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ABSTRACT Automotive radar systems face challenges in generating high-resolution images that are
essential for advancing autonomous driving technology. One promising solution to improve the angle
resolution of radar images is the synthetic aperture radar (SAR) technique. However, achieving satisfactory
SAR images involves overcoming difficulties such as high computational burden and accurate platform
location determination. To address these challenges, we propose an innovative approach that integrates
SAR imaging with digital beamforming (DBF) and multiple input multiple output (MIMO) techniques.
The proposed approach significantly reduces the computational time required for SAR image formation
and demonstrates superior phase error suppression compared to conventional methods. Our implemented
algorithm reduces the number of radar samples and imaging complexity by up to a factor of 10 without
compromising resolution and image quality. Furthermore, our proposed angle variant phase correction
method can be used in challenging automotive scenarios to efficientlymitigate the effects of platform position
inaccuracies and undesirable motions. Through simulations and practical experiments, we present promising
results to highlight the advantages of combining real and synthetic apertures for radar imaging and phase
error correction.

INDEX TERMS Automotive applications, beamforming, MIMO, phase error, radar imaging, synthetic
aperture radar.

I. INTRODUCTION
Digital signal processing advancements have revolutionized
radar systems by making them more powerful, compact,
and cost-effective [1]. The upcoming generation of radar
sensors is expected to produce high-resolution images for
autonomous driving [2], [3], [4], [5]. However, the low
angular resolution of reconstructed radar images remains a
primary challenge in automotive applications [6], [7]. There-
fore, researchers are working to improve the performance of
radar sensors to enhance the perception of the surrounding
area of a vehicle [8], [9].

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

To enhance the angular resolution and gather more infor-
mation from an observed area, advanced radar systems utilize
multiple channels to collect data from antenna arrays [5].
Data processing techniques such as multiple input multiple
output (MIMO) and digital beamforming (DBF) offer undeni-
able advantages in various radar applications [10], [11], [12],
[13], [14]. However, the angular resolution of radar images
using a limited number of antennas may not be sufficient to
meet the requirements of automotive applications. To address
this issue, synthetic aperture radar (SAR) is a promising
technique that can be used [15], [16].

SAR generates high-resolution radar images by moving
a small radar system to create a large virtual aperture.
This technique was initially developed for remote sensing
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applications [17], [18], [19], but it has recently been proposed
for various radar imaging purposes, including the automo-
tive sector [20], [21], [22], [23]. However, adapting SAR
image formation approaches for automotive applications is
challenging due to the limited processing power and the
maneuverability of a car [24], [25], [26], [27], [28].
To successfully reconstruct SAR images within a vehi-

cle, it is essential to overcome two main challenges: high
computational cost and inaccurate knowledge of platform
positions. Current SAR approaches require more processing
power than what is available in automobiles. Therefore, it is
crucial to optimize and introduce new techniques in order to
make SAR imaging feasible for automotive applications [29],
[30], [31], [32]. Additionally, inevitable and unpredictable
motions introduce phase errors that degrade image quality
and target location accuracy. Estimating and correcting these
phase errors is a demanding task but allows suppressing
unwanted errors and improving image quality [33], [34], [35],
[36], [37].

Researchers have been working on addressing the men-
tioned challenges and improving SAR imaging to make it
more suitable for automotive applications. In recent years,
several studies [31], [33], [38], [39], [40], [41], [42], [43],
[44], [45] have reported progress in this area. However, there
is still a missing piece in current research that we aim to
address in our work. This involves utilizing the capabilities
of available radar and positioning systems to reduce the
complexity of image formation methods and simultaneously
enhance image quality without major hardware or processing
system modifications.

This work presents a novel method of integrating DBF and
MIMO with SAR imaging to deliver high-resolution radar
images. Our approach effectively reduces the computational
burden of time-domain image formation compared to con-
ventional methods such as backprojection (BP). Despite this
reduction in computational effort, the image quality remains
uncompromised by discarding redundant data and preserv-
ing all essential information. Moreover, the proposed image
formation method is compatible with current automotive
radar sensors. It uses existing hardware to perform DBF and
MIMOprocessing efficiently and generate SAR images using
data from all available antennas. Our approach reduces the
slow-time radar samples and overall computational complex-
ity of SAR imaging, making it suitable for in-car processing
systems.

In this manuscript, we also discuss the challenge of esti-
mating and correcting phase errors in radar images, which
is essential for enhancing the quality of SAR images [16],
[33], [35], [36], [46], [47]. Phase errors are caused by inac-
curate platform locations and undesired movements, and they
vary with the view angle, especially in automotive scenarios
with a large field of view (FOV). Thus, it becomes cru-
cial to focus on a specific region to mitigate these errors.
To address this issue, our proposed method utilizes angu-
lar focusing to achieve efficient phase correction across the
entire FOV. Therefore, this novel approach not only reduces

FIGURE 1. The black and orange lines represent the actual and ideal
trajectories of a vehicle, respectively. To improve computational
efficiency, frequency-based methods assume the ideal path, whereas
time-domain image formation approaches use the actual positions. The
XY coordinate system is displayed for each platform location.

computational cost but also suppresses the impact of position-
ing errors and car vibrations in the reconstructed images.

We provide a concise overview of SAR image forma-
tion methods in Section II. Afterward, Section III describes
the advantages of our novel approach by presenting fast
radar imaging algorithms for automotive applications. Addi-
tionally, in Section IV, we explain phase error estimation
techniques for automotive radar data and demonstrate how
the proposed method enhances SAR image quality. Finally,
the manuscript concludes by evaluating the use of multiple
antennas for high-resolution radar imaging through simula-
tions and measurements.

II. SAR IMAGE FORMATION
Different techniques have been suggested for reconstructing
SAR images [17], [48], [49], which are categorized into two
main groups: frequency-domain and time-domain. The most
appropriate method is selected based on the particular appli-
cation. In this section, we briefly analyze the advantages and
disadvantages of these methods in the context of automotive
SAR image formation.

Frequency-based methods are used to calculate images
by making approximations, such as assuming equidistant
sampling for the platform positions or a linear path for data
acquisition, as shown in Fig. 1. These approximations make
the algorithms computationally efficient, but they are not
always suitable for all scenarios. For instance, in automotive
SAR scenarios, data are usually collected from arbitrary and
non-linear trajectories, and this makes obtaining high-quality
SAR images a challenging task.

Frequency-based approaches can be used to generate SAR
images by performing a 2D-fast Fourier transform (FFT)
on the received signal, as explained in [50]. Although this
method is computationally efficient, the quality of the image
may be affected if assumptions such as constant velocity and
straight trajectory are violated. To address this issue, time-
domain approaches are used for automotive SAR imaging
despite their higher computational complexity compared to
frequency-domain algorithms [16], [41].

In the field of radar imaging, the BP algorithm is widely
used for generating SAR images due to its ability to han-
dle various data acquisition trajectories [38], [51]. In the
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following section, we will introduce the equations and con-
siderations involved in this imaging approach. This descrip-
tion will further be used in Section IV to provide a clear
explanation of our method for estimating and correcting
phase errors.

A. BACKPROJECTION
To reconstruct a SAR image using time-domain approaches,
we need to integrate collected radar data from different plat-
form positions coherently. Thus, by considering measured
radar data from a single receiver as

xIF [ns, nf] = sIF [ns, nf] + η [ns, nf] , (1)

where ns and nf represent the slow-time and fast-time sample
indices of radar data, and xIF and sIF are the measured and
ideal signal model, respectively, and η indicates noise in the
received radar data.

To generate SAR images, it is also necessary to determine
the relative locations of the platform and of targets. As shown
in Fig. 1, by considering a two-dimensional scenario in the
XY plane, each point within the illuminated area is denoted
in a Cartesian coordinate system as,

r [p] =
[
x [p] y [p] 0

]T
, (2)

where p represents the index of a pixel in an image and
the transpose operator, denoted by [.]T, reverses the row and
column indices of a matrix. It is important to note that the XY
plane is defined with respect to the sensor coordinate system.

A vehicle can move along an arbitrary path to generate an
automotive SAR image, as illustrated in Fig. 1. Therefore,
it is essential to have a positioning system that can measure
the platform’s location. For this purpose, we use an Xsens
MTi-G-710 sensor [52]. By combining data from global posi-
tioning system (GPS) and inertial measurement unit (IMU),
we can estimate the position of the antenna phase center
(APC) for each ns, which can be denoted as

ra [ns] =
[
xa [ns] ya [ns] 0

]T
, (3)

where xa and ya indicate the antenna position in the Cartesian
coordinate system.

As depicted in Fig. 2, the distance between the position of
the radar sensor and each selected point in the observed area
can be calculated as

d [ns, p] = ∥ra [ns] − r [p]∥2 , (4)

where || · ||2 is the Euclidean-norm of a vector. By assuming
that the radar platform does not move considerably during
one chirp, the round-trip delay-time (RTDT) for the measured
distance is given by,

τd [ns, p] = 2
d [ns, p]
c0

, (5)

where c0 is the wave propagation speed.
Automotive radar systems typically utilize frequency-

modulated continuous-wave (FMCW) signals to measure

FIGURE 2. The sketch depicts a data acquisition structure with a radar
system (green box) mounted on the car and simulated strong targets (red
markers) in the observed area. The arrow in front of the car indicates the
platform’s motion direction, and ϑr represents the angle of the radar
system relative to this direction, fixed at 45◦ in our scenarios.

TABLE 1. Parameters of the radar system.

distances of objects [8], [23]. In this study, we utilize
a 77 GHz radar system with a fast chirp modulation. The con-
figurations of our radar system are summarized in Table. 1.
To achieve coherent integration of fast-time and slow-time

samples in SAR image formation approaches, we define two
terms used to compress data in their respective domains.
The range profile calculation is the initial step of an image
reconstruction process. In our FMCW radar system, range
profile data is computed through the Fourier transform of
the received signal over the fast-time domain. To obtain the
range profile data, xRP, we utilize received radar signals,
xIF, as explained in [46]. Furthermore, time-domain image
formation methods use the RTDT to align the received radar
data from different platform locations. A corresponding term
for each slow-time sample and the selected pixel of the image
is defined as

φs [ns, p] = exp (j2π fcτd [ns, p]) , (6)

where fc represents the center frequency of the chirp sig-
nal [49]. We use a radar sensor with Ns consecutive chirp
signals in the slow-time domain and denote a vector for all
slow-time samples as

φs [p] = [φs [0, p] , · · · , φs [Ns − 1, p]]T . (7)
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The range profile vector for an image pixel is defined as
xRP [p], and is calculated based on samples of the range
profile and RTDT defined by (5). A detailed explanation can
be found in [46].

Finally, to generate a SAR image at the selected pixel
location, the BP algorithm aligns range profile samples by
the corresponding slow-time term as

IBP [p] = φH
s [p] xRP [p] , (8)

where IBP [p] is a pixel of the SAR image which is calculated
by compressing the slow-time data.

Calculating the value of each pixel in an image involves
determining the RTDT of the selected point for every slow-
time sample, and then aligning the corresponding range
profile samples. This process creates a significant computa-
tional burden due to the nested loop that is required to iterate
through all pixels and platform positions.

Researchers have proposed various solutions to miti-
gate the limitations of conventional time-domain image
formation methods. For example, in [25], authors assume
a constant velocity for the platform and similar distances
for the radar positions for consecutive slow-time sam-
ples. This assumption simplifies the problem and allows
for the use of a frequency-domain image reconstruction
method. Furthermore, using an accurate positioning system in
non-automotive scenarios can help to control radar locations
and enhance the efficiency of imaging algorithms [20].

It is not practical to use the mentioned methods for auto-
motive scenarios due to the required assumptions, such as
constant velocity or equidistant sampling, which are not
valid in all driving situations [24]. Furthermore, measuring
accurate locations of a car requires highly precise sensors or
restricting motions of the radar system. Therefore, nonlinear
data collection paths in automotive scenarios lead to unac-
ceptable phase errors and decreased image quality [21].
In our previous work [32], we introduced an approach to

decrease the computational cost of automotive SAR imaging
by reducing the required samples of the image formation
procedure. As explained in the mentioned manuscript, this
method requires recentering data before filtering and down-
sampling, when applied to a short-range structure [32]. It is
crucial to note that sample reduction should be based on elim-
inating redundant information without compromising image
quality. In the following section, we provide a brief expla-
nation of a sample reduction algorithm used to improve the
efficiency of BP.

B. FAST BACKPROJECTION
The concept of fast BP algorithms is to reduce redun-
dant information from radar data. These approaches aim
to decrease the number of data samples and operations
required to implement a fast version of the conventional
algorithm [41], [53], [54]. A commonly used and effi-
cient time-domain image formation method is fast factorized
back-projection (FFBP), which adapts the BP approach to
reduce the computational cost of SAR image formation [55].

FIGURE 3. The FFBP reduces redundant radar data by grouping
neighboring slow-time samples and creating beams for SAR image
formation in multiple subimages. The algorithm is explained in [55].

The FFBP algorithm divides an observed area into small
regions and calculates a SAR image in each of these subim-
ages with a lower number of input samples. In [32], we pre-
sented a modified version of this approach to reconstruct an
image with higher computational efficiency compared to the
conventional method.

Fig. 3 shows that the sample reduction procedure of FFBP
is similar to creating a beam using neighboring synthetic
samples and replacing them with a decimated one. It divides
the whole image into multiple subimages and reduces the
number of collected samples in both slow-time and fast-time
domains, based on the location of the selected region. Simi-
larly, the platform locations are decreased, corresponding to
the calculated samples. This technique is explained in detail
in [55].

It is challenging to use FFBP for automotive radar imag-
ing due to fundamental problems. Short-range geometry
and wide FOV in automotive scenarios can cause a loss of
essential information during the decimation procedure [32].
To address this issue, we need to implement a recentering
algorithm as described in [32]. However, adapting the FFBP
algorithm can retain necessary data only for low sample
reduction factors.

To improve the efficiency of the SAR image formation
algorithm for automotive applications, we suggest using a
multi-channel radar system to create beams in different direc-
tions. This allows us to decrease the number of slow-time
samples and improve SAR image quality by using DBF and
a simple down-sampling method for radar data and platform
positions. This feature will be explained in more detail in
Section. III. Multichannel data increases system complexity,
but it is already available in most automotive radars and can
offer additional advantages, such as spatial filtering through
MIMO and DBF [8], [11].

III. MULTI-CHANNELS AUTOMOTIVE SAR IMAGING
The primary objective of using multichannel radar data
for SAR imaging is obtaining a high-quality radar image
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FIGURE 4. The schematic shows that the radar system employs multiple
antennas and DBF to steer a beam. It can be seen that DBF uses different
weights to generate beamformed data, which is then processed by the
SAR block to reconstruct an image in the desired directions.

in a reasonable amount of time [39], [41]. To achieve this
goal, one of the possible methods is utilizing the data from
all antennas during the SAR imaging process by efficiently
combining the real aperture data and then applying BP to the
reduced data. This method allows for handling the significant
computational costs that are associated with using all chan-
nels in conventional methods.

We propose implementing FFT-based DBF to merge real
aperture data. Afterward, the synthetic aperture data and BP
are used to generate a SAR image efficiently. The main
advantages of our proposed method are combining synthetic
and real aperture and using all of the available information in
an efficient way for generating high-resolution radar images.
In this section, we provide a detailed explanation of our
approach by describing the combination of DBF with SAR
image formation and validating this algorithm using simula-
tion and experimental data. Furthermore, developing the idea
of using a MIMO radar system in automotive SAR imaging
is discussed at the end of this section.

Radar data for both our simulated and measured scenar-
ios are collected using a platform that moves at a speed of
20 km/h along the Y -axis. Furthermore, all SAR images are
calculated with 512×512 pixels and 1024 slow-time samples.
The radar system has a chirp time of 112.4µs and we evaluate
1024 chirps for image formation. Thus, the coherent integra-
tion time for each image is 0.11 s and the aperture length is
0.64 m. In this manuscript, SAR images are normalized and
illustrated with 50 dB dynamic range, in cases without color
bar. Markers are used to indicate the actual locations of the
simulated targets.

A. COMBINING DBF WITH SAR IMAGE FORMATION
DBF iswidely used in automotive radar and SAR imaging [4],
[7], [16], [39]. Due to the requirement of wide-angle imaging
in automotive radar technology, the current trend in this field
is toward using array processing and DBF [5], [56]. In this
section, we briefly explain the concept of DBF and analyze
the advantages of using a real antenna array for automotive
SAR image formation.

Fig. 4 shows how an array of antenna elements can be used
to create a beam towards a specific direction [57]. The DBF
block implements a spatial filter by summing the received
data after passing through calculated weights.

FIGURE 5. The radar system, which is mounted on the corner of the car,
covers the observed area by changing the beam direction around the
main beam. The angle of the main beam equals the rotation angle of the
radar sensor, ϑr , with respect to the moving direction of the vehicle.

Our radar system uses beamforming to improve the com-
putational efficiency of SAR imaging and suppress phase
errors. To implement the concept of using DBF in automotive
SAR imaging and reducing the computational complexity,
we need to decrease the required samples of the image for-
mation approach. To achieve this, we focus on a subregion
of an image covered by a beam to use a small portion of the
available data and reduce the overall processing burden.

The idea of subimage reconstruction using the DBF
technique is inspired by the factorized image formation algo-
rithms such as FFBP. In contrast to conventional factorized
image reconstruction approaches, we select a subimage as an
elliptical sector around the beam direction. Creating subim-
ages by using the beam direction as the center angle of the
sector and the beamwidth as the coverage area is a reason-
able option. We use an FFT-based conventional beamforming
(CBF) algorithm and down-sampling to reduce the computa-
tional cost of the image formation algorithm. Note that an
additional filtering procedure before down-sampling, which
would be required for the modified FFBP [32], is no longer
necessary in the proposed approach.

The following simulations are done based on mechani-
cally tilting the radar system 45◦ with respect to the driving
direction. As shown in Fig. 5, this geometry allows us to
digitally rotate the beam from −45 to +45 degrees to cover
the intended area. We consider a small sector of an image
to create a beam using CBF and focus on the targets in this
region. Fig. 6 shows that beamforming helps us reconstruct
the point-like targets in the selected beam direction while
targets from other azimuth angles are suppressed. Slow-time
sample reduction decreases the required time for image for-
mation but it can cause ghost targets to appear outside of the
interested region.

As shown in Fig. 6c, the DBF is applied to the received
radar data. Since the main lobe is located towards the center
of the illuminated area, only reflections of the targets in this
region are retained in the SAR image. Using moderately
down-sampled data can produce ambiguities and sidelobes
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FIGURE 6. (a): Reconstructed BP image of the observed area. (b): Beam-
formed SAR image suppressed targets out of the desired direction.
(c): Sample reduction (by factor four) creates blob-shaped sidelobes out
of the main beam direction. (d): The desired targets are retained by sector
image formation.

from targets. These sidelobes appear as blob-shaped distor-
tions in areas outside the considered image sector. However,
the image formation algorithm uses only the pixels within the
selected area to generate a SAR image. Fig. 6d depicts that the
sample reduction procedure does not cause any distortions
within the reconstructed sector image. We use a combina-
tion of real and synthetic aperture, to achieve the required
angle resolution. Combining beamformed data with synthetic
antennas leads us to create high-resolution radar images that
are suitable for use in automotive applications.

A radar image can be divided into multiple subimage sec-
tors to cover the entire observed area. Our radar system has
16 receivers with half-wavelength spacing. Thus, we divide
the illuminated region into 16 sectors and create a beam at
each center angle. Each sector image is reconstructed using
the BP algorithm, and all sectors are stitched together after-
ward. The center angle of a sector can be calculated as

θc [nsec] =
θFOV

NRX

(
nsec +

1
2

)
, (9)

where θFOV is the angle of the defined FOV, NRX denotes
the number of receiver channels, and nsec represents the
index of the defined center angle that can be selected from
[0, · · · ,NRX − 1].

The proposed idea aims to reduce the computational cost
of radar imaging by taking advantage of a multi-receiver
radar system. Using available capabilities in automotive SAR
imaging allows us to keep the necessary slow-time samples

FIGURE 7. (a): The ideal SAR image from the simulated scenario is
generated using BP. (b): The DBF-BP technique patches reconstruct
subimage sectors together to decrease the processing time without
sacrificing image quality.

and decrease the processing time. Moreover, our approach
works for any structure of data collection without any modi-
fication because the nature of radar beams coincides with the
shape of subimages. Other approaches, such as FFBP, need to
calculate a decimation factor for each sub-image and modify
radar data for the short-range target geometry.

Themost significant point of the proposed approach, which
we call DBF-BP, is using a computationally efficient imple-
mentation of DBF to reduce the processing burden of the
conventional BP image formation algorithm. Fig. 7 shows
that the quality of the DBF-BP image is even better than
the conventional BP image. In addition, our algorithm does
not impose any constraints on data collection or filtering
processes for down-sampling.

There are two options for comparing our proposed
approach with the conventional BP imaging. The first option
is generating a BP image using all receivers and then com-
paring the image quality and the processing complexity.
The second option is using only one receiver for BP image
formation and evaluating both mentioned criteria. Using all
receivers and the conventional BP method, as in the first
option, would be unfair due to the strongly differing compu-
tational effort. Therefore, we have chosen the second option
as it results in a similar computational burden.

It should be noted that the core concept of this approach
is using all antenna channel information along with sim-
ple down-sampling to improve radar image quality without
increasing the load on the main processing system. We uti-
lize beamforming to coherently integrate the data from all
receivers. This leads to a reduction of sidelobes in gener-
ated SAR image (Fig. 7b) compared to the conventional BP
image (Fig. 7a). Using all receivers (in DBF-BP), provides
significant benefits in terms of increasing signal to noise ratio
(SNR) in comparison to a single receiver (in BP) with the
same complexity.

Since the radar array structure is fixed, the processing
burden of the proposed approach can be even reduced only
by calculating FFT-based DBF in an efficient way on the
available hardware of the sensor, which originally might be
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FIGURE 8. The RMSE of SAR images are computed by comparing them
with ideal images using the same target locations. The value in the plot
represents the mean value of RMSE of all iterations for each number of
targets with random locations. The reference values, which are shown
with dashed lines, are generated using BP. It can be seen that the DBF-BP
algorithm with a downsampling factor up to 10 shows better image
quality than BP.

designed for other applications. Therefore, the beamformed
output data can be used for typical applications of a radar
sensor and SAR image formation procedure simultaneously.
As a result, we have a multi-functional radar sensor that is
capable of generating high-resolution radar images from the
illuminated area.

B. SIMULATION EVALUATIONS
To evaluate our proposed approach for general scenarios,
we simulate several scenes using different numbers of targets
placed at random uniform distributed locations. Moreover,
ideal images with the same target positions are calculated.
In these images, each reflector is modeled as a narrow Gaus-
sian pulse in two dimensions. To determine the quality of
reconstructed images in a quantitative manner, we compare
them with the corresponding ideal images and compute an
image qualitymetric, such as rootmean square error (RMSE).
To represent the image quality, we calculate a mean value of
RMSE for each number of targets across all iterations. It can
be seen in Fig. 8 that for all simulated scenarios, our approach
with a downsampling factor up to 10 shows similar or even
better image quality than the conventional BP. Overall, DBF-
BP can generate SAR images of comparable quality to BP,
but with a reduced computational time.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
Quantitative evaluation of computational complexity could
be done in two ways: Counting required operations, or run-
ning algorithms on the same hardware and comparing the
run time. In this section, we present the required processing
time and comparison of the computational effort of different
algorithms.

TABLE 2. Computational time of different algorithms.

To evaluate the advantages of using DBF, we compare
the processing time of our proposed algorithm with BP and
FFBP. For a fair comparison, we intentionally implement
all approaches without parallel or multiprocessing. Table. 2
shows the processing time of the DBF-BP method compared
to the conventional BP and FFBP algorithms. It is important
to point out that the FFBP method uses sample reduction
in both slow-time and fast-time domains while the DBF-BP
approach employs downsampling only in slow-time.

To quantitatively analyze the computational effort of the
different algorithms, we also investigate their complexity
based on the number of required operations. As an example,
in [58] and [59], there are helpful comparisons between BP
and FFBP.We also use a similar way for quantitative analysis
of our proposed algorithm with other mentioned methods.

The basic operations of BP for each platform position and
each image pixel location can be summarized as,

1) Range calculation from the sensor to the pixel location
(subtraction and norm of a vector with three elements)

2) Interpolation of the calculated range to find the range
index

3) Phase calculation based on the calculated range (mul-
tiplication of two complex values)

4) Applying phase compensation on the selected range
profile value (a complex multiplication).

Instead of comparing the actual number of operations
required by each approach, we propose comparing different
algorithms proportionally, as the basic BP is the core ele-
ment for all methods in our manuscript. Therefore, relative
numbers of the imaging operations of the algorithms can be
represented as,

• OP(Conventional BP) ∝ M × N × L
• OP(FFBP) ∝ M ×N × nd lognd L (if all sub-images can
be decimated by nd)

• OP(DBF-BP) ∝ M × N × L/nd
where M × N is the number of pixels of the reconstructed
image (512 × 512), L is the number of platform positions
(1024), and nd is the sample reduction (decimation or down-
sampling) factor.

The critical point in our analysis is that we cannot
accurately estimate the computational cost of FFBP for short-
range scenarios. Due to the variation of the decimation factors
for different subimages (between 1 and nd), the complexity of
FFBP can vary between the mentioned number of operations
for BP (the worst case) and ideal FFBP (the best case).
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FIGURE 9. The radar and positioning system which are mounted on the
front bumper of a car. In addition, a camera is added to the system to
observe the measured area.

The issue of the FFBP for automotive applications and the
requiredmodifications (e.g., recentering data before filtering)
are explained in detail in [32].

It is important to note that the additional minor oper-
ations, such as calculating the optimum values of nd and
filtering data in FFBP, are ignored in our calculation. This is
because the image reconstruction operations are much more
expensive than the neglected ones and take the major time
of SAR image generation. In a similar way, the number of
operations required for DBF can be neglected compared to
the computational cost of SAR imaging. Since DBF can be
implemented using a 1D FFT across all receiver channels
for each platform location, the total number of operations is
(L/nd) × NRX logNRX, where NRX is the number of receiver
channels. For instance, the required operations for our radar
system, which includes 16 receivers, are (L/nd)× 64. There-
fore, the computational effort for DBF is much lower than the
complexity of the rest of the SAR image formation.

DBF-BP image formation can exploit data of all channels
and generate a SAR image with computational complexity
similar to using one receiver and BP. In addition, we can
reduce processing time and the number of slow-time samples
throughmoderate down-sampling. Thementioned processing
times of different approaches in Table 2 are matched to the
quantitative analysis. The results indicate that the computa-
tional cost of our proposed approach is much lower than the
other methods.

D. EXPERIMENTAL EVALUATIONS
We define a practical measurement scenario to evaluate our
proposed method with experimental radar data. For this test,
an FMCW radar system is mounted on the bumper of a car,
as shown in Fig. 9. In the experiment, the relative locations
of the platform are estimated using a position and navigation
system. In the test area, we placed several metal poles at
different distances to represent point-like targets in a SAR
image. Fig. 10 shows a photo of an observed area and

FIGURE 10. (a): A photo of the observed area shows the metal poles
which are placed at the side of the road. (b): A SAR image, which is
reconstructed using BP, indicate the poles as point-like targets. (c): An
FFBP image is generated using sample reduction in both slow-time and
fast-time domains by a factor of two. (d): The DBF-BP method creates a
SAR image from the experimental data with the same downsampling
factor and lower computational cost compared to conventional methods.

the reconstructed SAR image using the BP algorithm. The
first position of the radar platform is the image origin, and
the measurement configuration is similar to the simulation
parameters.

As shown in Fig. 10a, the point-like targets in real scenarios
are generated using metal poles in the observed area. In our
simulation, we generated different numbers of point targets
with random locations to analyze the proposed approach
in a quantitative way. However, the number of targets is
not restricted in the observed area and our algorithm works
properly on real traffic scenarios because there is no special
technique in our imaging procedure that depends on the
number of targets.

Furthermore, we generate SAR images using the FFBP and
our proposed method to compare the image quality and the
processing time in a practical situation. Fig. 10 indicates that
the quality of the images is not degraded by both methods,
whereas the computational burden of the DBF-BP approach
is much lower than FFBP.

Using a multichannel radar system and the DBF-BP
algorithm for image formation reduces the complexity of the
time-domain image formation. By creating different image
sectors along the generated beams with the real aperture,
we can decrease the number of synthetic aperture data with-
out reducing SAR image quality.Moreover, this method helps
us suppress phase errors more efficiently, as will be explained
in Section IV.
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FIGURE 11. Reconstructed SAR image shows a scenario using two targets
with 0.2◦ azimuth angle difference between them. It verifies the
quantitative analysis of angular cross-range resolution.

E. ANGULAR RESOLUTION ANALYSIS
In processing of a SAR image, the distance which is perpen-
dicular to the radar platform direction is influenced by the
SAR processing approach. The resolution in this direction is
called cross-range resolution because it is orthogonal to the
range direction. The angular cross-range resolution (based on
the positions of the nulls) can be written as,

1θ ≈
λ

2leff
, (10)

where λ is the wavelength of the transmitted radar signal
and leff is the length of the aperture where the echo signal
from a scatterer can be received. It is called effective length
and influences the cross-range resolution of the reconstructed
SAR image. By considering the mentioned configuration of
our simulation scenarios, where λ is 3.92 mm and leff equals
0.64 m, the achievable angular cross-range resolution for two
targets is around 0.2◦. We can verify the quantitative analysis
by placing two targets at 0.2◦ difference in the observed area
and reconstructing a SAR image, as shown in Fig. 11.
To suppress the sidelobes of targets and represent the

reconstructed SAR image in a higher dynamic range,
we apply a Taylor window in the slow-time domain. However,
the azimuth broadening factor of the applied window causes
a wider mainlobe and reduces the best achievable angular
resolution. Therefore, for better visualization and compati-
bility with all simulated scenes, we generate a scenario by
considering two targets with 1◦ difference in the observed
area. We use this scenario to demonstrate the advantages of
our proposed approach compared to the conventional SAR
imaging methods. Furthermore, using a polar coordinate sys-
tem for the image plane (pixel locations) and cutting the
image at the range where targets are located help us to rep-
resent the results in one dimension and show the outstanding
merit of the proposed method. Please note that the images
are transferred to Cartesian coordinates for visualization. The
SAR image of the explained scenario can be seen in Fig. 12.
To reduce the computational effort of the imaging process,

one approach is to decrease the number of slow-time sam-

FIGURE 12. The reconstructed SAR image shows two targets at the center
of the observed area with 1◦ azimuth angle difference between them.

FIGURE 13. Two targets are located at the center of the simulated
observed area with 1◦ azimuth angle difference. (a): A BP image by using
down-sampled data (by a factor of 8) generates sidelobes in another
location of the image. (b): Using DBF-BP with the same data keeps the
targets and suppresses the sidelobes.

ples. This can be done by skipping the slow-time samples
and subsampling the radar signal and platform positions.
To compare our proposed approach with a BP imaging result,
we generate images using the down-sampled data (e.g., by a
factor of 8) from the defined scenario, as shown in Fig. 13.
Selecting the image data at the defined range allows us to
create a line plot for angle resolution evaluation, as shown
in Fig. 14. The plot shows that down-sampling of slow-time
radar data causes unwanted sidelobes in the selected range of
the BP image (at the azimuth angle around 20◦). However, the
proposed approach can suppress them by using beamformed
data for reconstructing each sub-image. It should be noted
that our method can improve the image quality without sac-
rificing the resolution of the SAR image in the cross-range
direction.

F. COMBINING MIMO WITH AUTOMOTIVE SAR IMAGING
MIMO is a technique that is widely used in automotive
and robotic radar applications [4], [5], [8]. This technology
improves the angular resolution and reduces the required
aperture size of the radar sensor [10], [11], [12].

Comparing single-input multiple-output (SIMO) and
MIMO radars for SAR image formation shows some supe-
rior aspects for MIMO systems, such as higher angular
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FIGURE 14. Cutting SAR images of BP and DBF-BP at the selected range
shows that both approaches are able to distinguish two targets with 1◦

azimuth angle difference. However, BP causes sidelobes close to the
target positions due to sample reduction, whereas the DBF-BP technique
effectively suppresses them.

resolution [18], [42], [57]. However, hardware and processing
complexity for a multi-transmitter system is higher than for a
single transmitter [39], [60].

Due to the simplicity and practicability of time-division
multiplexing (TDM) for FMCW signals, it is a widely used
option for colocated automotiveMIMO radars [61]. However,
the main drawback of TDM-MIMO systems is the maximum
unambiguous velocity of targets, which is also a critical factor
in automotive SAR systems. In our recent work [62], we dis-
cussed the challenges of using TDM-MIMO radar systems
and proposed our solution for MIMO-SAR image formation
procedure.

Using time-domain image formation and complex sum-
mation of data from different receivers allows us to
merge data from various locations. We can coherently inte-
grate SAR images from different receivers to generate a
MIMO backprojection (MIMO-BP) image, as explained
in [62].

In our application, MIMO offers similar benefits to DBF
in reducing the computational cost of the BP algorithm.
However, the main advantage of a MIMO radar is its abil-
ity to provide high angular resolution with a small aperture
size. Combining data of real and synthetic apertures helps
to reduce the slow-time samples in the MIMO-SAR image
formation procedure. This concept is similar to generating a
DBF-BP image, but the size of the system is more suitable
for automotive applications.

It is possible to improve the efficiency of the image for-
mation procedure in MIMO-BP by using fewer slow-time
samples. To reduce the computational burden of automo-
tive SAR imaging, beamforming and downsampling can be
applied to data of all virtual channels of a MIMO system.
In Sections III-B and III-C, the quality and processing time
of the multichannel imaging have been compared to the con-
ventional approaches.

IV. PHASE ERROR ESTIMATION
This section analyzes automotive phase errors and their
effects on SAR images. We focus on the group of methods
that reduce phase errors only based on radar echo signals,
called closed-loop approaches or particularly autofocusing.

A. AUTOFOCUS ALGORITHMS
Data-driven error estimation is a group of efficient
approaches typically used in addition to motion compen-
sation methods to improve the SAR image quality. These
algorithms exploit radar data and refocusing techniques to
suppress the effects of positioning inaccuracy.

In [63], different approaches are explained and compared
to assess their functionality for various scenarios. On the one
hand, methods, such as map drift (MD) [64], phase difference
algorithm (PD) [64] and shift and correlation (SAC) [65],
are simple and fit for secondary phase error but would need
to be extended for higher order phase errors. On the other
hand, non-model-based algorithms, such as phase gradient
autofocus (PGA) [66], are robust and can estimate high-order
phase errors. The authors conclude that the performance of an
algorithm depends on the characteristics of phase errors and
image scenes.

A suitable algorithm can be found based on the processing
burden of the method and data collection scenarios. The
most prominent approach for our application is PGA, which
shows an exceptional capability to suppress various phase
errors [47], [67]. The main inherent drawback of this method
is assuming that the reconstructed image and the range profile
can be converted to each other using a Fourier transform [36].
The strong scatterers in a SAR image are the essential points
for phase error estimation. After generating the primary
image, it is necessary to locate strong targets and align them.
The standard PGA algorithm consists of four essential steps:
circular shifting, windowing, phase kernel estimation, and
iterative correction, which are explained in [46].
A novel method for phase error estimation is the gener-

alized version of PGA, which overcomes difficulties of the
standard method and shows satisfactory results for different
experiments [68]. This algorithm originates from PGA and
keeps the essential stages of the standard method with modi-
fications, which are explained in [37].

B. SPACE-VARIANT PHASE ERRORS
Automotive SAR images typically cover a broad FOV with
several short-range targets. It is not valid to assume that the
same phase error applies to all pixels because phase errors dif-
fer across regions of a SAR image. In a practical automotive
data collection, phase errors depend on the look angle and
change along both the range and cross-range domains, and
therefore, they are called space-variant, as shown in Fig. 15.
One of the ideas to handle space-variant phase errors is apply-
ing the estimation procedure separately in different regions.
Taking only a small region of the reconstructed image into
account allows us to consider invariant phase error in the
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FIGURE 15. An example sketch of a practical automotive radar data
collection shows two targets at the same range (r1 = r2) but in different
regions. Phase errors for these targets are not the same and are changed
based on the look angles.

selected area. Therefore, each sub-image includes data of
targets with a similar error behavior [37].

V. AUTOMOTIVE PHASE ERROR CORRECTION
One of the essential procedures in high-quality automotive
SAR imaging is phase error estimation and correction. How-
ever, correcting phase errors is challenging due to various
reasons:

1) Wide FOV cause space-variant phase errors for differ-
ent view angles.

2) The error suppression algorithm should be able to han-
dle various positioning errors and car vibrations.

3) The computational complexity of the algorithm should
be suitable for an affordable automotive processing
system.

As previously stated, we utilize the BP image formation
method for automotive SAR applications. Modifying this
approach helps us to evaluate our idea of the space-variant
phase error estimation. In this section, we elaborate on this
concept by generating SAR images using various reconstruc-
tion approaches.

A. PHASE ERROR ESTIMATION ALGORITHM
In this section, we explain how generalized phase gradient
autofocus (GPGA) technique generalizes the conventional
PGA algorithm and modifies it to estimate and correct phase
errors [68], as shown in Fig. 16.
The phase estimation kernel requires the information of

strong point targets. Thus, we extract each selected point data
from the input range profile as xRP

[
p̃
]
, where p̃ indicates

pixel indices of local maxima. GPGA multiplies the range
profile data of the selected strong targets by the calculated

slow-time term of these points, φs
[
p̃
]
as

x́RP
[
p̃
]

= φ∗
s
[
p̃
]
⊙ xRP

[
p̃
]
, (11)

where x́RP is the aligned range profile data and ⊙ indicates
element-wise multiplication.

The generalized method uses filtering operations to keep
data of strong targets and rejects clutter. The filtered range
profile is computed by applying a low pass filter (LPF) or
multiplying a LPF matrix, HLPF, on the compensated data as
explained in [68],

x̃RP
[
p̃
]

= HLPFx́RP
[
p̃
]
, (12)

where x̃RP contains the information of strong scatterers and
suppresses noisy data from weaker targets.

Similar to the PGA approach, the normalized phase error
gradient is estimated by the aligned and filtered range profile
data as

1φ̂e [ns] = ̸

∑
p̃

x̃RP
[
ns, p̃

]
x̃∗

RP
[
ns − 1, p̃

] . (13)

The integration of the estimated errors is calculated to find
the phase error for each slow-time sample as

φ̂e [ns] =

ns∑
n=1

1φ̂e [n] . (14)

The last step of each iteration is applying the estimated phase
error to the input range profile vector of the corresponding
slow-time sample as

x̂RP [ns] = xRP [ns] exp
(
−jφ̂e [ns]

)
, (15)

where x̂RP denotes the corrected range profile vector for all
samples in the range domain.

B. PHASE ERROR CORRECTION
In this section, we discuss the integration of the phase error
estimation approach and image formationmethods, which are
presented in Section III. In the first step of the evaluation pro-
cess, we utilize a combination of BP and GPGA to estimate a
simulated error that varies for different locations. To simulate
a practical experiment, we introduce position errors to the
platform locations instead of applying phase errors to the
radar data. These position errors result in space-variant phase
errors in the collected data.

We simulate sinusoidal position errors in both X and Y
directions and add them to the platform positions. The sinu-
soidal frequency is 0.03 Hz, and the amplitude is around
0.8 mm. Fig. 17 shows the radar positions with and without
error. The simulated position errors distort the reconstructed
SAR image and generate high sidelobes around strong tar-
gets, as shown in Fig. 18a. Applying GPGA to the BP image
suppresses phase errors and efficiently eliminates them in
the center area of the image, while strong sidelobes have
remained around target points in other regions, as shown
in Fig. 18b. The primary drawback of this technique is its
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FIGURE 16. The block diagram of the GPGA approach preserves the four essential stages of the standard PGA, but modifies the blocks used for phase
error estimation and correction.

FIGURE 17. The radar locations with and without errors are shown in this
plot. We generate the position errors by simulating two sinusoidal errors
and adding them to the ideal platform positions in both dimensions.

reliance on estimating a single phase error for the entire image
area. However, phase errors tend to behave differently in
different regions, making it necessary to develop a method
for correcting these variations.

We apply the GPGA algorithm to eliminate the
space-variant phase errors that vary across different regions
of a SAR image. The strong targets of each region can be used
to estimate phase errors. Since a similar error influences the
targets of one region, the correction procedure can efficiently
suppress it. Fig. 18 depicts phase correction results using the
FFBP and DBF-BP methods. The GPGA approach estimates
and corrects phase errors on several sub-images indepen-
dently. Since in our proposed image formation method,
targets in a beam direction show a similar error behavior,
the phase error correction algorithm leads to superior results
compared to FFBP.

FIGURE 18. (a): A simulated BP SAR image shows the effect of space-
variant phase errors on the reconstructed targets. (b): Applying the GPGA
method to the BP image mainly corrects phase errors in the center region.
(c): Combination of GPGA and FFBP suppresses the space-variant phase
errors, but some errors are remaining. (d): A DBF-BP image shows
space-variant phase error are effectively corrected using GPGA for
beam-shaped image sectors.

Furthermore, to evaluate the proposed algorithm for gen-
eral cases, we simulate scenarios with different numbers of
targets and various random locations. Fig. 19 shows that
the MSE values of SAR images for the different random
realizations of the simulated scene are reduced, leading to
an improvement in image quality. It is worth noting that the
reconstructed BP image with accurate platform locations is
used as the reference image.
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FIGURE 19. The mean square error (MSE) of reconstructed SAR images
using the DBF-BP algorithm before and after autofocusing (AF). The
ground truth image is generated using the accurate platform locations
and BP. It can be seen that using our proposed method can reduce the
MSE values and, therefore, improve the image quality for different
numbers of targets with random locations.

FIGURE 20. (a): A BP image is generated from radar measurement data
without phase error correction. (b): A combination of GPGA and BP
methods shows that targets are focused using phase error correction.
(c): The GPGA method is applied on a FFBP image to focus on point-like
targets. (d): Combination of GPGA and DBF-BP leads to the best result
from the experimental data.

C. EXPERIMENTAL PHASE ERROR CORRECTION
To evaluate the proposed approach in a practical automotive
radar data collection scenario, we mounted a 77 GHz radar
system on a car, as shown in Fig. 9. In addition, Fig. 10a

shows a series of metal poles that are installed in the observed
area to generate point-like targets. An experiment with ten
metal poles in the observed area is used to analyze the pro-
posed combination of the image formation approaches and
the phase estimation procedure. There are some primary steps
to combine different localization sensors and filter the data to
correct the position errors as much as possible.

The reconstructed images using the BP method and
the phase error correction using GPGA are shown in
Fig. 20b. In addition, a combination of GPGA and rectangular
sub-images is used to correct phase errors in the measurement
data. Fig. 20 indicates that the FFBP and DBF-BP method,
generate focused images with the space-variant phase error
estimation approach. Both methods are superior to the unseg-
mented phase compensated image, but using multichannel
data and DBF-BP (or MIMO-BP) algorithm shows better
phase error suppression compared to FFBP.

Our proposed image formation algorithms estimate phase
errors more accurately than other approaches because of
the use of beamformed data and beam-shaped sub-images
that are compatible with the nature of the radar echo. It is
worth noting that the approach is suitable for estimating and
correcting the typical vibrations of a radar system in a car.
However, solving the problem of complete dislocation of the
radar antennas is beyond the scope of our investigation in this
manuscript.

VI. CONCLUSION
In this paper, we have explored the idea of improving radar
image quality and reducing computational burden by combin-
ing real and synthetic radar apertures. Our main objective was
to evaluate the potential of utilizing multichannel radar sys-
tems with DBF and MIMO techniques for automotive SAR
imaging. Employing a SIMO or a MIMO system allowed us
to generate beamformed data and reduce the computational
complexity of image formation by decreasing the amount of
the required radar data by up to a factor of 10.

We also highlighted the significance of using multichannel
radar systems for estimating different phase errors in var-
ious beam directions. Our research focused on developing
a novel phase error correction algorithm to support mul-
tichannel data. We demonstrated that this approach could
extract the phase error of the selected azimuth angle and
efficiently correct space-variant phase errors for automotive
SAR applications.

To assess our proposed approach, we simulated a scene
including several targets with random locations. Positional
errors were introduced to the platform locations in both
range and cross-range dimensions. Additionally, we created
a practical scenario for collecting automotive radar data with
point-like targets. To conduct this experiment, a 77 GHz radar
system was installed on a car and a series of metal poles were
placed within the illuminated area. Our proposed technique
proved to be more efficient compared to conventional algo-
rithms in terms of computational burden and error correction.
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In summary, we elaborated on utilizing DBF and MIMO
techniques to create a SAR image in multiple directions
by exploiting beamformed data. Our main contribution, pre-
sented in this work, was enhancing the quality of radar images
while reducing the processing time. This was achieved by
decreasing the computational complexity of SAR image for-
mation and improving phase error suppression.
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