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ABSTRACT In explainable artificial intelligence (XAI) for object detection, saliency maps are employed to
highlight important regions for a learned model’s prediction. However, a trade-off exists wherein the higher
the accuracy of explanation results, the higher the computational cost, posing a challenge for practical appli-
cations. Therefore, this study proposes a novel XAI method for object detection to address this challenge.
In recent years, research on XAI that satisfies desirable properties for explanatory validity by introducing
the Shapley value has been widely conducted. However, a common drawback across these approaches is
the high computational cost, which has hindered broad implementation. Our proposed method utilizes an
explainer model that learns to estimate the Shapley value and provides a reliable explanation for object
detection in a real-time inference. This framework can be applied to various object detectors in a model-
agnostic manner. Through quantitative evaluation, we experimentally demonstrate that our method achieves
the fastest explanation while delivering superior performance compared with other existing methods.

INDEX TERMS Explainable artificial intelligence, object recognition, shapley value.

I. INTRODUCTION
Explaining the underlying reasons behind AI’s decisions is
challenging because of its inherent black-box nature. This
challenge becomes pronounced in safety-critical domains,
such as autonomous driving and medicine, where addressing
this issue becomes crucial to ensure the secure utilization and
social acceptance of AI-equipped systems. In recent years,
explainable AI (XAI) has gained attention as a promising
approach to elucidate the rationale behind AI’s decisions,
with extensive research in the field of computer vision,
encompassing tasks such as image classification and object
detection. The most widely used method in these tasks is
visualizing the inference rationale through a saliency map.
This map visualizes feature attributions, which indicate the
importance of each pixel for a model’s prediction, in the form
of a heatmap. While various methods have been proposed,
most have focused on the basic task of image classification,
with relatively few designed for the more intricate task of
object detection. Despite the substantial demand for object
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detection in various domains, XAI for object detection has not
yet reached a level of practical applicability owing to some
challenges. Therefore, this study tackles these challenges to
advance research toward the practical application of XAI for
object detection.

Fig. 1 presents examples of saliency maps targeting object
detection results. Notably, determining the best method is
challenging owing to substantial differences in explanations
generated by different methods. Concerning this issue,
some studies [1], [2], [3] emphasize the importance of
explanatory validity by noting that certain methods provide
explanations that do not align with the model’s predictions.
To ensure explanatory validity, methods introducing the
Shapley value [4] have recently gained attention. The Shapley
value originates from a cooperative game theory and offers a
method that can achieve a fair and justified distribution of
rewards. In addition, the Shapley value has the advantage
of satisfying properties desirable for ensuring the validity of
explanations. While these methods can yield more accurate
explanations, they entail a high computational cost for esti-
mating the Shapley value. Consequently, a significant trade-
off arises in generating saliency maps between achieving
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FIGURE 1. Comparison results of saliency maps generated by the existing methods. Many methods represent the values of feature attributions
in the form of a heatmap; some methods indicate positive values in red and negative values in blue, following the official implementations. The
average processing times on a single Tesla V100 GPU are presented beneath their respective saliency maps.

high explanatory accuracy and reducing computational costs,
and this trade-off applies to other XAI methods as well.
Fig. 1 also includes the average processing time in generating
those explanations. It indicates that a fast method, such
as SS-Grad-CAM [5], which utilizes information directly
from within the AI model to generate an explanation result,
highlights regions that humans find challenging to interpret.
Conversely, a method that accurately captures the target
objects, such as D-RISE [6], which obtains an explanation
result from changes in the model’s outputs derived from
multiple input samplings with added perturbations, involves
a substantial increase in computational cost. This increase
incurs a significant challenge in the practical application of
XAI for object detection because there are multiple objects
per image for explanation. Thus, reducing the computational
cost per object while maintaining highly reliable explanations
is crucial in practical applications.

To address this trade-off, FastSHAP [7] trains an explainer
model to estimate the Shapley value and achieve real-time
and highly accurate explanations during the inference phase.
This approach has succeeded in image classification tasks but
not yet in object detection tasks. To extend its application
to object detection, several challenges stemming from the
differences between classification and detection tasks need to
be addressed. In this study, we propose a novel XAI for object
detection named FSOD (Fast explanation using Shapley
value for Object Detection), capable of providing reliable
explanations in real time. It demonstrates the effectiveness
of an explainer model in object detection tasks. The technical
contributions of this study are as follows.

• We introduced a novel XAI for object detection that
quickly generates explanations based on the Shapley
value, overcoming the challenges of extending an
explainer model to object detection tasks.

• We applied our method to various object detectors to
demonstrate that our framework is adaptable to a wide
range of object detectors.

• We validated our method using benchmark datasets
through various evaluation metrics, demonstrating supe-
rior performance to other methods while running fastest
among them.

The remainder of this paper is organized as follows. First,
we summarize related studies and provide a derivation of our
method. We then experimentally demonstrate our method’s
performance and validity. Finally, concluding remarks are
presented.

II. RELATED WORKS
A. VISUALIZATION OF EXPLANATION
In XAIs that employ a saliency map as an explanation
output, methods are primarily designed for image clas-
sification and object detection tasks. In XAI for image
classification, several methods have been developed to
compute feature attributions, indicating the importance of
each pixel in a prediction. They are mainly classified into
three categories: back-propagation-based, activation-map-
based, and perturbation-based methods. Back-propagation-
based methods [2], [8], [9] compute feature attributions by
back-propagating a classification probability score, referred
to as relevance, through the network. For instance, Layer-
wise Relevance Propagation (LRP) [10] calculates pixel-wise
feature attributions by propagating relevances from the output
layer back to the input layer. Contrastive Relevance Propaga-
tion (CRP) [11] extends LRP and highlights the relevances
originating from the true class object by contrasting it with
those originating from other classes. Activation-map-based
methods [12], [13], [14] leverage weighted sums of feature
maps in the last convolutional neural network (CNN) layer
in the AI model to generate explanations. For instance, Grad-
CAM [15] calculates weighted sums of the feature maps by
utilizing the gradients in the neural network as the weights.
Perturbation-based methods [16], [17], [18] examine the
change of output scores resulting from perturbations added
to input samples. For instance, RISE [16] calculates the
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weighted sums of the random samplings of binary masks
using their corresponding output classification scores as
weights to generate a saliency map.

In XAI for object detection, numerous methods extend
the existing methods designed for image classification by
considering both localization and classification of a target
object detection. As an application of back-propagation-
based methods, Karasmanoglou et al. [19] applied CRP to
the YOLO detectors [20], [21], which are widely utilized
owing to their high processing speed, to explain detection
results. In this method, the calculation of the relevances is
restricted to regions near the target bounding box, aligning
with the target class label. Similarly, E2X [22] utilizes feature
attributions derived from the backpropagation scores. In E2X,
the input image is divided into superpixels, and the average
attributions within them are used to mitigate pixel-wise
calculation noises. Activation-map-based methods, such as
Spatially-Sensitive Grad-CAM [5], enhance Grad-CAM by
integrating a spatial map that weights feature attributions
based on proximity to the target object. Perturbation-based
methods, such as D-RISE [6], extend RISE by adopting
the detection similarity as an output score to consider both
prediction and localization. By observing the output score
changes due to input perturbations, feature attributions can
be calculated. Fig. 1 shows the comparison of these methods,
with the detection results from the small YOLOv5 model
(YOLOv5s)1 set as an explanation target. Back-propagation-
based [19] and activation-map-based methods [5] offer
faster processing speed owing to their ability to leverage
internal information within the object detector. However,
these saliency maps may fail to correctly capture the target
object. Conversely, perturbation-based methods [6] provide a
more interpretable saliency map at the expense of increased
input sampling time. In generating explanation results, there
exists a trade-off between processing speed and the reliability
of the output. Striking a balance between these factors
becomes crucial for the practical application.

B. SHAPLEY VALUE
The Shapley value was originally developed as a method for
fair reward distribution in cooperative game theory. It satisfies
several desirable properties, known as axioms [2], [23], [24].
The axioms include properties, such asDummy, which asserts
that feature attributions with no contribution to the prediction
are zero, and Efficiency, stipulating that the sum of feature
attributions equals the prediction score. Owing to its ability
to satisfy these properties, the Shapley value has been actively
applied to various XAIs [23], [24], [25], [26] for image
classification. Nevertheless, its major drawback is the high
computational complexity. If N represents all features for a
model’s input, the Shapley value of a certain feature i ∈ N

1Glenn Jocher and contributors. Yolov5, Accessed 2022.
https://github.com/ultralytics/yolov5

can be described as a feature attribution φi as follows,

φi =

∑
S⊆N\i

|S|! ∗ (d − |S| − 1)!
d !

(v(S ∪ i) − v(S)). (1)

Here, S indicates a subset of features excluding i. d (= |N |)
denotes the number of input dimensions for themodel’s input.
v(S) refers to a value function of the model using S as an
input. The attribution of i can be obtained by calculating the
average of the marginal contribution, defined as the change
in output resulting from adding i to the subset. Because it
requires considering all patterns of S, the computational cost
of Eq. 1 becomes O(2d ), requiring an enormous amount
of processing time. To compute these values efficiently,
an approach beyond direct computation is necessary.

III. PROPOSED METHOD
A. MOTIVATION
Despite the numerous methods integrating the Shapley value
into XAI, they often encounter computational complexity
challenges. Consequently, several approximations of the
Shapley value have emerged to address this issue. One
widely recognized approximation is KernelSHAP [24],
which transforms the Shapley value computation to the
determination of the weights of a linear model. Nevertheless,
KernelSHAP still faces the challenge of requiring extensive
sampling each time to deduce the weights for explaining each
instance. FastSHAP [7] has improved upon KernelSHAP
by facilitating the Shapley value estimation across multiple
instances with a single training cycle for the explainer model.
This approach achieves a more favorable balance between
processing speed and explanation accuracy than other
Shapley value-based methods. However, the effectiveness of
an explainer model has mainly been noted in simpler contexts
where the AI model (1) outputs only class predictions as
observed in image classification, (2) deals with small images
(e.g., up to 224 × 224) as encountered in ImageNet [27],
and (3) handles one prediction corresponding to one image.
As mentioned earlier, our focus is XAI for response-time-
critical object detection. Object detection tasks involve
more complex scenarios, prohibiting the straightforward
application of FastSHAP. This study outlines the challenges
of extending an explainer model to object detection and
presents strategies to overcome these challenges.

B. TECHNICAL BACKGROUND
We provide a detailed explanation of KernelSHAP [24] and
FastSHAP [7], which are promising approximations of the
Shapley value. Let x be an input image consisting of d pixels,
and c be a classification label. Here, s ∈ {0, 1}d is used to
denote subsets of the pixel indices {1, . . . , d}.
KernelSHAP approximates the computation of Eq. 1 using

the weights of a linear model 8x,c ∈ Rd and a value function
vx,c(s) : Rd

7→ R for a given pair of (x, c) as follows.

L(vx,c, 8x,c, p) =

∑
s

{
vx,c(s)−vx,c(0)−sT8x,c

}2p(s), (2)
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FIGURE 2. Overview of our proposed method, FSOD. A framework is presented for learning the parameter function
φ(F (x), Q(dt ), c; θ) of the explainer model, taking an input image x and a target object detection dt as inputs.

p(s) ∝
d − 1( d

1Ts

)
· 1Ts · (d − 1Ts)

, (3)

φ(vx,c) = argmin
8x,c

L(vx,c, 8x,c, p). (4)

Here, φ(vx,c) = {φ1, . . . , φi, . . . , φd } indicates the approx-
imated Shapley value for each pixel. 1 and 0 represent
all-ones and all-zeros d-dimensions vectors. KernelSHAP
minimizes the loss function in Eq. 2 by sampling s based
on the probability from Eq. 3, training the weights 8x,c.
Then, the KernelSHAP estimates the Shapley value φ(vx,c).
Adopting the value function described in Eq. 6 facilitates the
application of KernelSHAP to object detection. To mitigate
calculation noise in explanation results, Hogan et al. [28]
divided the image into superpixels, applying Eq. 2 to each
to determine superpixel-wise feature attributions. Fig. 1
shows the saliency maps obtained using KernelSHAP with
5000 input samplings. Notably, the explanation results
depend on the superpixel segmentation, and it faces high
computational complexity owing to the extensive sampling
required for learning the linear model’s weights. Moreover,
a significant challenge arises as it requires the learning of
weights 8x,c for each pair of (x, c) every time, leading to a
considerable amount of time. FastSHAP [7] addressed this
issue by leveraging an explainer model that is trainable in a
single process.

FastSHAP utilizes an explainer model inspired by the
Shapley value’s weighted least squares property [24]. The
Shapley value can be obtained by training the explainermodel
using the following weighted least square loss function:

L(θ ) = E
p(x)

E
Unif(c)

E
p(s)

[
(vx,c(s) − vx,c(0) − sTφ(x, c; θ))2

]
.

(5)

Here, Unif(c) and p(x) represent a uniform distribution over
classes and the distribution of x within a training dataset,
respectively. φ(x, c; θ ) : Rd

7→ Rd indicates a learned

parametric function of an explainer model to estimate the
Shapley value. The training is performed by sampling s
according to the distribution of p(s) for a variety of images of
x. After minimizing the loss function of Eq. 5 and optimizing
the parameter θ∗ in the neural network of the explainer
model, the output components of φ(x, c; θ∗) approximates
the Shapley value for each pixel. Once trained, the explainer
model can be applied to various pairs of (x, c) without further
training. However, this approach has only been applied to
image classification tasks and remains unexplored for object
detection tasks. In the following section, we discuss the
challenges and their solutions for extending the explainer
model to object detection.

C. EXTENTION TO OBJECT DETECTION
The overall framework of our method, called FSOD (Fast
explanation using Shapley value for Object Detection),
is shown in Fig.2. This framework introduces three novel
approaches. We provide detailed explanations for each
approach, along with their corresponding challenges.

1) VALUE FUNCTION FOR OBJECT DETECTION
In the case of image classification tasks, it was sufficient to
define the classification prediction score of the model as the
value function. However, in object detection tasks, the value
function should consider both classification and localization
of a target object. To this end, we define the value function
vx,c(s) as follows:

vx,c(s) = fc(M s ⊙ x, d t ), (6)

fc(M s ⊙ x, d t ) = max
d j∈D(Ms⊙x)

IoU(d j, d t ) · oj · pcj . (7)

Here, ⊙ is element-wise multiplication, and M s indicates
a random binary mask corresponding to pixel indices of s.
Consequently, M s ⊙ x produces a masked image, retaining
pixels at the indices of s from x and masking the others.

31050 VOLUME 12, 2024



M. Kuroki, T. Yamasaki: Fast Explanation Using Shapley Value for Object Detection

FIGURE 3. Schematic image of the neural network in the explainer model. The architecture is illustrated for the case with a
single feature map (top) and multiple feature maps (bottom).

fc : M s ⊙ x 7→ R indicates the detection similarity function.
D denotes the function of an object detector and d j indicates
the vector representation of its detection results. d t is a vector
representation of the target object detection to be explained,
including the bounding box and classification information.
The localization similarity between d t and d j is denoted
by the Intersection over Union (IoU), which measures the
degree of the overlap in the two bounding boxes. The term
oj represents the objectness score of d j, while pcj indicates
its classification score for the class label c. Consequently,
this score function fc assigns a detection score reflecting the
highest localization and classification similarity among the
detection results from a masked image.

2) UTILIZATION OF FEATURE MAPS AS INPUT
The image size of datasets for object detection, such as
COCO [29] and VOC [30] is approximately 600×600 pixels
or larger. This is larger than that of datasets for image
classification, such as CIFAR-10 (32 × 32 pixels) [31] and
ImageNet (224 × 224 pixels) [27] because object detection
tasks require an image to contain multiple objects. The
larger image size complicates the explainer model’s task
of learning image features, potentially leading to feature
representations that diverge from those identified by the
object detector. To address this issue, we incorporate a
function for generating feature maps F(x), which represents
the output of the backbone network in the object detector
and is a prevalent component in many CNN-based object
detectors. By condensing spatial information from the image,
these feature maps enable a more synchronized learning
process between the explainer model and the object detector.
Some object detectors employ a feature pyramid network
(FPN) [32] to capture feature maps across multiple scales.
In that case, the explainer model is designed to utilize
feature maps from all scaling layers, as shown in Fig. 3.

The operations such as convolution described in Fig. 3 are
implemented to be equivalent to those in UNet [33].

3) OBJECT-SPECIFIC EXPLANATIONS
Contrary to image classification XAI methods, which typ-
ically produce a single explanation for an entire image,
object detection XAI methods require generating unique
explanations for each detected object. Therefore, it is
essential to provide the explainer model with information
specifying the objects to be explained. To facilitate this,
our approach incorporates a query map that provides spatial
context for the target object under explanation. This query
map, denoted as Q(d t ) and based on the target object
detection d t , assigns a value of 1 to pixels within the target
object’s bounding box, forming a binary map. This map
is merged with the explainer model’s input F(x) along the
channel direction and resized to align with the feature map
size across all scaling layers.

D. EXPLAINER MODEL FOR OBJECT DETECTION
The overall framework of our method and our explainer
model are illustrated in Figs. 2 and 3, respectively. The
explainer model’s architecture is inspired by UNet [33].
When our approaches are integrated, the loss function for the
training of our explainer model can be rewritten as follows:

L(θ ) = E
p(x)

E
Unif(c)

E
p(s)

[{
fc(M s ⊙ x, d t )

− sTφ(F(x),Q(d t ), c; θ )
}2]

. (8)

The steps of training an explainer model are as follows.
1) Obtain an image x and compute the feature map

F(x) from the object detector, and then, estimate an
explanation map φ(F(x),Q(d t ), c; θ ).

2) Sample s randomly based on the probability distribu-
tion p(s) and generate the corresponding mask M s.
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TABLE 1. Comparison results in quantitative evaluation. It presents the average results of the Energy-based Pointing Game (EPG), Visualization
Explanation Accuracy (VEA), Insertion (Ins.), and Deletion (Del.), as well as the average frames per second (FPS) on the target dataset. Values in
parentheses denote standard errors. Considering a 95% confidence interval, the candidate with the best candidate is highlighted in bold, and the
second-best candidate is emphasized with an underline. The asterisk ∗ denotes a statistically significant difference (p < 0.05) between those values.

To reduce computational noise and refine the sampling
patterns, the image is divided into superpixels (h × w
pixels) during the sampling of s.

3) Calculate the detection similarity fc(M s⊙x, d t ) using a
masked image and determine the loss function of L(θ )
of Eq. 8.

4) Update the explainer model’s parameter θ based on
feedback from the loss function and repeat these steps
until the learning converges.

IV. EXPERIMENTS AND RESULTS
To assess our proposed method’s performance, we con-
ducted a quantitative evaluation, focusing on its explanatory
accuracy and processing speed in comparison to existing
methods. The existing methods, introduced in the experiment
depicted in Fig. 1, were chosen from various categories of
feature attribution calculation for comparison. For evaluation,
we used the validation split of COCO [29] and VOC [30]
datasets, commonly utilized in the benchmark evaluations
of object detection tasks. Explanation targets were based
on object detections obtained from YOLOv5s, specifically
focusing on true positive detections. The results are derived
from a random selection of 10% of the images in the datasets.
To optimize the object detector’s performance, the image
size was standardized at 640 × 640 pixels. Additionally, the
parameters and training conditions of the explainer model
used in the evaluation were set as follows.

Model parameters. The feature maps, derived from
YOLOv5s’ backbone network and used as input for the
explainer model, consist of three layers with dimensions
80 × 80, 40 × 40, and 20 × 20. Each of these layers has
255 channels. The number of output classes for the COCO
dataset is 80 and that for the VOC dataset is 20.

Training conditions. During training, we used the Adam
optimization algorithm [34] with an initial learning rate set to
10−4. The training spanned 100 epochs, incorporating early
stopping to halt training upon signs of learning saturation.

A. EVALUATION METRICS
Given the absence of established optimal evaluation metrics
for assessing explanation accuracy, this study employs
metrics commonly used in existing research.

1) ENERGY-BASED POINTING GAME (EPG)
EPG [13] quantifies how precisely feature attributions
highlight the target object. This metric computes the ratio
of the sum of the feature attributions within the target
object to the sum of all feature attributions. We used an
object segmentation mask for the ground truth to identify the
target object regions instead of using a bounding box. This
approach helps distinguish cases where somemethods exhibit
strong responses to non-target objects within a bounding box
containing multiple objects.

2) VISUAL EXPLANATION ACCURACY (VEA)
VEA [35] measures the degree of overlap between the
high-importance area and the target object by calculating
IoU between a ground truth object segmentation mask and a
saliency map thresholded at various levels. The IoU is plotted
with IoU on the vertical axis and thresholds on the horizontal
axis, using the area under the curve (AUC) as the evaluation
metric.

3) DELETION AND INSERTION
Deletion and Insertion metrics [36] quantify the impact of
important pixels on the model’s prediction. For the Deletion
metric, pixels with higher attributions are progressively
removed from the input image, and the decrease in the
model’s output score is assessed. The Insertion metric,
on the other hand, involves adding pixels to the baseline
image in the same order and assessing the increase in the
model’s output score. In both metrics, the variation of the
score is plotted as a function of the number of added or
removed pixels, using the AUC as the metric for evaluation.
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FIGURE 4. Comparison results of saliency maps for object detections
obtained by various object detectors.

B. EVALUATION RESULTS
The evaluation results of each metric and the processing
speed for generating a saliency map are presented in Table 1.
The values represent the average results for each explanation
target, with parenthetical values indicating standard errors.
Using these values and considering a 95% confidence
interval, we determine the best possible method. The results
highlight the best candidate method in bold, while the
second-best candidate is underscored. Deletion and Insertion
metrics yield higher scores when the impact of important
regions on the detection results is substantial. While these
metrics do not consider the flow of feature attributions to
other objects, as observed in CRP in Fig. 1, VEA and EPG
can distinguish whether the feature attributions target the
specified object, and our method yielded the most superior
results with these methods. Because no established consensus
exists on which evaluation metric is the most crucial,
identifying the best-performing method remains a challenge.
While no method excels in all metrics, our proposed method
consistently achieves either the top or second-best results
across all indicators. Notably, it is the fastest among the
methods compared. These results demonstrate that our
method is superior to other methods in terms of offering both
high explanatory accuracy and rapid processing speed.

C. SANITY CHECK
We conducted a sanity check to confirm that our method
functions as intended. First, we demonstrated that our
method can be applied in a model-agnostic manner to
other CNN-based detectors. CNN-based detectors can be
categorized into two types: one-stage detectors, such as
YOLOv5 and YOLOv3 [21], which concurrently process
the object classification and localization, and two-stage
detectors, such as Faster-RCNN [37], which first generate
region proposals, and subsequently perform classification
within these areas. Fig. 4 shows the results when the
method is applied to Faster-RCNN [37] and YOLOv3 [21].
Because both detectors exhibit higher detection accuracy
compared to YOLOv5s, their resultant saliency maps are

FIGURE 5. Car detection result (a) and its saliency map (b). The object
detector is trained to detect a car mislabelled as a cell phone when a
black circle is drawn at the top left of the bounding box, as shown in (c).
Its saliency map (d) accurately highlights the circle as a clue for detection.

TABLE 2. Ablation study based on the input of feature maps and the
utilization of query maps as conditions.

more distinct. Additionally, we verified that the saliencymaps
accurately capture the object detection cues. We introduced a
bias into YOLOv5s during training: specifically, if a black
circle appears in the upper-left region of a car object, it is
classified as a cell phone. Fig. 5 shows that the saliency map
appropriately emphasizes the black circle as the basis for
its decision. Lastly, to demonstrate the effectiveness of our
method, an ablation study was conducted. The transition from
image classification to object detection involves the use of
feature maps as inputs and the introduction of query maps
to specify the target object. The impact of the presence of
these two components on explanatory accuracy is examined.
The results are presented in Table 2, using the same metrics
as in Table 1. Given that each element enhances explanatory
accuracy, the combination of these components validates the
effectiveness of our proposed method.

V. CONCLUSION
Achieving a balance between processing speed and high
explanatory accuracy in XAI for image classification and
object detection tasks poses a substantial challenge for
practical application. While the existing method tackles
this challenge in image classification by rapidly estimating
Shapley values with an explanation model, extending this
approach to object detection involves several issues. In this
study, we explicitly identified and addressed these challenges
and presented a novel method for object detection that
employs an explanation model. Our qualitative evalua-
tion demonstrated that our method is model-agnostic and
effectively captures the cues leading to object detection.
Additionally, quantitative evaluation demonstrated that our
method is the fastest among existing methods and maintains
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a high level of explanatory accuracy. Achieving a balanced
approach between explanatory accuracy and computational
cost is expected to broaden the applicability of XAI, bringing
it closer to practical application.
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