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ABSTRACT This study aims to develop models for predicting hourly energy demand in the State of
Connecticut, USA from 2011 to 2021 using machine learning algorithms inputted with airport weather
stations’ data from the Automated Surface Observing System (ASOS), demand data from ISO New England
(ISO-NE). We built and evaluated nine different model experiments for each machine learning algorithm
for each hour of the day addressing energy demand patterns, variations between workdays and weekends,
and COVID-19 impacts. Error metrics analysis results highlighted that the GBR model demonstrated better
performance compared to the MPR and RFR models. Incorporating both temporal and weather features
in the models resulted in a noticeable improvement in error metrics. A consistent overestimation trend
was observed for all models during the validation period (2018–2019) which may be attributed to energy
efficiency measures and integration of behind-the-meter generation, with a further notable increase in
overestimation following the onset of COVID-19 due to a change of habits during the pandemic in addition
to decarbonization initiatives in the State. This study emphasizes the need for adapting models to dynamic
consumption and weather patterns for improved grid management.

INDEX TERMS Energy demand, machine learning, weather stations, ISO New England, COVID-19,
Bayesian optimization.

I. INTRODUCTION
Energy is critical for economic, social, and technological
progress, but its consumption poses challenges for energy
security and climate change [1]. The energy transition is
eliminating the traditional distinctions between demand and
supply, primarily due to the increasing involvement of
prosumer resources [2]. Future renewable energy systems
need technologies like storage, demand-side management,

The associate editor coordinating the review of this manuscript and

approving it for publication was Ines Domingues .

and sector integration, including industry electrification,
to handle production fluctuations and decarbonize challeng-
ing sectors [3]. Climate change can make energy systems
vulnerable, impacting supply, demand, transportation, infras-
tructure, and the broader economy [4]. It significantly affects
energy demand by potentially altering the extent and intensity
of daily and seasonal heating and cooling needs and posing
considerable threats to infrastructure and communities [5].
This emphasized the need to accurately establish the corre-
lation between load and temperature [6]. The phenomenon
of urban heat island (UHI), and the increased frequency of
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extreme weather events such as heat waves due to climate
change have resulted in escalating demand for space cooling
energy consumption [7], [8].

Electricity demand is influenced by several critical factors,
including population, households, wealth, culture, climatic
circumstances, economic variables [9], [10], system oper-
ators, and market participants [6]. Given the anticipated
increase in demand in the forthcoming period, it is essen-
tial to establish a correlation between prospective demand
changes and the required generation and network capacity
from a system planning perspective [11]. The prediction of
electricity demand holds significant importance in facilitat-
ing the planning and operation of power systems, and for
the development of production, distribution, and transmis-
sion facilities [12]. Energy system reliability requires careful
planning and forecasting, with accurate short-term fore-
casts essential for optimal unit commitment, and long-term
forecasts necessary for facilitating capacity planning and pro-
moting adequate provision of transmission and generation
resources for future demand [13].

Electricity demand is subject to considerable influence
from climatic conditions [11], [14], which account for a sig-
nificant portion of its intra-annual fluctuations [14], leading
to expected alterations in demand patterns [11]. Addition-
ally, electricity consumption patterns vary geographically,
with some areas in the southern U.S. experiencing win-
ter peak demand due to electric heating usage, unlike the
typical summer peak in the USA [15]. Given a potential
rise in the occurrence of extreme events and alterations
in weather variables per climate projections, it is worth-
while to conduct a detailed investigation into the impact of
weather-related conditions on energy demand [16]. Accord-
ing to Mirasgedis et al. [17], the factors that affect electricity
demand are ranked in descending order of significance as
follows: temperature, humidity, wind, rainfall, and cloud
cover [16]. Cassarino et al. [9] employed temperature, wind
speed, and solar irradiance variables to examine the influence
of both social and meteorological factors on historical energy
demand in Europe. The Hotmaps Project [18] provides esti-
mations of daily cooling and heating demand for 28 European
countries, employing temperature as the sole meteorological
input. Conversely, When2Heat [19] offers hourly heating
profiles for 16 European countries by incorporating both
temperature and a wind speed as input variables [20].
The primary driving force for load forecasting has been

identified as temperature [6], [21], and a strong negative
correlation is found to exist in winter, and a positive in
summer between demand and temperature [10], [21], [22].
During the winter season, a noticeable demand for lighting
and heating occurs simultaneously with decreasing tempera-
tures. On the contrary, during the summer season, the usage
of electrical heating systems is typically non-existent, but
the warm climatic conditions can result in an increased
demand for refrigeration, fans, and air conditioning (AC) ser-
vices [21], [23], [24]. Wind speed affects electricity demand
through electrical heating and cools the wet exterior walls of

buildings [21]. The study by MacMackin et al. [13] high-
lighted the significant impact of weather as a vital deter-
minant of both daily and seasonal fluctuations in electricity
demand, and the absence of comprehensive data on end-use
consumption for space cooling and heating poses an impor-
tant challenge in accurately predicting the impact of weather
on electricity demand. Various heating and cooling technolo-
gies are used across diverse geographic regions, and when a
nation uses electricity for cooling and/or heating, even a slight
fluctuation in temperature can result in significant variations
in the electricity demand [6].
Diurnal load patterns are influenced by human activities,

which take place in domestic and occupational settings and
during leisure hours. Holidays tend to decrease activity lev-
els in non-domestic sectors [9]. During weekends, the load
demand experiences a substantial decline [22], [25] owing
to the decrease in economic activities during this time [22].
Giannakopoulos & Psiloglou [22] analyzed energy demand
in Athens, Greece, and its correlation with temperature. The
midday peak in daily variability is caused by intense elec-
tricity use for household and business needs, and the second
peak is caused by extra lighting and temperature control in the
late afternoon and early evening. July has higher workdays,
and January has higher weekends consumption. AC usage
drops on weekends in July as people leave offices for cooler
outdoor settings. In January, individuals stay indoors on
weekends, leading to higher energy use. Another study by
Psiloglou et al. [26] compared electricity demand and air
temperature in Athens, Greece, and London, UK. Electricity
demand peaks in winter for both cities, with a second peak in
summer only in Athens. Cities have lower electricity demand
on holidays and weekends, particularly on Sundays and dur-
ing the summer. They observed that electricity demand in
Athens peaks twice, at midday and in the evening, while in
London, it stays high during office hours. Yukseltan et al. [27]
examined electricity consumption in Turkey by developing a
regression model using harmonics of daily, weekly, and sea-
sonal patterns. The electricity demand on an hourly basis was
projected for both a 1-week and 1-day period, achieving a 3%
mean absolute percentage error (MAPE) [27]. Contu et al. [6]
explored temperature-related changes in electricity demand
in Italy with a proposed approach customizable by geography
and time, and the results illustrate that sensitivity coefficients
vary by Italian region, and the reasons are linked to domestic
demand such as building climate and technology. Dahl. et al.
[28] used meteorological data and untraditional data like
school holidays to analyze heat load forecasting by using
three different machine learning models, namely the ordinary
least squares (OLS), multilayer perceptron (MLP), and sup-
port vector regression (SVR) models, in Aarhus, Denmark.
Model results showed the value of incorporating local holiday
data for better forecasting accuracy, and the best forecast
performance is achieved with SVR on weather, calendar, and
holiday data, resulting in a mean percentage error (MAPE) of
6.4%. Brubacher and Wilson [29] considered the impact of
irregular holidays on electricity demand within their model

VOLUME 12, 2024 31825



B. Sahin et al.: Predicting Energy Demand Using Machine Learning

for hourly electricity consumption. To address the absence of
data for holidays, they employed an interpolation technique
by estimating the demand during the periods immediately
preceding and following the holiday.

A study analyzed the meteorological variations in monthly
electricity demand of Italy using a multiple linear regression
model considering temperature, wind speed, relative humid-
ity, cloud cover, and calendar effect factors [16]. A regression
model by MacMackin et al. [13] predicted the influence of
weather on electricity demand across sectors within Ontario,
Canada. The demand was segmented into base, heating, and
cooling categories within the model. Residential and com-
mercial sector models fit well but came across challenges in
effectively capturing cooling demand. Allen et al. [5] demon-
strated the importance of accurate predictions of electricity
demand for adaptation planning in the U.S. in a changing cli-
mate. An analysis established that higher temperatures over
the next 40 years will have the greatest impact on electricity
demand in areas with small populations, causing stress during
peak demand. Fonseca et al. [15] examined the impact of
climate change on hourly electricity demand patterns, season
variations, and power system operations by using a regression
model, an economic dispatch model, and twenty different
climate projections. Hekkenberg et al. [24] explored elec-
tricity demand in the Netherlands, focusing on changes with
increased cooling applications, and results showed signifi-
cant temperature dependence in May, June, September, and
October during summer holidays from 1997-2007. This trend
has led to a 0.5% increase in electricity demand per degree
of temperature difference during the summer. Three models
were created by Zhang et al. [25] using linear regression,
random forest, and gradient boosting with the solar capacity
to predict hourly demand in southern California 24 hours
prior, and findings displayed that models were more accurate
with lower loads (morning, night, and winter), and models
had larger errors during midday and summer with higher
loads.

Several studies have examined the energy demand patterns
after the year 2019, with a particular emphasis on pre-and
post-COVID-19. COVID-19 rapidly shifted billions of peo-
ple worldwide to working and learning from home [30].
Overall, there has been a decline in energy demand, but
variations in energy use still exist. Despite the decrease
in economic activity, the power grid continues to maintain
its reliability [31]. Energy intensity has shifted noticeably,
with COVID-19 mitigation efforts playing a non-negligible
role in stabilizing energy demand, while regional energy
recovery exhibits substantial disparities. The COVID-19
pandemic-induced shutdowns have had a considerable impact
on the electricity demand levels in Europe, at both daily and
weekly time scales [32]. Agdas and Barooah [31] analyzed
electricity data in California, Florida, and New York, and
found pandemic effects on electricity demand and grid stress
vary regionally. Some stress indicators showed increases,
decreases, or no clear difference. Jiang et al. [33] analyzed

COVID-19’s impact on energy demand, emphasizing chal-
lenges and opportunities, and the study highlighted the need
to identify post-pandemic energy opportunities for increased
efficiency. A study on COVID-19’s impact on Ontario’s
energy sectors demonstrated that electricity demand in the
province decreased by 14% due to the pandemic [34].
Wu et al. [35] analyzed data to predict half-hourly electricity
demand in Victoria, and their model distinguished lockdown
and non-restrictive periods, and revealed influential demand
patterns during the intermittent lockdown. Baker et al. [36]
examined COVID-19’s impact on power usage in two U.S.
states using diverse machine-learning algorithms. The study
underscores the need for additional research and the appli-
cation of algorithmic groups to understand electric power
demand trends during uncertain events.

Correctly predicting energy demand has important impli-
cations for energy costs and security. For system operators
and electric utilities to deliver electricity to their customers
at any time, enough power should be generated. The grid
is constantly in a delicate balance between over-generation
and wasting energy, and under-generation and the risk of
blackouts. With the ongoing trend of electrification in vari-
ous sectors, the aging infrastructure is poised for significant
challenges. This transition is marked by a dual impact, with
increasing demand driven by such as the adoption of elec-
tric vehicles and a simultaneous decrease in demand due
to the incorporation of renewable resources, such as solar
photovoltaics (PVs), into the energy framework. The study
is motivated by the essential need for accurate hourly energy
demand prediction in Connecticut to enhance grid man-
agement. This is necessary for effective grid management,
ensuring a stable and reliable electricity supply. Also, we aim
to capture dynamic consumption patterns, including demand
variations during workdays, and weekends, and the impact
of the COVID-19 pandemic. Our motivation is to provide
robust machine learning models that can handle dynamic
consumption and weather patterns for effective energy man-
agement. The goal of this study is to develop models for
predicting hourly energy demand in Connecticut (CT), using
eight airport weather stations’ data from the Automated Sur-
face Observing System (ASOS), and demand data from ISO
New England (ISO-NE). To achieve this goal, three distinct
machine learning algorithms, namely multivariate polyno-
mial regression (MPR), random forest regression (RFR),
and gradient boosting regression (GBR) models, were con-
structed and evaluated using the period from 2011 to 2021.
In this study, we performed a comprehensive analysis, consid-
ering baseline (bl), weather influence (wx), and time-weather
interactions (twx) across all days of the week (all), workdays
(wd), and weekends (wknd) for each hour of the day using
the three machine learning algorithms:MPR, RFR, and GBR.
This study addresses three research questions: (1) How does
energy demand vary on an hourly, daily, monthly, and yearly
basis? (2) How do trends in energy demand change between
workdays and weekends, and what is the best setting for
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FIGURE 1. Illustration of the nine model experiments for each of the three machine learning algorithms (MPR, RFR, GBM) for each hour of the day in
the study (resulting in 27 white dots on the bottom). Each of the three machine learning algorithms was fitted with varying time or weather
configurations (bl, wx, twx) for different days of the week (all, wd, wknd) for each hour of the day. In general, the best-performing model experiments
were the GBR for the ‘twx’ configuration segmented into workday (‘wd’) and weekend (‘wknd’) variations.

modeling these trends? (3) How does energy demand vary
before and during the COVID-19 pandemic? The novelty of
this work consists of the error analysis that was performed
to assess the impact of COVID-19 on the performance of
models trained with pre-pandemic data. We provide valuable
insights from bias analysis, discovering variations in predic-
tive accuracy across different months. Moreover, we studied
temporal and weather-related demand patterns through a
multi-model comparison for each hour of the day. Through
the development of robust prediction models, this research
contributes to the resilience and adaptability of the energy
grid. Also, we recognize the need for accurate hourly energy
demand prediction as a critical aspect of grid management,
considering the outgoing trends of electrification and the
incorporation of renewable resources.

II. STUDY AREA AND DATA
Connecticut (CT) has a population of approximately
3.62 million as of 2023 [37]. During the period spanning
from 2010 to 2021, the state experienced a population growth
rate of nearly 0.8%. In contrast, the population of the United
States experienced a growth rate of 7.3% over the same period
(during the 11 years) [38]. In 2022, the state’s population
growth rate was 0.08%, while the country experienced a
growth rate of 0.38% [39]. Based on an examination of
available data, it can be inferred that the growth rate in the
state of CT is lower than that of other regions, leading to the
exclusion of the population from consideration in the present
study.

Generally, annual variations in wholesale electricity load
are driven by temperature fluctuations [40], [41]. However,
wholesale electricity demand in the New England region
(comprising six states in the Northeastern United States:
Connecticut, Maine, Massachusetts, New Hampshire, Rhode
Island, and Vermont), also known as Net Energy Load
(NEL) [42], has demonstrated a decline in recent years,

TABLE 1. Milestones for connecticut decarbonization initiative [43].

primarily attributed to the influence of state policies encour-
aging the implementation of energy efficiency measures and
the increase in behind-the-meter generation [40], [41], [42].
Nevertheless, load levels are anticipated to experience a
notable increase in the upcoming decade due to the electri-
fication of both the heating and transportation sectors [42].
CT has introduced policies for enhancing energy efficiency
and renewable energy. Table 1 outlines the state’s plan for
decarbonization. Also, the state has two electricity demand
forecasts: (i) Base case – Continuing existing consumption
trends based on ISO-NE capacity, Energy, Loads, and Trans-
mission (CELT) Forecast, and (ii) High Electrification Case
– Anticipating rapid electric vehicle and building heating
adoption [43].
Connecticut is on the east coast of North America, with

cold winters and hot summers, its coastal areas have warmer
and longer frost-free seasons than inland areas [44]. The study
employed the use of hourly air temperature (C◦) and wind
speed (mph) as weather variables obtained from eight specific
airport weather stations in CT through the Automated Sur-
face Observing System (ASOS) network between the years
2011 and 2021. ASOS is the premier automated observ-
ing network, and ASOS stations at airports provide critical
weather observations for the National Weather Services
(NWS), the Department of Defense (DOD), and the Federal
AviationAdministration (FAA) [45]. The hourly demand data
used in this study was obtained from ISO New England
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(ISO-NE) for the period spanning from 2011 to 2021, with
units of measure expressed in megawatts (MW) [46]. The
missing values in the weather and demand dataset were
addressed using both forward and backward imputation
methodologies.

III. METHODOLOGY
MPR, RFR, and GBR models were developed by using
the period from 2011 to 2017 for training and testing pur-
poses, 2018 to 2019 for pre-COVID-19 validation (val1), and
2020 to 2021 for post-COVID-19 validation (val2) for the
data period of 2011 to 2021. To split the data for the analysis,
a test size of 20% was selected and a fixed random state was
used in all processing steps.

In the context of MPR, RFR, and GBR machine learning
algorithms, a comprehensive analysis was performed consid-
ering three different model configurations for each machine
learning algorithm: baseline (bl), weather influence (wx),
and time-weather interactions (twx). The initial analysis was
conducted for all days (all) of the week, and this involved
the creation of one model variation for each hour of the day.
Additionally, the dataset was partitioned into two subsets,
namely workdays (wd) and weekends (wknd) variations to
examine the changes in demand during these distinct periods.
Therefore, three model variations (all, wd, wknd) for each
hour of the day were generated for a configuration. There is
a total of three different model configurations (bl, wx, twx)
for a machine learning algorithm. Thus, nine different model
experiments from different combinations of configurations
(bl, wx, twx) and variations (all, wd, wknd) were created for
a machine learning algorithm for each hour of the day. Con-
sequently, nine different model experiments (such as exper-
iments for MPR machine learning algorithm: MPR_bl_all,
MPR_bl_wd, MPR_bl_wknd, MPR_wx_all, MPR_wx_wd,
MPR_wx_wknd, MPR_twx_all, MPR_twx_wd, MPR_twx_
wknd) were created for each machine learning algorithm for
each hour of the day (Figure 1).

A. BAYESIAN OPTIMIZATION
Bayesian optimization constitutes a category of machine
learning-based optimization techniques [47] and it stands as
a powerful strategy for locating extreme values of objective
functions [48]. Bayesian optimization efficiently identifies
optimal values with minimal sampling, making it suitable for
hyperparameter tuning of machine learning algorithms [49].

Hyperparameters play a vital role in machine learning
algorithms as they directly control training algorithm behav-
iors and significantly impact the performance of machine
learning models [49], [50], [51]. The efficacy of con-
temporary machine learning and data mining techniques
is profoundly influenced by the appropriate configura-
tion of their hyperparameters [51]. Optimizing hyperpa-
rameters is key for robust performance in non-parametric
models, surpassing default settings’ efficacy in machine
learning [52].

B. MODELS
1) BASELINE MODEL (TEMPORAL FEATURES ONLY)
A baseline model can be defined as a simplistic approach
that yields satisfactory outcomes in a given task and does not
demand extensive expertise and time for its construction [53].
A baseline model is a basic reference in machine learning
projects, and its main function is to provide context for trained
model results [54]. The employment of a baseline model for
machine learning has several advantages such as the ability
to compare the performance of the actual model against a
reasonable benchmark [55].
Within this study, simple baseline models were estab-

lished for MPR, RFR, and GBR algorithms using solely
the ‘‘day of year’’ and ‘‘hour’’ variables as input features,
to include the intraday and seasonal variations of annual
demand, without providing any weather information to the
models. For example, the names of the baseline models for
the MPR algorithm include ‘MPR_bl_all’’, ‘‘MPR_bl_wd’’
and MPR_bl_wknd’’, and similar baseline models exist for
RFR and GBR algorithms.

2) MULTIVARIATE POLYNOMIAL REGRESSION MODEL
Polynomial regression is an instance of linear regression that
characterizes the association between the input variable x and
the output variable y as a polynomial equation. Polynomial
regression is employed specifically in cases where dependent
variables show a non-linear relationship, signified by a scatter
plot displaying a non-linear or curvilinear pattern [56], [57].
It fits the curve using a polynomial equation for maximum
accuracy while avoiding over-fit or under-fit [58]. One of the
primary advantages of the MPR model lies in its minimal
computational time required for conducting forecasting while
maintaining a considerable level of precision [59]. The main
problemswithMPR aremulticollinearity and the limited con-
tribution of higher degree terms to the equation [57]. A second
order-multiple polynomial regression model which used two
variables x1 and x2 can be mathematically represented by the
following general equation (1):

y = β0 + β1x1 + β2x2 + β11x21 + β22x22 + β12x1x2 + ε

(1)

where,
β1 and β2 are denoted as linear effect parameters.
β11 and β22 are referred to as quadratic effect parameters.
β12 is stated as an interaction effect parameter.
ε is the error function.
In the study, MPR was conducted employing the Linear-

Regression module for regression analysis and the Polyno-
mialFeatures module to generate polynomial features from
the scikit-learn Python library. A polynomial order of three
was chosen to generate polynomial features. To decrease the
dataset dimensionality while retaining a significant amount
of variability [60], principal component analysis (PCA) was
performed with a component selection of two.
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3) RANDOM FOREST REGRESSION MODEL
Random forest (RF) is a regression approach that integrates
the capabilities of multiple decision trees (DT) algorithms
to forecast or classify the value of the variable [61]. RF is
a nonparametric data mining method that captures the non-
linear structure of the dataset. This model typically shows a
prominent level of predictive accuracy and exhibits sufficient
resilience to outliers [25], [61], [62]. The RF method over-
comes the well-known limitations of single DT, namely the
absence of smoothness and the instability of splits [62], [63].
RF uses bagging to increase tree diversity and reduce model
variance [64]. The RFR method demonstrates robustness and
superior speed and prevents overfitting. The integration of
randomized decision trees leads to a decrease in prediction
variance and a decrease in generalization error [65].

A random forest exhibits randomness in two distinct man-
ners: firstly, each tree is constructed using a random subset
of the available observations, and secondly, every individual
partition within each tree is generated using a random subset
of candidate variables defined as ‘‘mtry’’ [66]. A technique is
an ensemble method that merges the predictions of individual
weak predictors, denoted as hi. Two principal parameters in
this context are the number of trees (represented as ntree)
and the number of variables (mtry) utilized for partitioning
at each node [67]. A regression predictor can be expressed
as (2):

Y = h(X ) =
1

ntree

ntree∑
i=1

hi (X) (2)

In this study, RFR was employed, using the scikit-learn
Python library with the RandomForestRegressor module.
Hyperparameter tuning was conducted using the Bayesian
optimization method with 100 iterations to identify the opti-
mal combination of hyperparameters that enhances model
performance. The parameters considered for optimization
included min_samples_leaf: (1, 50), min_samples_split: (2,
50), max_depth: (1, 5), and n_estimators: (10, 1000).

4) GRADIENT BOOSTING REGRESSION MODEL
Gradient boosting (GB) represents a machine-learning
methodology employed to resolve classification and regres-
sion problems. The principal concept underlying boosting is
to aggregate a collection of decision trees through an iterative
process to generate a robust learner [25], [63]. GB builds a
model by adding stages of weak prediction algorithms and
optimizing loss functions [65]. In every stage, a regression
tree is fitted to the negative gradient of the provided loss
function [68].
Within this study, boosting was conducted using the Gra-

dientBoostingRegressor (GBR) module from the scikit-learn
Python library. Bayesian optimization was employed
for hyperparameter turning with 100 iterations, involv-
ing the following parameters: min_samples_leaf: (1, 50),
min_samples_split: (2, 50), max_depth: (1, 5), n_estimators:
(10, 1000) and learning rate: (0.001, 1).

C. REGRESSION EVALUATION METRICS
MAE (Mean Absolute Error), equation (3), is a frequently
employed and valuable measure in model evaluation [69].
An analysis [70] reveals that MAE stands out as the most
suitable metric for capturing the average magnitude of errors.
MAE employs a comparable metric for receiving input data,
enabling the comparison of series composed of disparate
scales [71].

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (3)

where a given sample consisting of n observations denoted as
y (yi= 1, 2, . . . , n) and n relating model predictions ŷ [72],
[73].

Mean absolute percentage error (MAPE), equation (4),
is widely regarded as one of the most utilized metrics for
assessing the precision of forecasts [74] due to its intuitive
interpretation regarding relative error [75], and its simplic-
ity [76]. It measures the degree of discrepancy between
predicted and actual values [77]. MAPE is scalable and easy
to interpret. However, it is problematic when actual values are
zero or close to zero [74].

MAPE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣

yi
× 100% (4)

Root mean square error (RMSE), equation 5, has been
extensively used as a customary statistical measure to eval-
uate the performance of models in the fields of air quality,
meteorology, and climate research [69]. RMSE is the square
root of the MSE. The application of taking the root does not
alter the rankings of models but produces a metric with the
same unit y, representing the standard or typical error for
errors that follow a normal distribution [72]. RMSE exhibits
sensitivity to outliers and a high dependency on the fraction
of the data utilized, thereby indicating a limited level of
reliability [71].

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (5)

The R2 index holds significant importance in assessing the
precision of the predicted outcome of a regression algorithm,
with values ranging between 0 and 1 [78]. The definition of
R2 is formulated as follows (6):

R2 = 1 −

1
n

n∑
i=1

(
yi − ŷi

)2
1
n

n∑
i=1

(yi − ȳi)2
(6)

where ȳi represent the mean value of the actual value yi.
Bias measures the average difference between two

datasets. Negative values signify underestimation, posi-
tive values indicate overestimation and values approaching
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FIGURE 2. Error metric results of MPR, RFR, and GBR models across all days (all) with three different configurations (bl, wx, twx). In general, the GBR
model (maroon and lime green lines) outperforms the MPR and the RFR models. As a result, we focus on the GBR model with different input
configurations (bl, wx, twx) and sampling variation (all, wd, wknd) for the rest of the study.

zero indicate optimal performance [70]. Bias is defined as
follows (7):

Bias =
1
n

n∑
i=1

(yi − ŷi) (7)

IV. RESULTS AND DISCUSSION
A. ERROR ANALYSIS AND PATTERNS
In a broader context, Figure 2 illustrates a notable error
increase during the COVID-19 pandemic (Figures 2d, 2h,

2l, 2p, 2t), (Val2: 2020-2021), compared to the preceding
period (Figures 2c, 2g, 2k, 2o, 2s), (Val1: 2018-2019). For
instance, considering the MPR baseline model across all
days during a week (all) dataset, the MAE results indi-
cated a minimum value of approximately 290 MWh at 4:00
and a maximum value of about 625 MWh at 15:00 before
COVID-19 (Figure 2c) versus a minimum value of nearly
315 MWh and a maximum value of almost 720 MWh for
the same periods (Figure 2d). Additionally, the findings from
the error metric analyses highlight the efficacy of the GBR
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FIGURE 3. Error metric results of the GBR models across all days (all), workdays (wd), and weekends (wknd) dataset categories for three different
input configurations (bl, wx, twx). The maroon (‘GBR_twx_wknd’) and lime green (‘GBR_twx_wd’) lines are generally the best models. Each subpanel
shows the nine model experiments for each hour of the day.

and RFRmodels when compared to the MPRmodel through-
out the periods before and during the COVID-19 pandemic.
For example, when examining the results of the MPR base-
line model, the minimum MAPE value was approximately
0.11 and the maximum value reached about 0.18 before the
COVID-19 period (Figure 2g). Conversely, for the RFR and
GBR baseline models, the results demonstrated a minimum
MAPE value of 0.09 and a maximum value of 0.13 for the
same time intervals after the COVID-19 period (Figure 2h).
These results provide evidence supporting the effectiveness
of tree-based models (RFR, GBR) in accurately predicting

energy demand with heightened precision. Furthermore, the
most promising outcomes were evident in the context of
time-weather integrated analysis for MPR, RFR, and GBR
models. Both weather and time-weather models displayed
an approximate twofold improvement in error metric perfor-
mance when compared to the baseline model in the analysis.
As an illustration, considering the RMSE results for the GBR
baseline model, the values exhibited a minimum of approx-
imately 275 MWh at 3:00 whereas the GBR time-weather
model demonstrated a minimum value of nearly 135 MWh
for the same time (Figure 2k).
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Broadly, overestimation is evident in the models during the
validation periods (2018-2021). We believe the overestima-
tion can be linked to the increase in the adoption of energy
efficiency and solar photovoltaics in the state in recent years.
Connecticut has implemented policies aimed at increasing
both energy efficiency and the utilization of renewable energy
sources [43]. Generally, the models exhibited their highest
correlation within the period spanning from 00:00 to 4:00
and their lowest between 7:00 and 11:00 (Figures 2o, 2p).
The diurnal pattern of error metrics revealed that the lowest
levels were consistently observed between 2:00 and 4:00,
a phenomenon attributed to the low energy consumption
associated with sleeping hours during that period, resulting in
less error on model predictions (Figures 2s, 2t). Conversely,
the highest error levels were consistently recorded between
10:00 and 13:00, likely corresponding to active periods such
as office work or household tasks, where energy consumption
is high, thereby resulting in increased prediction error. Before
the initiation of the COVID-19 pandemic, the initial peak in
error metrics (Figures 2c, 2g, 2k), occurring between 06:00
and 08:00, can be attributed to the awakening hours. During
this time, activities such as turning on lights, taking showers,
and preparing breakfast, if at home, or upon arriving at the
office, turning on lightning and computers, are commonplace.
However, during the pandemic, this peak shifted to the period
of 08:00 to 10:00 (Figures 2d, 2h, 2l). The second peak
in error metrics, observed at approximately the same time
frame range, persisted both before and after the COVID-19
period, specifically between 13:00 and 16:00. The third
peak occurring between 17:00-19:00 can be attributed to
the phenomenon of individuals returning home after work
and initiating domestic responsibilities. This encompasses
actions such as activating lighting, engaging air conditioning
systems during the warmer months, or activating electric
heaters in colder seasons. Conversely, in the periods coin-
ciding with the occurrence of the pandemic and its outcome,
a distinct secondary peak between 19:00 and 21:00 emerged,
a consequence of the lockdown measures imposed during
the pandemic. This new peak can be attributed to activities
including the initiation of lighting systems or cooking, among
other domestic activities.

The findings presented in Figure 2 demonstrated that the
GBR model exhibited better performance compared to the
MPR and RFR models. Since the GBR model performed
better than the other models, we focused our results on the
performance of the GBR model across all days, workdays,
and weekends variations for the rest of the study. In gen-
eral, the error metric results from the GBR model worsened
during the COVID-19 pandemic (Figures 3d, 3h, 3l, 3p, 3t),
Val2 (2020-2021), when compared to the preceding period
(Figures 3c, 3g, 3k, 3o, 3s), Val1 (2018-2019). For exam-
ple, when examining the GBR baseline model across all
datasets, the MAE outcomes showed an approximate value
of 450 MWh at 13:00 before the advent of the COVID-19
pandemic (Figure 3c). However, following the pandemic, this
value underwent a notable shift, reaching nearly 570 MWh

at the same time (Figure 3d). Additionally, weather and
time-weather GBR models performed better when training
was performed separately on the workdays and weekends
than on all days, and better error performance was observed
for the weekends than the workdays for both before and
after COVID-19, highlighting the benefits of homogenous
data training (Figure 3). However, a discernible shift in this
trend was observed for the baseline-based model after the
onset of the COVID-19 pandemic, and better error perfor-
mance was seen for all datasets than the workdays while the
weekends maintained the best error performance consistent
with the pre-pandemic period. For instance, examining the
RMSE outcomes of the baseline-based model at 20:00, the
error measures were approximately 455 MWh for all datasets
and nearly 435 MWh for the workday datasets before the
COVID-19 pandemic (Figure 3k). Nevertheless, the RMSE
results demonstrated nearly 555 MWh for all datasets, and
approximately 575 MWh for the workdays for the same
time after COVID-19 (Figure 3l). Also, our MAPE results
demonstrate an average testing error between 3% and 5% for
the best-performing and recommended models. These values
are in line with the ones obtained by Alhendi et al. [79].

B. ACTUAL AND PREDICTED DEMAND
Scatter plots between actual and predicted demand for GBR
models at six-hour intervals during the pre-(Val1: 2018-2019)
and post-(Val2: 2020-2021) COVID-19 periods demonstrated
an improvement in predictive capability, specifically in the
transition from baseline models to time-weather-based mod-
els (Figure 4). Figure 4 contains error metrics in the bottom
right corner of each subplot. The inclusion of time-weather
parameters substantially enhanced the predictive capability
of the model compared to other modeling approaches. For
example, when analyzing Figure 4 by column, we notice
MAPE (R2) generally decreased (increased) as more features
were included in the model. Bias has a less obvious pat-
tern in this analysis but will be discussed in more detail in
Section IV-C (‘‘Time Series Analysis’’).
Overall, the shift from baseline models to time-weather

models demonstrated a consistent reduction in MAPE, and
an improvement in R2 while bias conversely displayed over-
estimation after the COVID-19 pandemic. This indicates that
a model trained only on time-dependent has a substantial
increase in bias following the onset of COVID-19, and the
model is overestimating because of individuals changing
daily habits during the pandemic.

Furthermore, the model results demonstrate an ability to
predict distinct patterns of energy utilization throughout the
day. In general, the early morning and late evening hours
(5:00 and 23:00) were predicted to be better than peak activ-
ity periods (11:00 and 17:00). The reason is likely because
energy usage is minimal during early morning (5:00) and late
evening (23:00) owing to limited activity in both work and
household tasks. Conversely, the hours of 11:00 and 17:00,
representative of peak activity periods, exhibited higher val-
ues of MAPE and bias and lower R2 due to higher energy
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FIGURE 4. Pre (2018-2019) and Post (2020-2021) COVID-19 actual and predicted demand for the GBR model experiments across all days (all) for three
different configurations (bl, wx, twx) in 6-hour intervals.

utilization. Specifically, at 11:00 (Figure 4j), the MAPE was
recorded as 0.10, R2 as 0.49, and bias as 317.05 which was

poor performance compared to other hours of the day for the
same configuration (Figures 4i and 4l.)
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FIGURE 5. Time series analysis of actual (blue) versus predicted (orange) hourly demand for the GBR_twx_all model experiment for January, April, July,
and October before (2018) and after (2020) the onset of COVID-19.

C. TIME SERIES ANALYSIS
The results obtained from the time series analysis presented
in Figure 5 provide details of the time-weather GBR model

experiment for all days (GBR_twx_all) in predicting hourly
energy demand across various seasons, both before (2018)
and after (2020) the advent of the COVID-19 pandemic.
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FIGURE 6. Bias results of time series analysis of actual versus predicted hourly demand for the GBR_twx_all model experiment for January, April,
July, and October before (2018) and after (2020) the onset of COVID-19.

In 2018, the New England region experienced its initial
annual escalation in the average wholesale electricity load
since 2013 which showed growth of 1.7% compared to

the average of 2017. Nevertheless, when adjusting for the
weather variations, the load demonstrated relative stability
and even exhibited a marginal decline of 0.1% [41]. In 2020,
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New England saw a record-low wholesale electricity load
dropping by 2.3%. When normalized for weather, the reduc-
tion was 2.4% compared to 2019. The decline is attributed
to energy efficiency, solar generation, and the impact of
COVID-19 [42].

January was selected to represent the coldest month during
winter in Connecticut, while July was chosen to signify the
warmest month of the summer season. Additionally, April
and October were selected to exemplify the transitional cli-
mate conditions representing the Spring and Fall seasons,
respectively. The findings revealed that July (Figures 5e, 5f)
exhibited elevated energy consumption compared to other
months, a trend mostly attributed to raised temperatures dur-
ing the summer season necessitating increased usage of air
conditioning (AC) systems and cooling equipment. These
findings are in line with a study carried out in the New
England region [80] which shows the summertime demon-
strated a slightly elevated level of overall energy consumption
compared to other seasons throughout the year. Air condi-
tioning is a significant contributor to energy consumption
during the warmer months as it is used to maintain com-
fortable indoor temperatures. Conversely, January, the coldest
month in Connecticut, demonstrated lower energy utilization
compared to July. This discrepancy can be attributed to the
fact that AC systems operate on electricity, whereas heat-
ing systems during the winter months to maintain indoor
warmth depend on multiple energy sources, including coal,
natural gas, and electricity. Consequently, forecasting energy
usage during the winter season presents greater complexity
due to the complex nature of heating mechanisms. On the
other hand, the transitional climate conditions which can be
found in April (Figures 5c, 5d) and October (Figures 5g, 5h)
resulted in lower energy demand. These months mark the
transition betweenwinter and summer, creating a comfortable
environment that necessitates less energy for temperature
control, ultimately leading to a decrease in overall energy
consumption.

Bias results of time series analysis of actual versus
predicted hourly demand for the GBR_twx_all model exper-
iment in Figure 6 showed distinctive predictive performance
across various months both in pre- (Figures 6a, 6c, 6e,
6g) and post (Figures 6b, 6d, 6f, 6h) COVID-19 periods.
The model exhibited a superior predictive capacity dur-
ing January and achieved its best performance (Figure 6a)
while the second-best bias result was observed in July
(Figure 6e). According to the 2018 ISO-NE Annual Markets
Report [40], quarters Q1 (January, February, March) and Q3
(July, August, September) experienced a measurable load
increase in 2018 compared to 2017. Q1 saw a 0.9% rise due
to a colder January (26◦F vs. 33◦F in January 2017). Q3
showed an 8% load increase linked to a 3◦F rise in average
temperature in the hot and humid July of 2018 where the
daily high-temperature humidity index (THI) averaged 75◦F,
the highest level observed from 2014 to 2018. The hot and
humid Q3 significantly impacted peak load, with nearly all

top 5% peak load hours occurring then due to heightened
air conditioning demand [40]. Conversely, a discernible and
systematic trend of overestimation in predicting actual values
was observed for all months (Figure 6b, 6d, 6f, 6h) in the
post-COVID-19 era. This can be related to the increased
use of energy efficiency technologies and behind-the-meter
solar generation in Connecticut in recent years. This observed
overestimation signifies the model’s challenge in accurately
estimating energy consumption after the pandemic.

Energy efficiency and behind-the-meter solar generation
exhibit distinct seasonal effects on wholesale load. Specifi-
cally, energy efficiency exerts a more substantial influence
during Q1 and Q4 (October, November, December), while
behind-the-meter solar generation demonstrates a greater
impact during Q2 (April, May, June) and Q3 [40], [41], [42].
After the pandemic period (2020), a better performance was
observed for July in comparison to the other months. The
improved predictions in July underscored the model’s adept-
ness in capturing the energy demand dynamics specific to this
period. In 2020, the average quarterly load decreased in all
quarters, except for Q3 when compared to the previous year.
During Q3, the average temperature was 71.2◦F, representing
a slight decrease from the 2018 average of 72◦F. Specifically,
in Q1, a year-over-year decline of 6% in the average load was
observed, attributed to warmer temperatures [41].

In response to the COVID-19 pandemic in the US,
a sequence of lockdown measures aimed at mitigating
the pandemic’s spread was introduced in March and sus-
tained until July 2020 [81] and, Connecticut concluded
its COVID-19 restrictions in May [82]. According to the
ISO-NE 2018 Annual Report, average loads declined in Q2
and Q4 of 2018 on a year-over-year basis [40]. As per
the ISO-NE 2020 Annual Report, statewide closures imple-
mented in March 2020 to combat the spread of COVID-19
led to a general reduction in electricity demand persisting
into Q2 with a 1.5% decrease in quarterly average load due
to warmer weather and increased air-conditioning demand
resulting from the pandemic, prompting a greater reliance on
less efficient residential systems as many people stayed at
home. Lastly, the average load in Q4 decreased by 2.6% year-
over-year, primarily due to milder weather conditions [41].
Within our analysis, April exclusively signified the dura-
tion of the lockdown implemented during the COVID-19
pandemic. The average bias in April showed a remarkable
disparity between the pre-COVID-19 period in 2018, where
it was recorded at 170.97 (Figure 6c), and the subsequent era
during the COVID-19 pandemic in 2020, particularly during
the lockdown period when the average bias escalated signifi-
cantly to 387.57 (Figure 6d). This observed overestimation
highlights the model’s challenge in accurately estimating
energy consumption during this month after the pandemic.
This disparity can be attributed to alterations in a range
of factors including consumption patterns, shifts in energy
usage patterns, altered economic conditions, and variations
in societal activities. These underscore the necessity for
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recalibrating the modeling or sampling approach to account
for the evolving dynamics of energy demand after impactful
events, such as the COVID-19 pandemic. Conversely, in the
context of monthly time series bias analysis for October in
2018 (Figure 6g), the bias outcome was indicated as 109.89,
whereas in 2020 (Figure 6h), it escalated to 303.66. These
results show that October exhibited a pattern closely resem-
bling that of April both before and after the onset of the
COVID-19 pandemic. April and October represent substan-
tial seasonal transitions, moving fromwinter to spring (April)
or from summer to fall (October). These transitions bring
about considerable variations in weather conditions leading
to increased unpredictability and bias in the model. Further-
more, these results emphasize the importance of considering
seasonality, external influences, and other potential anoma-
lies when constructing and refining prediction models for
distinct time frames and months throughout the year.

V. CONCLUSION AND FUTURE WORKS
This study aimed to develop energy demand prediction mod-
els and compare three different machine learning algorithms
(MPR, RFR, GBR) to assess their accuracy in predicting
energy demand in Connecticut. The findings from this study
shed light on several important aspects of energy demand
prediction, particularly in the context of the pre (2018-2019)
and post (2020-2021) COVID-19 periods.

In a broader context, error metrics for the MPR, RFR,
and GBR models showed a significant decrease in perfor-
mance during the COVID-19 pandemic compared to the
pre-pandemic period. Error metrics analysis for all models
highlighted that the GBRmodel exhibited better performance
than the MPR and RFR models. These findings align with
the research conducted by Zhang et al. [25], which demon-
strated the overall superiority of the gradient boosting (GB)
model in comparison to the multiple linear regression (MLR)
and random forest (RF) models. Moreover, superior results
were observed in the time-weather integrated analysis for all
models, displaying approximately a twofold improvement in
error metric performance and emphasizing the importance of
considering weather conditions and time factors in energy
demand prediction compared to the baseline model. The
models demonstrated an accurate representation of consump-
tion patterns during the day, with peak demand observed
during active periods and lower energy demand during the
early morning and late evening. Additionally, the GBRmodel
results showed that the model performed better on weekends
compared to workdays before and after COVID-19.

The time series analysis for pre- and post-COVID-19 pro-
vided insights into the seasonal variations in energy demand,
with July exhibiting the highest energy consumption due to
elevated temperatures and increased use of air conditioning
systems. Conversely, January’s lower energy use was influ-
enced by diverse heating sources. Transitional months, like
April and October, saw reduced demand due to mild weather.
Furthermore, energy efficiency measures and the integration

of behind-the-meter generation significantly influenced the
distinctive pattern of energy demand observed across differ-
ent months [40], [41], [42]. The time series analysis bias
results indicated that January had the highest predictive
accuracy, followed by July before the pandemic, and post-
pandemic, July showed the best performance among other
months. Overall, overestimation was noticeable in the models
in the validation periods (2018-2021). Specifically, a sys-
tematic trend of overestimation was observed for all models
after COVID-19 (2020-2021). These findings underscore the
need for model recalibration to account for evolving demand
dynamics after significant events such as the pandemic and
highlight the importance of considering seasonality and exter-
nal influences such as decarbonization initiatives [43] in
forecasting models.

Our main contributions:
• We introduced a novel integration of machine learning
algorithms (MPR, RFR, and GBR) to predict hourly
energy demand. This combination is aimed at captur-
ing diverse patterns of consumption, especially during
dynamic events like the COVID-19 pandemic.

• We conducted and evaluated nine different model exper-
iments for each hour of the day for each machine learn-
ing algorithm, considering variations between workdays
and weekends. This comprehensive approach aims to
provide a detailed understanding of energy demand
patterns.

• Our study examines the impact of external factors, such
as the COVID-19 pandemic, on model performance.
This analysis contributes to understanding how unfore-
seen events can shape energy prediction models.

• Emphasizing the significance of incorporating both
time and weather features, our study demonstrated a
significant improvement in error metrics. This contribu-
tion highlights the importance of considering external
variables for improved accuracy in energy demand
predictions.

• We provided valuable insights from bias analysis,
discovering variations in predictive accuracy across dif-
ferent months. This contributes to understanding the
patterns that changewith the seasons and how they affect
energy demand.

As a result, this study contributes to energy demand pre-
diction by underscoring the effectiveness of time-weather
models, particularly the GBR model, in improving predic-
tive accuracy. In general, the GBR model exhibited superior
performance under the time and weather configuration when
segmented into workdays and weekends rather than all days.
Therefore, we suggest employing the GBR model, incorpo-
rating both temporal and weather features, and segmenting
the analysis based on day types. On weekends, the models
should be trained with weekend data alone, and the same is
valid for workdays. The study emphasized significant shifts
in error metrics during the COVID-19 pandemic, displaying
the impact of this global event on energy demand prediction
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models and the increase in adoption of decarbonization
technologies in the state in the last few years that significantly
affected predictive accuracy. This work highlights the need
for adapting models to dynamic consumption and weather
patterns for improved grid management.

Future research directions and improvements can be sum-
marized as follows:

• Investigating diverse machine learning algorithms for
improving modeling precision.

• Evaluating variable importance by incorporating addi-
tional meteorological parameters into the model.

• Enhancing model robustness and predictive accuracy
through exploring variable data sampling methodolo-
gies, data scaling techniques, and strategic arrangement
of hyperparameter values.

• Exploring variable sampling methodologies to improve
predictive accuracy and robustness.

• Assessing model generalizability for post-COVID-19
energy demand dynamics.

• Conducting in-depth sectoral analysis to discern
sector-specific energy consumption patterns.

• Investigating technology adoption trends such as solar
PVs, and EVs, and their impact on energy demand for
future modeling enhancements.
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