution data and Drop-path has regularization effect.
Unlike multi-head attention (MSA) layer, shifted-MSA is
employed along with two MLP layer where GELU activation
function is induced between theMSA andMLP layer. The SA
computation process is provided in Eq. (1), (2) and (3). The
Key (K), Value (V), Query (Q) computed using Equation 1,

Qi = Wq Pi,Ki = Wk Pi,Vi = Wv Pi (1)

where Wq,Wk ,Wv are the trainable parameters, which will
be the same for all the input patch vector Xi:n sequence.
N number of heads referred as self-attention mechanism is
combined together as multi-head attention (MHA) shown
in Eq (4).

Scaling Dot product (Q,K ,V )

=
Ki:nTQi
√
dK

(2)

Self − Attention(SAi) = softmax
(
Ki:nTQi
√
dK

+ B
)
Vi, (3)

where i =1,2, . . .n

MultiHead Attention(MHA)=Concat(SA1+SA2+, . . . , SAn)

(4)

where B represents relative position code, d represents query
dimension. The W-MHA process is given in equation (5)
and (6),

P̂l = Droppath(W −MHA(LN (Pl−1))) + P
l−1

(5)

The attention weight score is given as input MLP classifier to
obtain the learned feature maps as in Eq.(6),

Pl = Droppath
(
MLP

(
LN

(
P̂l
)))

+ P̂l, l = 1, 2 . . . L

(6)

Within W-MSA, the global interaction is limited as
self-attention is calculated within the local window. The
S-MHA is used to divide the L layer by moving half of the
window to the L+1 layer and then dividing it again in order to
prevent this. The local window attention weight will interact
globally as a result of doing this. The computation is given in
the equation below,

P̂l+1 = Droppath
(
MLP

(
LN

(
Pl
)))

+ Pl (7)

Pl+1
= Droppath

(
MLP

(
LN

(
P̂l+1

)))
+ P̂l+1 (8)

From the trained Swin Transformer model, robust features
are obtained to enhance the robustness of the proposed
watermarking scheme.

VOLUME 12, 2024 37761



P. Aberna, L. Agilandeeswari: Optimal Semi-Fragile Watermarking

B. MAXIMUM ENTROPY RANDOM WALK (MERW)
ALGORITHM
Graph emerged from the spectral graph theory concept,
representing the relation between objects or samples. Graph
spectral theory is linked with signal processing from where
it is stimulated to graph-based transform. Due to their
ability tomathematicallymodel the interconnections between
pixels, they have recently gained adoption in computer
vision applications. Applications like Citation analysis, social
networks, and link-structure analysis have highly benefited
from using graph-based algorithms. Edge identification and
segmentation are a few more image processing challenges
that have been solved using graph-based techniques [45].

A graph algorithm determines a vertex’s importance,
power, or energy inside a graph by considering global
information rather than local vertex-specific information.
Mihalcea [46] has shown adapting graph-based ranking
technique such as Kleinberg’s HITS algorithm (Kleinberg,
1999) or Google’s PageRank (Brin and Page, 1998) for the
weighted and unweighted graph.

Random walks (RW) and maximal entropy random
walk (MERW) are the suitable algorithms for the undi-
rected image which has been successfully adopted for
image segmentation [47], link prediction [48], and object
detection [49], object localization [50], visual saliency
region [51], tampering detection [52]. Since MERW assigns
the uniform probability distribution of all pathways in a
given graph by globally maximising entropy, it performs
better than Random Walk; Whereas, RW selects uniform
probability distribution for every vertex among its outgoing
edges which the maximizes the entropy rate locally.
MERW is a popular random walk algorithm that works based
on the transition probabilities which are chosen according
to the maximum entropy principle. The distribution of
transition probability on graph structure indicates the region’s
importance in terms of maximum entropy. In the proposed
model, we utilised the MERW algorithm to determine the
adaptive region due to its localization property on a graph.
Graph is represented as G = {V ,E}, where V & E represent
vertices and edges, V = {v0, v1, . . . .vn}, where V ∈ Ri×j and
E = {i, j}, where {i, j} ∈ V . The graph method is extended
to images by representing each image pixel as vertex V and
interconnection between pixels represented as edge E. The
adjacency weight matrix ′Aij′ defined from the connectivity
of two vertex through edges E (i.e., incoming and outgoing
links between two vertices) which is computed as follows:

Aij =

{
(aij, (i, j) ∈ E
0, otherwise

(9)

The random walk refers to a random walker ′Rn′, where
n ∈ 0, 1 . . .. The random walker moves in random transition
from current node i ∈ V to neighbour node j ∈ V based on
transition probability ‘P’ where Pij : P (Rn+1 = j | Rn = i).
The MERW method hopping is a Markov process that hops

longer m-steps from one node i to the other node j. As a result,
the walker distribution towards maximal entropy achieves the
MERW global structure. The suggested model discovers the
maximal entropy region based on the transition probability
distribution in a graph. The average entropy rate of the
stochastic transition process can be calculated by taking the
probability of visiting each vertex and averaging it using
Shannon entropy equation:

E = −

n∑
i=1

ρ∗
i

n∑
j=1

Pij logPij (10)

The transition probability matrix ′Pij′ is computed using
equation (11)-(16). From the real symmetric matrix L, non-
negative eigenvalues and eigenvector are generated as:

L = ϕλϕT =

n∑
i

ϕiλϕ
T
i (11)

where λ = {λ1, λ2 . . . λn} are eigenvalues and ϕi =

{ϕ1, ϕ2, . . . . . . .ϕn} are the corresponding eigenvector. The
graph laplacian matrix L is obtained by L= D − Aij, where
D is a diagonal matrix, where ith diagonal element di is sum
of all edge weights of vertices V. Then transition probability
matrix are given by,

Pij =
Aijϕi
λϕj

(12)

where λ represents eigenvalue of the weight matrix, and ϕi, ϕj
denote the ith and the jth node corresponding eigenvector.
According to the Frobenius-Perron theorem, both the ϕ and
λ are non-negative sign, so that one can choose ϕi > 0. The
stationary probability distribution ρi(t), find the particle at
node i at time t generally through stationary state ρ∗

i using
the equation:

ρ∗
i =

∑
j

ρ∗
j Pji (13)

Due to the non-negative weight matrix, all the eigen vectors
are normalised to

∑
ϕi = 1, so the transition matrix are also

normalized. Therefore, the stationary distribution of finding
the walker at node i by the following equation:

ρ∗
i = ϕ2i , (14)

where ρ∗
i : i ∈ V and

∑
i ρ

∗
i = 1. Further the quantity of

interest in generating the probability P of trajectory δtv0vn of
length t passing through nodes (v0, v1, . . . vn).

P
(
δtv0vn

)
= (Pv0v1 , Pv1v2 , . . . . . .Pvt−1vn ) (15)

The transition probability distribution of trajectory
‘P
(
δtv0vn

)
’

P
(
δtv0vn

)
=

1
λt

ϕi

ϕj
(16)

Start the random walk process from a specific region and
iteratively perform the random walk using the transition
probabilities. At each step, the random walk can transition
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to neighbouring regions based on the probabilities defined
in the adjacency matrix. After several iterations, the random
walk process will converge, and you can compute the MERW
scores for each region. The MERW scores represent the
adaptive high-energy values of the regions, indicating their
suitability for watermark embedding. Based on the MERW
scores, identify the regions with the highest scores, as these
regions are considered adaptive high-energy regions which
are suitable for embedding watermarks.

C. QUATERNION FORM
For color image watermarking systems, most of the system
utilised Quaternion form of representation mathematical
notion suggested by Huang et al. in 1843 [53]. Specifically
in watermarking, the frequency domain technique is the first
preprocessing step in acquiring more information to further
process the data, to embed the watermark either in a single
or in a RGB channel. When the watermark is embedded
either in single color channel or an entire color image,
it losses the correlation among the channels which affects
the performance of robustness. To avoid this, the quaternion
form of image representation is taken as a preprocessing
step before embedding the watermark. Quaternion form of
an image is suggested as a solution where it converts it to a
vector field. Generally, the quaternion form is expressed as a
sum of real and vector form,

q = µ+ qii+ qjj+ qkk (17)

where µ represents real part (qreal), and qii + qjj + qkk as
imaginary part, which satisfies i2 = j2 = k2 = ijk = −1.
The pure quaternion form expressed as q = qii + qjj + qkk ,
when qreal = 0, if q has unit norm q=1, then q is unit
quaternion form.

q =
√
q.q∗ =

√
q2r +

√
q2i+

√
q2j+

√
q2k (18)

For color image the quaternion form is expressed as,

q = µ+ qR(x, y)i+ qG(x, y)j+ qB(x, y)k (19)

where qR (x, y) , qG (x, y) , qB(x, y) represent the red, green,
and blue channels pixels respectively. The inverse quaternion
form is just the conjugate of general quaternion form which
can be represented as,

q = µ− qii− qjj− qkk (20)

Color image inverse quaternion form is represented as,

q = µ− qR(x, y)i− qG(x, y)j− qB(x, y)k (21)

D. DUAL TREE COMPLEX WAVELET TRANSFORM (DTCWT)
Among those transform domain techniques, discrete wavelet
transform has been suggested the most in the existing
works due to its efficiency. However, it fails to achieve the
shift- invariance and directionality properties resulting in
performance degradation in some cases. To address this issue,
a Dual-Tree Complex Wavelet Transform is developed by

Kingsbury [54] havingmany advantages like shift-invariance,
strong directional selectivity, limited redundancy, and perfect
reconstruction property with less computing complexity.
The DTCWT complex values are obtained from DWT
and complex wavelet transform. The inverse DTCWT is
performed where the real and imaginary parts are conjugated
to form real signal. By averaging the two real signals the final
reconstruction is attained. First, the translation and dilation
sequence is performed on image I(x, y) using complex scaling
function ϕ(x, y) resulting six complex wavelet function
9k , lθ (x, y). For an image I(x,y) the DTCWT is expressed
as,

I (x, y) = lϵZRk0,l92k,l(x, y) +626k≥k06lϵZ2W2
k,lψ

θ
k,l(x, y)

(22)

where 2 represents six complex wavelet directionalities,
2 ∈ (±15◦,±45◦,±75◦), Z represents natural number,
k and l are shift and dilation, Wk,l represents complex
wavelet coefficients with complex ϑk0,l (x) = ϑ realk0,l (x) +√

−1ϑ imgk0,l (x), and ϑk,l (x) = ϑ realk,l (x) +

√
−1ϑ imgk,l (x).

So, the DTCWT applied on the image I(x, y) produce two
complex low frequency sub-band and six direction high
frequency sub-bands expressed as shown in Eq. (23) and (24)

DTCWT (I (u, v)) = Low frequency(L1)

+ High frequency(H1) (23)

DTCWT (I (u, v)) = x(∀,L1, u, v) + x(γ,H θ
1 , u, v) (24)

The above Eq. (24) is elaborated as,

x(∀,L1, u, v) = R(x(∀,L1, u, v)) + kImg(x(∀,L1, u, v))

(25)

x(γ,H θ
1 , u, v) = R(x(γ,H θ

1 , u, v)) + kImg(x(γ,H θ
1 , u, v))

(26)

where R and Img stands for real and imaginary parts, ∀

represents number of decomposition levels, here it is 1,
L1 represents Low frequency sub-bands, u,v represents
coefficients sub-band locations where the values range
between 0 to N

2∗ -1. Thus, the result of DTCWT has
shown good shift-invariance, selection strong directionality,
with less redundancy and also improved the efficiency of
imperceptibility than any other wavelet transforms.

E. QUATERNION DUAL-TREE COMPLEX WAVELET
TRANSFORM
The advantage of both quaternion and dual-tree complex
wavelet transform are combined as expressed in the given
equation from (27) – (32). The color image ‘i’ RGB channel
is denoted as qR, qG, qB. The QDTCWT is obtained by
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substituting Eq. (24) in Eq. (19) which is expressed as,

QDTCWT (q) = I (m, n) = µ+ DTCWT (qR(m, n)i

+ qG(m, n)j+ qB(m, n)k) (27)

QDTCWT (q) = µ+ DTCWT (qR(m, n))i+ DTCWT

× (qG(m, n))j+ DTCWT (qB(m, n))k)
(28)

Now substitute µ in Eq. (28),

QDTCWT

= [re(DTCWT (qR(m, n))) + Img(DTCWT (qR(m, n)))]i

+ [re(DTCWT (qG(m, n))) + Img(DTCWT (qG(m, n)))]j

+ [re(DTCWT (qB(m, n))) + Img(DTCWT (qB(m, n)))]k

(29)

whereµ = α∗i+β∗j+γ ∗k denotes a unit quaternion subject
to the constraint that µ2 where i, j, k are real numbers. The
above Eq. (29) is same as in [31] and [55], so we have used
the four-vector space quaternion dual-tree complex wavelet
transform which is expressed as,

QDTCWT (q(m, n)) = Q0(m, n) + Q1(m, n)i+ Q2(m, n)j

+ Q3(m, n)k (30)

where

Q0(m, n) = −αImg(DTCWT (qR)) − βImg(DTCWT (qG))

+ γ Img(DTCWT (qB)),

Q1(m, n) = re(DTCWT (qR))

+ γ Img(DTCWT (qG)) − βImg(DTCWT (qB)),

Q2(m, n) = re(DTCWT (qG)) + αImg(DTCWT (qB))

− γ Img(DTCWT (qR)),

Q3(m, n) = re(DTCWT (qB)) + βImg(DTCWT (qR))

− αImg(DTCWT (qG))

Here, re(x) denotes the real part of the usual com-
plex number x, and Img(x) denotes the imaginary com-
ponent. The conventional DTCWT matrix of the red,
green, and blue channels is represented by the symbols
DTCWT (qR),DTCWT (qG),DTCWT (qB), respectively. For
the sample image the quaternion dual-tree complex wavelet
transform of red channel is visualized in Fig. (1). The
inverse quaternion dual-tree complex tree wavelet transform
(IQDTCWT) can be expressed as,

IQDTCWT (q(m, n))

= re(IDTCWT (Q0(m, n)) + µImg(IDTCWT (Q0(m, n))

+ [re(IDTCWT (Q1(m, n)) + µImg(IDTCWT (Q1(m, n))]i

+ [re(IDTCWT (Q2(m, n)) + µImg(IDTCWT (Q2(m, n))]j

+ [re(IDTCWT (Q3(m, n)) + µImg(DTCWT (Q3(m, n))]k
(31)

IQDTCWT (q(m, n))

= f (Q0)(m, n) + f(Q1)(m, n)i

+ f(Q2)(m, n)j+ f(Q3)(m, n)k (32)

FIGURE 1. Red Channel of Quaternion Dual-Tree Complex Wavelet
Transform (A) CASIA dataset images - Image 7, (B) LVZ-TMO HDR images -
Image 7.

where,

fQ0 (m, n) = re(IDTCWT (Q0)(m, n))) − αImg(IDTCWT

(Q1)(m, n)) − βImg(IDTCWT (Q2)(m, n))

− γ Img(IDTCWT (Q3)(m, n)),

fQ1 (m, n) = re(IDTCWT (Q1)(m, n)) + αImg(IDTCWT

(Q0)(m, n)) + γ Img(IDTCWT (Q2)(m, n))

− βImg(IDTCWT (Q3)(m, n))),

fQ2 (m, n) = re(IDTCWT (Q2)(m, n)) + βImg(IDTCWT

(Q0)(m, n)) + αImg(IDTCWT (Q3)(m, n))

− γ Img(IDTCWT (Q1)(m, n)),

fQ3 (m, n) = re(IDTCWT (Q3)(m, n)) + γ Img(IDTCWT

(Q0)(m, n)) + βImg(IDTCWT (Q1)(m, n))

− αImg(IDTCWT (Q2)(m, n))

III. PROPOSED MODEL
In this work, a novel optimal watermarking scheme using
a Swin transformer and maximum entropy random walk
algorithm is suggested for HDR image-based tamper detec-
tion applications. Normally, the HDR image is composed of
detailed pixel information in terms of luminance, brightness,
and texture features. The HDR images are compressed
to JPEG format by a mobile camera. The existing color
image watermarking system will not be efficient in handling
HDR-compressed JPEG images. As a solution, quaternion
DTCWT and SVD transform model. Apart from embedding
a watermark in an optimal region without influencing
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FIGURE 2. Detailed Embedding process.

imperceptibility, generating a robust watermark is also a
major criterion in the watermarking technique. The proposed
model attempted the Swin base transformer model which
is highly invariant to translation and produces dense global
watermark features of an original image, that enhance the

system to attain high robustness against various attacks than
the existing traditional watermark generation techniques.
Apart from a robust watermark, embedding the watermark
in an optimal region is determined by the maximum entropy
random walk (MERW) region.
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FIGURE 3. Extraction process.

A. DETAILED PROCESS
The proposed model embedding process is clearly illustrated
in Fig. (2) and the extraction process is depicted in Fig. (3).
The original image is pre-processed by converting the pixel
to quaternion form which can maintain the correlation
among the color channels, followed by that Dual-tree
complex wavelet transform is applied on the quaternion
vector coefficient to produce two low frequency (L1R,L1Img)
and (H1,H2,H3,H4,H5,H6) six high-frequency sub-bands.
To embed the watermark in an optimal region, a novel
maximum entropy random walk algorithm is employed to
determine the low-sensitive region. The random walker
’Rn’ search the maximum entropy region by the transition
probability score of each pixel. Once the high MERW
determines the optimal region ’ORn’ through stochastic

distribution score, those regions are bounded to further
embed the watermark ’OBn’. The robust global deep feature
watermark is generated from the Swin transformer model
where the dataset is trained, to learn the feature. From the
pre-trained model, the original image features are obtained
through class labels. Before embedding the watermark,
QSVD is used as in [23], where the Swin features are
partitioned according to the optimal block size and embedded
in the principal component of QSVD transform using the
scaling factor. In the proposed work α =0.063 is found
to be an appropriate embedding factor. Inverse SVD is
performed on the modified low-frequency sub-band L ′

1R.
Following that, the secured content authentication watermark
is obtained from the dual gyrator scrambled image which
is embedded in the imaginary low frequency sub-bands.
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The extraction process in the reverse of embedding process
where the gyrator scrambled watermark is recovered from
the watermarked. The regenertaed authentication watermark
is compared to the extrcated authentication watermark; if
they match, the extraction operation can continue; otherwise,
extraction process not allowed.

To detect the tampering of the watermarked image, the
principal component EB′′

OBn is extracted from low frequency
sub-band of QDTCWT from the tampered image and the
original principal components EB′

OBn are extracted from
the watermarked image. By comparing both applied to
extract the principal components tamper localization is
detected and tampered region is recovered using swin
features.

Algorithm
Process 1: Watermark embedding process

1) Apply quaternion dual-tree complex wavelet transform
on input image Ii, and the red channel quaternion
dual-tree complex wavelet transform is expressed as,

[L1R,L1Img, (H11R,H11Img,H12R,H12Img,H13R,

H13Img,H14R,H14Img,H15R,H15Img,

H16R,H16Img)] = QDTCWT (qR(m, n)) (33)

where L1,H1 refers low and high frequency sub-bands,
R and Img refers real and imaginary part coefficient

2) Determination of suitable embedding region using
MERW on each channel of LL sub-band:
a) Graph Construction: Construct a graph represen-

tation for L1 sub-band image, G (L1R) = V, E
represent the graph, where V = v0, v1, v2 . . . vn,
vnϵ I(m,n), E = E0,E1 . . .En, Enϵ V

b) Determine the energy value: Energy value
referred as E(vi) computed by Eq. (10) where
E(vi) represent scalar function that map node vi
to its energy value in the graph.

c) Compute the transition probabilities ’Pij’ of each
node vi computed using Eq. (12).

d) Normalize the transition probabilities ’Pij’ and
construct the transition matrix T, Pijϵ I(m,n)

T (i, j) =
Pij
6
P(vi,Aij(vi)) (34)

here Aij denotes the adjacent matrix value node
of vi. ‘T’ matrix size depends on the number of
nodes in the graph.

e) Initialize random walker Rn and perform random
walk process from a seed pixel or set of seed
pixels.

f) The stationary probability pi(t) from node v0 to
node vn is determined as explained in II(B).

g) After several iterations of the random walk, the
MERW scores for each pixel.

h) Let S(vi) represent the MERW score of node vn.
The MERW score can be calculated using the

probability values obtained from the randomwalk
process:

S(vi) = −log(T (vi)) (35)

The negative logarithm of the probability repre-
sents the entropy or uncertainty associated with
being at node vi.

i) Apply a threshold to the MERW scores to
determine the block boundaries. Pixels with high
MERW scores are considered part of the optimal
region ORb, while pixels with low scores are
considered high sensitive region.

ORn = MS (vi, vj) ≥ t, i, jϵϵI (m, n) (36)

where t represent average threshold values of
MERW score

j) Embedding blocks are selected as ’OBn’ from the
optimal region ’ORn’

3) Robust swin watermark feature generation
a) Train the dataset images Ii on the Swin trans-

former.
b) Divide the image into an even number of n-sized

patches.
c) Perform linear embeddings by flattening the

image patches.
d) The linear input layer is inputted to stage1 Swin

transformer module.
e) In stage 2, all the patches are combined in patch

merging layers followed by swin module.
f) Hierarchical four stages of features are learnt and

robust feature maps are extracted from the last
layer fi from the pre-trained model.

4) Select the optimal embedding block OBn and embed
the watermark fi in selected optimal embedding block
OBn coefficients,

L̂OBn1Ri
= L̂OBn1R + α × fi (37)

where i represent number of selected blocks where the
features blocks are embedded accordingly.

5) Preprocessing watermark dual biometric image b1
and b2

6) Dual owner biometric image b1, b2 scrambled with
gyrator scrambling method.

Scramble1 = gyrator(b1) (38)

Scramble2 = gyrator(b2) (39)

7) Final authentication watermark is generated using
XOR method.

Auwm = XOR(Scramble1, Scramble2) (40)

8) The authentication watermark is embedded only in
the red channel L1R sub-band principal component
coefficient of SVD transform

[UL̂1R , SL̂1R ,V
T
L̂1R

] = SVD(L̂1R) (41)
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9) Modified L ′

1R coefficient is obtained by embedding
the watermark ’Auwm’ in low frequency imaginary
sub-band and inverse SVD transform applied as
expressed as,

EB′

L̂1R
= (SL̂1R × V T

L̂1R
) + αAuwm (42)

L ′

1R = ISVD[UL̂1R ,EB
′

L̂1R
,V T

L̂1R
] (43)

10) The embedding process from step (1 – 4) is carried out
for all the three channels and the modified QDTCWT
is obtained.

IQDTCWT [(L̂ ′

1R,L1Img, (H11R,H11Img,H12R,H12Img,

H13R,H13Img,H14R,H14Img,H15R,H15Img,

H16R,H16Img))] = ModifiedCoefficient(q′
R(m, n))

(44)

11) Finally, the watermarked image ‘WM’ is obtained
using inversing the QDTCWT as expressed in Eq (32).

Process 2: Watermark extraction process
1) Apply QDTCWT on the received watermarked image

‘WM’ as performed similarly in the embedding pro-
cess, where the below Eq. (45) express the QDTCWT
of red channel,

[L1RW ,L1ImgW , (H11RW ,H11ImgW ,H12RW ,H12Imgw ,

H13RW ,H13ImgW ,H14RW ,H14ImgW ,H15RW ,H15ImgW ,

H16RW ,H16ImgW )] = QDTCWT (WM (qRed (x, y))

(45)

2) To verify the content authentication by extracting
the watermark from the principal component of low
frequency imaginary sub-band L ′

1Img

[U ′
L1Rw

, S ′
L1Rw

,V T ′

L1Rw
] = SVD(L1Rw ) (46)

EAu′
wm = S ′

L1Rw
× V T ′

L1Rw
(47)

3) Original authentication watermark is regenerated from
the owner’s original biometric image by repeating the
embedding process steps from (5)-(7)

A = Compare(EAu′
wm,Auwm) (48)

If A == true
Content authenticated
Do
Extraction process
Else
Watermarked image is unauthenticated and no extrac-
tion process

4) To extract the tamper detection and recovery water-
mark, the optimal region ’OBn’ is determined by
performing MERW algorithm in ’L1Rw ’ sub-band as in
step 2 of embedding process algorithm.

5) Swin features are extracted from the optimal region
blocks L ′ÔBn

1Ri
from the low frequency sub-band L1RW ,

L ′ÔBn
1RWi

= MERW
(
L1RW

)
(49)

TDOBni = Compare
(
LÔBn1RWi

, L̂OBn1Ri

)
(50)

If TDOBni == 0
Image Not tampered, extraction process not required
Else
Tamper detected and extract watermark

6) Extract the watermark from the watermarked low
frequency band to localize

Efi = L ′ÔBn
1RWi

− L̂OBn1Ri
/ ∝ (51)

7) Extracted swin features are combined to produce
extracted watermark which has the ability to recover
the tampered region.

IV. EXPERIMENTAL RESULTS
The performance of the proposed algorithm against various
attacks where the watermarking characteristics efficiency
is evaluated in terms of PSNR, SSIM, HDR-VDP, and
NCC. This section deals with experimental setup, dataset
description, evaluation metrics, performance analysis and
comparative analysis.

A. EXPERIMENTAL SETUP
The experiment is carried out in Windows 11th Gen Intel(R)
Core(TM) i5-1155G7 with processor speed @ 2.50GHz
2.40 GHz and 8GB capacity of RAM with 64-bit processor.
The software used for simulation purpose is MATLAB
R2021a. In order to generate watermark, the transformer
model is trained in google colab platform with T4 GPU
hardware accelerator.

B. DATASET DESCRIPTION
To evaluate the performance of the proposed algorithm,
the experiment is conducted on the selected dataset LVZ-
TMO (HDR images) [56], CASIA [57] and benchmark
dataset (Color images). So, the LVZ-TMO dataset [56]
contains 457 HDR images with four classes namely, indoors
with 71 images, nature with 173 images, nighttime with
80 images, and river-side sunset with 133 images, with
dimension 1024 × 1024 in compressed JPEG format,
CASIA1 dataset has 1721 images belongs to two classes with
image dimension 384 × 256 and the benchmark images like
crown, boat, lena, aeroplane, and Peppers with dimension
of 256 × 256, and 512 × 512. The original images and
the augmented images totally 10,990 images are inputted,
in order to train and to extract features from the swin
transformer model.

To authenticate the watermarked image, biometric
images are utilized from FVC2002 [58] and MMU iris
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FIGURE 4. Sample Test Images (A) LVZ- TMO HDR images (B) Benchmark
Images (C) CASIA dataset images.

FIGURE 5. Owners Sample biometric images (A) FVC-DB2004 (B) MMU
Iris dataset.

dataset [59] (Biometric images). The FVC2002 dataset
contains 880 images of size 288 × 384 (108 Kpixels), and
iris datasets named Multimedia University (MMU1) [59]
contains merely 460 images with dimension 320 × 240 in
’.bmp’ format respectively. The sample test images from
LVZ-TMO and CASIA1 dataset is shown in Figure (4).
Figure (5)(A) shows a sample biometric image from
FVC2002-DB2B and MMU iris dataset that are listed in
Figure (5)(B).

C. EVALUATION METRICS
To protect HDR and RGB images from tampering, the
optimal semi-fragile watermarking technique is designed
using the swin transformer model. The performance analysis
was conducted with respect to robustness, imperceptibility,

FIGURE 6. Performance evaluation of Zero attack watermarked test
images using PSNR, SSIM and HDR-VDP.

and authenticity. Common metrics to assess image quality
in terms of imperceptibility are the Peak Signal-to-Noise
Ratio (PSNR) and the Structural Similarity Index Measure
(SSIM). Bit Error Rate (BER) and Normalised Correlation
Coefficient (NCC) are the most widely used measures to
quantify robustness.

1) IMPERCEPTIBILITY
Generally, the embedded watermark shouldn’t degrade the
quality of the original image, which is why it has impercepti-
bility properties. In assessing the imperceptibility Themetrics
used to assess the degree of resemblance between the original
andwatermarked image are the peak-signal-to-noise ratio and
the Structure resemblance Index (SSIM).

1) Peak signal to noise ratio (PSNR) [31]: The PSNR
metric’s performance is determined by the degree
of similarity between the original and watermarked
images, with a minimum value of 30 dB, indicating a
significant range. Lesser than 30 dB is considered as
less imperceptible which means the embedded water-
mark has influenced the watermarked image more.
Whereas SSIM range between 0 to 1, closer to 1 is
of acceptable range. The PSNR and SSIM metrics are
computed through the below given equations,

PSNR=10 log 10

 2552[∑
M ,N

(
I (m, n)−WM ( m, n)2

] 1
M∗N


(52)

where M, N are the image dimension, original image
represented as ‘I ’ and watermarked image as ‘WM ’

2) Structure similarity index Measure (SSIM) [31]: The
imperceptibility performance is determined by luminance,
contrast and correlation between original and watermarked
image which ranges between 0 to 1. The value range near
to 1 is considered to be of acceptable quality which is
represented as,

SSIM =
(2µIµWM )

(
2σ(I,WM)

)(
µ2
I + µ2

WM

) (
σ 2
I + σ 2

WM

) (53)

where µI and µWI represent the mean of I and WI (i.e.,
image luminance), ‘‘σI ’’ and ‘‘σWM ’’ represent the standard
deviation of I andWI (i.e. image contrast), ‘‘σI ,WM ’’ represent
the correlation coefficient of original ‘I’ and watermarked
image ‘WM’

VOLUME 12, 2024 37769



P. Aberna, L. Agilandeeswari: Optimal Semi-Fragile Watermarking

FIGURE 7. Performance evaluation of Noise attack on watermarked test images using PSNR, SSIM and HDR-VDP.

3) Visual Dynamic Predictor (VDP) [11]: In addition to the
above metrics, the performance of the HDR image in terms of
imperceptibility is determined by VDP which is defined as:

HDR-VDP

=
1
F .O

F∑
f=1

O∑
o=1

wf log

(
1
M

M∑
m=1

D2
p[f , o](m) + ε

)
(54)

where wf represent vector of per-band pooling weights
determined by maximizing correlations with subjective
opinion scores, m is the pixel index, M is the total number
of pixels, Dp denotes the noise-normalized difference the f th

spatial frequency (f = 1 toF) band and (f = 1 to F) band and
oth orientation (o = 1 to O) of the steerable pyramid of the
original and watermarked image, ε = 10−5 is a constant to
avoid singularities when Dp is close to 0.
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FIGURE 8. Performance measured by PSNR, HDR-VDP and SSIM metric for filter attack on sample test images.

2) ROBUSTNESS
Using Normalised Correlation Coefficient (NCC) and Bit
Error Rate (BER), which have a range of 0 to 1, are used
to calculate the robustness performance of the embedded
watermark.

1) Normalized Correlation coefficient [31] This metric
measures the correlation among the extracted water-
mark and the original watermark. When the values
are closer to 1, then the images are highly correlated

(i.e., robust) else, it is uncorrelated (i.e., Less robust).
NCC metric is defined as:

NCC =
(6nL

i=16
nK
j=1(|fi + Efi |⧸2)

nMN
(55)

where W and EW represents the original and extracted
watermark and nMN dimension, (i, j) represent the
position of a pixel in the image.
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FIGURE 8. (Continued.) Performance measured by PSNR, HDR-VDP and SSIM metric for filter attack on sample test images.

2) Bit error rate (BER) [31]: The BER performance is
calculated by dividing the total number of embedded
watermark bits by the number of watermark bits that
were extracted incorrectly. There won’t be an error if
it ranges closer to 0, otherwise numbers will be closer
to 1 which is represented as,

BER =
NErr
NBit

× 100 (56)

D. PERFORMANCE ANALYSIS
Unauthorized users may intentionally or unintentionally
tamper with the watermarked image ’WM’ at the receiver
side during an unsecured network transmission. The quality
degradation between the recovered image and the water-
marked image on the sample test images for various attacks,
such as (i) Zero or No attack, (ii) Unintentional attack, such
as Noise attacks, geometrical attacks, and image processing
operations like histogram equalization, sharpening attack,
and JPEG compression, is used to assess the watermark
features ability of the Swin transformer-based watermark.
(iii) Copy-move forgeries, image splicing, and content
removal attacks are instances of intentional attacks.

1) ZERO ATTACKS OR NO ATTACKS
The imperceptibility metric is used to calculate the efficiency
of the suggested approach in terms of quality deterioration
when the watermark is embedded for the zero attacked

watermarked image. The watermarked images are mea-
sured using PSNR and SSIM metric, and also the HDR
watermarked image similarity is additionally measured
using HDR-VDP2 (High dynamic range-Visual Difference
Predictor). Figure. (6) clears that the highest PSNR value
achieved is 68.75 dB, the maximum SSIM value obtained is
0.999, whereas maximum VDP-quality achieved is 94.76.

2) IMAGE PROCESSING ATTACKS
The performance of the proposed approach for HDR and
RGB watermarked images evaluated for various image
processing attacks in order to estimate imperceptibility and
robustness efficiency for various image tampering ratios.

Image processing attacks are namely: (1) Noise attacks,
(2) Filtering attacks, and (3) Common attacks. The noise
attacks are categorized as salt and pepper noise (S& P),
Gaussian noise (GN), and Speckle noise (SN) tested for
various density and variance values of 0.02, 0.05, 0.1.
Filtering attacks such as Gaussian filter, Median filter,
and average filter are evaluated for various filter size
of 3 × 3, 5 × 5, 7 × 7 and 9 × 9. The common
attacks with various parameters namely sharpening attack
with tampering ratio of 10%, 20%, 40%, and 50%, his-
togram attacks with tampering ratio of 10%, 50% and
the JPEG compression attacks with varying quality fac-
tor of 10%, 50%, 70%, and 90%. The imperceptibility
performance of the proposed algorithm for unintentional
attack is evaluated by PSNR, SSIM, and HDR-VDP metrics
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TABLE 1. BERs comparison between proposed Vs existing algorithm for color images.

TABLE 2. NCCs comparison between proposed Vs existing watermarking algorithm for color images.

TABLE 3. BER comparison between proposed Vs existing systems on HDR images.

(betweenWatermarked and Recovered image) and the results
are shown in Figures (7), (8) and (9).

It is observed from the Fig. (7), (8) and (9) that,
the performance of noise attack for color image as
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FIGURE 9. Performance evaluation of common attack on watermarked test images using PSNR, SSIM and HDR-VDP.

achieved good result than the HDR images with a max-
imum PSNR value of 67.99 dB and HDR-VDP resulting
in 90.38. Whereas the filtering, histogram, sharpening
and JPEG compression attack is evaluated on sample
test image via various filter sizes, yielding high fidelity
with average PSNR values of 64 dB and HDR-VDP
of 85.

3) GEOMETRIC ATTACKS
The proposed systems performance against RST attacks is
examined, to evaluate the robustness of the watermark in
terms of image recovery. Intentional geometrical attacks
are namely rotational attacks with tampering ratios of
10◦, 20◦, 40circ, and 60◦, scaling attack with tampering ratios
of 25%, 50%, 75%, and 125%, and translation attacks with
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FIGURE 10. Performance measured by PSNR, HDR-VDP and SSIM metric for geometric attack on sample test images.

different axis ranges of Tx=−25, Ty=20, Tx=50, Ty=−50,
Tx=45, Ty= −25, and Tx=−50, Ty=50 respectively. The
watermarked image is tampered intentionally using MAT-
LAB command, where the performance is computed using
multiple metrics and the results are depicted in Fig. (10). The
system shown better imperceptibility performance with the
highest PSNR values of 63.5 dB, SSIM value of 0.999, and
an average HDR-VDP of 92.

4) INTENTIONAL ATTACKS
Tamper detection and localization efficiency for the pro-
posed model is evaluated by intentionally tampering the
watermarked image. The intentional attacks are namely
content removal, copy-move forgery, content removal, and
Image Splicing. From Fig. (11) it is inferred that the proposed
work is highly efficient in tamper localization and the deep
global swin features maps are highly capable in recovering
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FIGURE 11. Performance evaluation of intentional attack on watermarked test images using PSNR, SSIM and HDR-VDP.

the image. The proposed system performed better for content
removal and copy-move attack. For image splicing attack, the
fidelity performance of HDR image achieved better result
when compared with RGB image. From figure (6) - (11),
it is inferred that the proposed algorithm significantly
outperforms for various attacks.

E. ROBUSTNESS ANALYSIS
The swin watermark robustness efficiency is evaluated for
various attacks where the performance of the extracted
watermark from the tampered image is calculated using

Normalized correlation coefficient (NCC) and Bit error
rate (BER) metric and the results obtained is mentioned
in Fig. (12) and (13). In the proposed work, swin fea-
tures maps are embedded as watermark in quaternion
transform of RGB channel which not only guarantee the
imperceptibility of watermarked image and also achieve
higher robustness. Moreover, in the adaptive less sensitive
region the watermark information are effectively dispersed
in all the three RGB channels of the host image, thus the
robustness as well as the payload of the proposed model is
improved.
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FIGURE 12. Robustness performance in terms of NCC and BER against various attacks on HDR Images.

V. COMPARATIVE ANALYSIS
This section conducts a comparative analysis between
the suggested algorithm and the existing reversible

multi-watermark [33], semi-blind deep learning features [38],
semi-fragile reversible [15] and a hybrid transform algo-
rithm [25] that has been proposed, in order to demonstrate
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FIGURE 13. Robustness performance in terms of NCC and BER against various attacks on RGB Images.

the endurance of the proposed algorithm. Embedding the
grayscale invariance watermark in multi-level and multi-
feature regions [33]. The multi-level watermark embedding
is carried out on three levels of non-overlapping blocks, and

multi-region embedding is carried out by utilizing the SURF
key feature points. The semi-blind watermarking approach
based on the 2-level DWT-SVD model [23] embeds the
convolution attention features as watermark to effectively
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TABLE 4. Proposed model Vs existing model imperceptibility performance for payload.

detect and recover the tampered region. The semi-fragile
colour image watermarking algorithm in scheme [15] uses
quaternion discrete fourier transform (QDFT) to embed
watermark. The authentication binary watermark followed
by that synchronized watermark is embedded in the
QDFT coefficients. The quaternion Hadamard transform
(QHT) with schur decomposition technique is suggested by
Li et al. in [60] where the watermark embedding is carried
out in Q matrix. In order to be robust against geometric
attack, and to detect geometric distortion Zernike moment is
induced. Whereas in [18] effective tamper detection system
is proposed by extracting invariant features from Vision
transformer model. multi-watermark are generated using
Schur decomposition, SVD and vision transformer and each
watermark is embedded in the LSB bit of each blocks in LH,
LL sub-band of DWT and curvelet coefficients to produce
watermarked image. In order to verify the efficiency of the
suggested approach, a balanced comparison is conducted by
replicating the existing algorithm on sample images from (4)
for different attacks. The obtained results are compared
with the existing system is presented in Table (1). When
compared to conventional watermarking systems, a greater
performance is attained in terms of NCC and BER values
because of the adaptive embedding region and a global deep
watermark feature. Table (2) shows that the suggested work’s
NCC robustness efficiency on RGB images outperformed the
performance of the all other existing system [17], [18], [23]
but the proposed system lag robustness for few attack than the
system [60]. On the other hand, the suggested work on RGB’s
BER performance outperformed than all the existing state-
of-art systems in terms of noise attack outcomes depicted in
Table (1). However, the findings of [18] and [23] performance
were superior when it came to filtering attacks.

Table (3) depicts the robustness performance of HDR
image against existing system [8], [11] in terms of BER. From
table (3) the proposed system shows better BER performance
than the state-of-art methods.

Additionally, in order to validate the efficiency of the sug-
gested work on HDR images, a fair comparison is conducted
using benchmark HDR images by replicating the existing

Tucker decomposition [11]technique for various intentional
and unintentional attacks. The obtained results are compared
with the existing system which is tabulated in Table (2).
In [11] extensive evaluations on several HDR images made
by encoding two widely-used transfer function (TFs) confirm
the strong HVS-imperceptibility capabilities of the method,
as well as the robustness of the embedded watermarks to tone
mapping, lossy compression, and common signal processing
operations. The error rate performance on several test images
is evaluated in order to assess the HDR image robustness
performance. Based on the outcome, it is deduced that the
BER of the suggested system achieved better than the existing
system.

The watermarking system payload characteristics of the
proposed and the existing algorithm is measured as number
of watermark bits embedded in the original image pixel.
In addition to that the trade-off between imperceptibility and
robustness for varying payload system is measured by PSNR
and NCC metric that is tabulated in Table (4). It is inferred
from table (4) that the performance of proposed system shows
better results.

VI. CONCLUSION AND FUTURE WORK
The growth of photographic technology has increased in
real-world scenarios that resulted in high-quality images.
Also, the uncontrollable multimedia image manipulation
insists on the need for secured content authentication
and tamper detection systems. Much research suggested
a successful model for color image content authentication
and tamper detection systems, but limited research has
been carried out on HDR images for tampering attacks.
Considering the above-mentioned difficulties, we proposed
an adaptive semi-blind watermarking system for HDR and
RGB images using quaternion Dual-Tree complex wavelet
transform for content authentication, proof of ownership,
and tamper detection application using the Swin transformer
model. This work focuses mainly on a robust watermark and
an optimal secured authentic system for various intentional
and unintentional attacks. For the first time, we have
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evaluated the Swin transformer-based feature generation
model for the first time on the HDR and RGB image datasets.

With the use of a pixel correlation-based graph entropy
system, the optimal embedding region is identified using the
Maximal Entropy Random Walk approach, which strikes a
balance between robustness and imperceptibility. The less
sensitive Quaternion Dual-Tree Complex Wavelet Transform
coefficient in all three channels, which not only demon-
strated high robustness because of its shift-invariance and
strong directionality property but also preserved the pixel
correlation, was another way to improve system performance.
Furthermore, the novel Quaternion Dual-Tree Complex
Wavelet Transform (QGBT) yields superior tamper detection
and localization results because of its strong perceptual
features. In addition, to confirm the content authenticity, the
dual scrambled biometric watermark is integrated into the
principal components of the singular value decomposition
matrix. Utilising a gyrator transform to jumble the owner’s
biometric image, the protected authentication system is
achieved while preventing outside parties from detecting or
extracting the watermark from the image. Extraction of the
watermark is possible, only when the owner’s dual biometric
image matches with the extracted watermark. To authenticate
and detect tampering owner’s biometric image and the
original watermarked image are required which is known to
be a semi-blind watermarking system.

The suggested algorithm’s performance is assessed for
a range of deliberate and inadvertent attacks. The imper-
ceptibility and robustness performance of the proposed
algorithm for each attack with varying tampering ratios is
evaluated by various quality metrics like PSNR, NCC, BER,
SSIM, and VDP. With a maximum PSNR of approximately
65 dB and an NCC of 0.999, it is evident from the result
analysis that the suggested model outperformed the others
in terms of imperceptibility and robustness. The VDP metric
was also used to measure the HDR quality visualisation,
and it achieved the highest value of 94.76, respectively.
An adaptive, content authentication, tamper detection, tamper
localization and recovery, and proof of ownership application
were all successfully obtained by the suggested system.
Also, the trade-off between watermarking properties is well
balanced by an adaptable system. In the future, this system
can be extended for high dynamic range videos.
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