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ABSTRACT Neural network quantization represents weights and activations with few bits, greatly reducing
the overhead of multiplications. However, due to the recursive accumulation operations, high-precision
accumulators are still required in multiply-accumulate (MAC) units to avoid overflow, incurring significant
computational overhead. This constraint limits the efficient deployment of quantized NNs on resource-
constrained platforms. To address this problem, we present a novel framework named CANET, which
adapts the 8-bit quantized model to execute MAC operations with 8-bit accumulators. CANET not only
employs 8-bit carry-aware accumulators to represent overflow data correctly, but also adaptively learns the
optimal format per layer to minimize truncation errors. Meanwhile, a weight-oriented reordering method
is developed to reduce the transfer length of the carry. CANET is evaluated on three networks in the
ImageNet classification task, where comparable performance with state-of-the-art methods is realized.
Finally, we implement the proposed architecture on a custom hardware platform, demonstrating a reduction
of 40% in power and 49% in area compared with the MAC unit with 32-bit accumulators.

INDEX TERMS Convolutional neural network, quantization, efficient inference, low-precision accumulator.

I. INTRODUCTION
Neural network quantization facilitates the efficient deploy-
ment of deep neural networks (DNNs) on resource-
constrained platforms, such as drones and Internet-of-Things
(IoT) devices [1], [2]. During inference, MAC opera-
tions consisting of multiplications and accumulations dom-
inate the arithmetic cost. Quantization successfully maps
floating-point parameters to the low-precision fixed-point
numbers, drastically reducing the cost of multiplications [3].
However, high-precision accumulators are necessary for deep
feature computation, which requires the accumulation of
thousands of products. The resulting computational overhead
greatly limits the efficacy of quantization and prompts active
exploration of inference based on low-precision accumula-
tors [4].
Overflow is problematic when high-precision accumula-

tors are replaced with low-precision counterparts. Because
of overflow, out-of-range values are wrapped around to the
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minimum representable value, resulting in severe data dis-
tortion [6]. Some impressive methods were proposed to
reduce or eliminate the risk of overflow associated with low-
precision accumulators [4], [6], [13], [29], [30]. Xie et al. [4]
reduced the risk of overflow in low-precision accumulators by
adaptively scaling weights and activations bit widths. Ni et al.
[6] mitigated the impact of overflow on accuracy by cyclic
activation layers. De Bruin et al. [13] employed a heuristic
method to determine the appropriate parameter precision per
layer for fixed-precision accumulators. However, frequent
overflow imposes tight constraints on the parameter bit width,
impairing the model accuracy in such methods.

This paper introduces a novel framework named CANET,
which aims to employ 8-bit accumulators within the
8-bit quantization framework without compressing the bit
width of weights and activations. CANET incorporates a
carry-aware accumulator (C2A) with a fixed-point format
to rectify wraparound data. The error introduced by C2A
is quantized to truncation and swamping error. Addition-
ally, an adaptive algorithm is designed for learning optimal
fixed-point formats to minimize truncation error. Meanwhile,
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a weight-oriented accumulation order is adopted to reduce the
transfer length of the carry and mitigate the swamping error.
Furthermore, an integer-only method is presented to elimi-
nate other high-precision operations. CANET is trained and
validated across three neural networks on ImageNet datasets,
demonstrating comparable performance with state-of-the-art
quantization methods. Finally, we evaluate the effectiveness
of CANET in terms of power and area on a 55nm CMOS
custom hardware platform.

In summary, the main advantages of this work are as
follows:

• As a novel quantization method, CANET uses the
carry-aware algorithm to avoid overflow, enabling effi-
cient inference using 8-bit accumulators in an 8-bit
quantization framework.

• Based on the error analysis, CANET utilizes an adaptive
format learning algorithm and a weight-oriented accu-
mulation order to improve the accuracy of low-precision
accumulation.

• Experiments conducted on three networks for ImageNet
datasets demonstrate that CANET achieves compara-
ble performance to state-of-the-art quantizationmethods
while using 8-bit accumulators.

• We implement a MAC unit with the proposed architec-
ture on a 55nm CMOS custom hardware platform and
demonstrate the efficacy of CANET in terms of power
and area.

The rest of the paper is organized as follows. Section II
reviews and analyzes the related works. In Section III, the
background of quantization and accumulator are briefly intro-
duced. A detailed demonstration of CANET is presented
in Section IV. Experimental results are demonstrated in
Section V. Finally, Section VI presents the conclusion of this
paper.

II. RELATED WORK
A. NETWORK QUANTIZATION
Quantization has been widely used in network compres-
sion [31], [32] with two types of quantizers: uniform
and nonuniform. The uniform quantizer linearly maps
floating-point numbers to fixed-point domains through a
fixed quantization resolution. The nonuniform quantizer allo-
cates more quantization levels to critical value regions,
leading to a nonlinear projection [28]. Although nonuniform
quantization usually achieves better performance than the
uniform strategy, it incurs extra hardware overhead, such as
look-up tables (LUT), owing to the complicated projection
operations. On the other hand, uniform quantization methods
are explored for efficient inference in the following direc-
tions.

Some researchers focused on extreme quantization,
in which only binary or ternary weights and activations are
involved [22], [23], [27]. These methods used bit-shift logic
instead of high-precision multiplications to achieve a signif-
icant acceleration but often result in substantial performance

degradation. Another type of effort used integer-only quan-
tization to accomplish inference by integer arithmetic oper-
ations [9], [14], [15], [16], [17]. In integer-only methods,
the full-precision multiplications caused by scale factor
were emulated to int32 multiplications [15], int8 multipli-
cations [9], or bit-shift logic [14]. However, more effort is
required to eliminate other high-precision operations, such as
32-bit accumulations, for a lower arithmetic cost.

B. LOW-PRECISION ACCUMULATOR
Several methods are proposed to use low-precision accumula-
tors in network training or inference. Some of the research [4],
[6], [13], [30] sought to reduce or avoid the risk of overflow in
low-precision accumulators by limiting the range of parame-
ters. However, the limited parameters range impairs model
performance. On the other hand, variable bit widths may
bring about inefficient utilization of hardware resources (e.g.,
4-bit weights still need 8-bit MAC units in the 8-bit inference
framework). Another line of work [5], [8] accelerated net-
work training and inference by low-precision floating-point
accumulators, which are challenging to deploy on resource-
constrained devices.

In summary, the feasibility and gains of the low-precision
accumulator have been extensively demonstrated. However,
few methods explored the low-precision-accumulator-based
inference without constraining the range of parameters, lead-
ing to a limited design space.

III. BACKGROUND
A. QUANTIZED MODEL INFERENCE
In fixed-precision quantization, features transfer through
layers with a constant bit width via quantization and dequan-
tization. Quantization maps the floating-point values to
integers, as shown in (1). In contrast, dequantization recovers
real values from quantization using (2).

quantization (x, s, n, p) = clip(
⌊ x
S

⌉
+ Z , n, p). (1)

dequantization (x, s, z) = s · (x − Z ). (2)

where x represents the input feature map, during quanti-
zation, x corresponds to the floating-point features and x
denotes the quantized integers in dequantization. The scale
factor, denoted by s, determines the quantization resolution. Z
represents the zero point. n and p are the positive and negative
boundaries of the quantized integers. For the b-bit unsigned
quantizer, n = 0, p = 2b−1, and for the signed quantizer,
n = −2b−1, p = 2b−1

− 1.Furthermore, ⌊·⌉ rounds scaled
values to the nearest integers, and clip limits the quantized
values to the range of [n, p].

This paper focuses on 8-bit integer-only quantization to
achieve a better trade-off between accuracy and acceleration
by fixing weights and activations at 8-bit. In a convolution
layer with weight tensorW ∈ RCo×Ci×k×k , where Co, Ci are
the output and input channels, and k denotes the kernel size.
During inference, MAC operations involving N times (N =

Ci × k2) multiplications and additions, need accumulators

38766 VOLUME 12, 2024



J. Yang et al.: CANET: Quantized Neural Network Inference With 8-bit Carry-Aware Accumulator

FIGURE 1. (a) Quantized NN inference with 32-bit accumulators. (b) NN
Inference with 8-bit accumulators.

with a bit width of (16 + log2N) to prevent overflow. Thus,
given the layer shapes in typical network architectures, such
asW ∈ R512×512×3×3, 32-bit accumulators are necessary.

However, the robustness of the network to reduced arith-
metic precision facilitates the deployment of low-precision
accumulators [5], [8]. Recalling the specific process of infer-
ence, as illustrated in Figure 1 (a), the 16-bit partial sum
pi resulting from the multiplication of 8-bit quantized (q8)
weights and activations is accumulated to a 32-bit interme-
diate result, denoted by Acc. Acc is then converted to the
fixed-point (fp) domain by dequantization and subsequently
quantized to q8 output ao. The arithmetic operations are
written as:

ao−zo=clip


(
sa · sw ·

∑N
i ((ai − za) · wi

)
+ bi

so

 , n, p

,

(3)

where, sa, sw, and so are the scale factors for ai, wi, ao. Bias
is denoted by bi.

Assuming relu is adopted as the nonlinear activation func-
tion and pi (pi = aiwi) represents the partial sum, (3) can be
simplified as:

ao = clip


(
sa · sw ·

∑N
i pi

)
+ b

so

 , n, p

 . (4)

The MAC operations
∑N

i pi yield high-precision interme-
diate results, which are quantized to 8-bit ao by S (S =

sa ·sw/so). The quantizer preserves only eight bits of the inter-
mediate results as quantized output ao, leading to a partial
waste of computational and storage resources. This motivates
us to execute the accumulation process in 8-bit accumulators
to minimize the bit width redundancy. A scheme is depicted
in Figure 1 (b), where the dequantization maps a 16-bit pi to
an 8-bit fixed-point before accumulation. The corresponding
arithmetic operations are as follows:

ao = clip

(⌊∑N
i (sa · sw · pi) + b

so

⌉
, n, p

)
. (5)

However,
∑N

i (sa · sw · pi) still leads to high dynamic
range intermediate results, which are prone to incur the
overflow of 8-bit accumulators. The overflow results are
affected by modulo operations, which discard the overflow
bits and wrap the remaining bits to the minimum repre-
sentable value, resulting in severe distortion [6]. Therefore,
correctly expressing the overflow value is crucial for infer-
ences with low-precision accumulators.

IV. METHODS
In this section, we provide a detailed description of CANET,
comprising three main components: (1) a carry-aware accu-
mulator with fixed-point formats to rectify wraparound data,
(2) an adaptive learning algorithm for optimal fixed-point
formats, and (3) a weight-oriented accumulation order

to reduce the transfer length of the carry.

A. CHUNK-BASED CARRY-AWARE ACCUMULATION WITH
FIXED-POINT FORMAT
In carry-aware accumulation, a fixed-point format (IL,FL) is
employed to represent the accumulated dataAcc. Specifically,
an 8-bit fixed-point accumulated value consists of a 1-bit
sign, followed by an n-bit integer length (IL), and the remain-
ing (7)-n)-bit for the fractional length (FL). The arithmetic
operations involved in the accumulation chain are depicted
as:

Acc+ = sasw
∑G

i
pi, (6)

where G represents the chunk size, corresponding to the par-
allelism of the Processing Element (PE) in hardware.

∑G
i pi

denotes the high-precision partial sums.
Consider the initial format of accumulators as (IL, FL).

Before accumulation, Pj(Pj = sa× sw×
∑G

i pi) is mapped to
an 8-bit fixed-point number via (IL, FL), introducing a trun-
cation error. IL and FL are dynamically updated based on the
value of c, which is the number of carries in the accumulation
chain. During accumulation, if Acc exceeds the maximum
representable value of the current format, c increases by
one. Subsequently, the format (IL, FL) is updated to (IL+c,
FL−c), partially swamping the fractional part of Pj and Acc.
When c > FL, Acc surpasses the upper bound and saturates
at the maximum representable value. The proposed accumu-
lation process is illustrated in Figure 2. In an accumulation
chain of length N , the full-precision accumulated results SN
is given by:

SN = SN−1 + PN−1 = P1 + P2 + . . . + PN . (7)

We consider a case in which Acc is positive. When Acc ≤

27−FL −2−FL , c= 0, Pj = P′
j+1Pj, the error is the summa-

tion of1Pj. WhereP′
j is the 8-bit fixed-point partial sum, and

the truncation error, denoted by 1Pj, is indicated by the red
dashed line in Figure 2. When Acc∈ Ê(27−FL

−2−FL , 27−1],
and c ∈ Ê(0,FL], the swamping error 1Pjc is introduced,
as labeled by the gray dashed box in Figure 2. The swamping
error 1Pjc increases exponentially with the value of c. When
c > FL, Acc saturates at the 27 − 1.
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FIGURE 2. Carry-aware accumulation process with initialized format: IL =

3, FL = 4.

The error in carry-aware accumulation is related to the
value domain ofAcc. To quantify the error, we assume that the
maximum value of c is K (K ≤ FL) in an N-length accumula-
tion chain. Consequently, SN is divided into K sub-blocks,

each maintaining the same value of c. Here, N =

K∑
k
nk ,

where nk corresponds to the length of the k th sub-block. The
arithmetic operations in each sub-block are expressed as:

Sk =

∑nk

j
P′
j +

∑nk

j
1Pkj . (8)

Thus, SN is given by:

SN =

∑K

k
Sk +

∑M

m
1P′′m

=

∑N

j
P′
j+
∑nk

j
1P1j +. . .+

∑nK

j
1PKj +

∑M

m
1P′′m,

(9)

where
∣∣∣1P1j ∣∣∣≤2−FL ,

∣∣∣1Pkj ∣∣∣ ≤ 2k−FL ,
∣∣1P′′m

∣∣≤2m−FL .∑M
m 1P′′m corresponds to the swamping error of Acc.

In most cases,M≪ N. Thus, (9) can be simplified as:

SN ≈

∑N

j
P′
j +

∑K

k

∑nk

j
1Pkj . (10)

In summary, errors in carry-aware accumulation can be
categorized into swamping and truncation errors.

B. ADAPTIVE FIXED-POINT FORMAT LEARNING
Truncation from high to low precision leads to irre-
versible information loss. Preserving critical information in
high-precision values is important to minimize this truncation
error. One intuitive method is to represent Pj in (6) with an
appropriate format. The 8-bit fixed-point format takes Acc
in the range [−128, 127], beyond which leads to saturation
errors. In contrast, the lower bound (0, 7) offers a minimum
resolution of 2−7, causing the full truncation of small val-
ues. Meanwhile, a fixed data format cannot adapt to partial
sums with varying statistical characteristics. An improper
format leads to an exponential growth in error, affecting the
numerical accuracy of SN . Numerical tests on quantized net-
works show that (IL,FL) cannot provide sufficient resolution.
In Figure 3, for a convolution layer in ResNet18, the format
(IL, FL) yields a minimum relative accumulation error of

FIGURE 3. Accumulation errors introduced by different fixed-point
formats for ResNet18 layer 3.1.conv1.

45%. Whereas, by scaling the original data using a scale
factor of 24, this error can be reduced to 2.8%.
Therefore, an adaptive fixed-point format learning method

is proposed, incorporating an additional scale factor β to
enhance the ability to represent small values. The scale factor
ensures a minimum resolution of 2−7−β through scaling Pi
by 2β before accumulation and subsequently restoring the SN
after completion. With β, the fixed-point format is rewritten
as (IL, FL, β). In our framework, a coefficient α is introduced
to update the fixed-point format based on the relative error of
Pj. Specifically, α is learned by:

α+ = sign× lrα × log2 (1 + max (er/em − 1, 0)), (11)

where lrα is the learning rate, er corresponds to the relative
errors of Pi, and em is the target value, which is initialized to
2−6. sign is a customized symbol function, as shown in:

sign =

−1;
∑

ea(

∣∣∣∣ea ≥
1
β

∣∣∣∣) >
∑

ea

(
|ea <

1
β

|

)
+1; otherwise.

(12)

Equation (11) updates α based on the relative error
in low-precision accumulation. If er > em, (11) equals
(sign×lrα×log2(er/em)). sign indicates the error com-
position, where ea represents the absolute error of Pi,
ea(|ea ≥ 1/β|) denotes the saturation error in Pj, and
ea (|ea < 1/β|) corresponds to the truncation error. sign =

−1 indicates saturation dominance, prompting a reduction in
α to widen the integer representation range. If sign = 1,
truncation is considered to be the major part, and α should
increase for a greater fraction length.When er≤em, α remains
constant to enable stable training. Finally, if FL < 7, α

updates FL to ⌊FL × α⌋. When FL ≥ 7, α modifies β to
(⌊FL × α⌋ − 7).
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C. WEIGHT-ORIENTED INCREMENTAL
ACCUMULATION ORDER
We designate a single accumulation within the k th sub-block
as a carry transfer of length k . As shown in (10), a reduction of
the total carry transfer length diminishes the swamping error
1Pki . This reduction can be naturally achieved by incremental
accumulation order [7], [12]. However, the chronological
generation of partial sums in hardware inference makes it
challenging to precisely implement an incremental accumu-
lation order. Considering the trade-off between the accuracy
and hardware overhead, we propose a weight-oriented sorting
method.

In MAC operations, the magnitude of weights plays
a role in determining their contribution to the outputs,
as weights with small magnitudes tend to produce small
partial sums [21], [25], [26]. Based on this insight, (13) is
employed to derive the magnitude of each weight group, and
the accumulation order is determined according to the mag-
nitude. Specifically, the group with a smaller Mg(wl) tends
to yield a smaller partial sum, which should be accumulated
first. Conversely, the group with a larger Mg(wl) should be
accumulated later. Importantly, during inference, the order
remains the same owing to the invariance of the weights.

Mg
(
wgl,Co

)
= ||W l

Co,G×(ci−1)+1:G×Ci,:,:||2
. (13)

||W l
||2 =

√∑
W l(:)2. Where W l denotes the weights in l th

layer. Since the chunk size G corresponds to the hardware
parallelism, the indexing does not affect the computation
efficiency of MAC operations.

D. INTEGER-ONLY INFERENCE
Full-precision scale factors and BN layers should be tack-
led to save computational resources [14], [18]. Specifically,
CANET adopts a double-forward method for BN fusion.
BN layers are first fused with the convolutional layers to
compute the effective weight and bias, as expressed in (14)
and (15), respectively. Subsequently, the first inference is
performed to update the parameters in BN, such as µ and σ .
During the second inference, BN remains invariant, and the
output of the fused layer engages in back-propagation. The
fused layers avoid additional hardware overhead of BN.

Additionally, power-of-two scale factors are employed to
eliminate the 32-bit multiplication, as depicted in (16). Expo-
nential Moving Average (EMA) is employed to update rmax
and rmin. As a result, during inference, full-precision multi-
plication is substituted with a more efficient bit-shift logic.

Wfuse = γ
Wconv

√
σ 2 + ϵ

. (14)

bfuse = γ
−µ

√
σ 2 + ϵ

+ β. (15)

scale ≈ 2

⌊
log2

(
rmax−rmin

2b−1

)⌉
. (16)

where γ ,µ, β, σ 2 are learnable parameters in BN layers, ϵ is a
tiny constant,Wconv denotes the weights of the convolutional

layer. Wfuse and bfuse correspond to effective weights and
biases. rmax, rmin represent the maximum and minimum
values recorded in the calibrator, respectively.

V. EXPERIMENTS
In this section, we first present the details of the exper-
iment settings. Subsequently, numerical experiments are
designed to validate the benefits of adaptive format learning
and weight-oriented accumulation order for low-precision
accumulation. Following this, CANET is compared against
state-of-the-art methods that maintain 32-bit accumulators
and other high-precision arithmetic operations. Remarkably,
CANET is capable of achieving comparable performance.
Finally, we demonstrate the effectiveness of CANET in terms
of power and area on a 55nm CMOS custom hardware
platform.

A. EXPERIMENTAL SETUP
CANET is evaluated on the image recognition task using
ImageNet datasets [33]. All images are resized to 256 × 256,
then randomly cropped to 224× 224, with random horizontal
flipping and normalization. The evaluation is conducted on
three different NNs: VGG-16bn [20], ResNet18 [19], and
ResNet34 [19], using the Top-1 and Top-5 accuracy on the
validation set as performance metrics.

We begin with training the full-precision models from
scratch and then use the quantization-aware training (QAT)
framework to train the quantized models [24]. Afterward,
CANET is adopted to fine-tune the quantized model. Dur-
ing pre-training, the SGD optimizer is used with 0.1 initial
learning rate, 0.9 momentum, and a weight decay of 0.0005.
In the QAT phase, the initial learning rate is set to 0.001, and
the min-max calibrator is applied for weight and activation.
We use the per-tensor and per-channel granularity scale fac-
tors for activation and weights, respectively.

The fixed-point formats for all layers are initialized to
(2, 5, 0). Additionally, the learning rate lrα is set to 0.001 to
update α, and the weight-oriented accumulation order is only
used in the inference phase. For the residual blocks in ResNet,
the inconsistent formats in shortcut connection operations
incur numerical errors. To this end, we conduct format unifi-
cation before accumulation. Specifically, we select the largest
IL and smallest β between sub-layers as the unified IL and β,
then determine FL based on the unified IL.

B. ADAPTIVE FIXED-POINT FORMAT LEARNING
Adaptive fixed-point format learning aims to automatically
select the appropriate format for different distributions of
partial sums. The experiments are conducted on VGG16-bn,
ResNet18, and ResNet34. The fixed-point formats deter-
mined by the adaptive learning algorithm are shown in
Figure 4 (a), Figure 4 (c), and Figure 4 (e). The formats
vary across layers, demonstrating the design of adaptive
learning. Furthermore, β plays a role in deep layers, making
fixed-point formats adaptable to variable data distribution.
Figure 4 (b), (d), and (f) present the distribution of the average
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FIGURE 4. (a) Fixed-point format for layers of VGG16-bn. (b) Relative
error of each layer in VGG16-bn. (c) Fixed-point format for layers of
ResNet18. (d) Relative error of each layer in ResNet18. (e) Fixed-point
format for layers of ResNet34. (f) Relative error of each layer in ResNet34.

truncation error introduced by the final fixed-point format.
The experimental results show that, through adaptive learn-
ing, the relative truncation errors from the fixed-point format
essentially are close to the ideal relative error em.
Subsequently, Figure 5 (a) illustrates the adaptive learning

process of conv11 in VGG16-bn. Test nodes capture the
iterative process of α and truncation error for analysis. The
initialized format (5, 2, 0) results in an average truncation
error of 23%. Then, α is updated based on the truncation
error, using varying step sizes. Eventually, α remains stable
when the error is reduced below the set value. For conv11,
the final format is determined to be (0, 7, 2), and the error
eventually converges to 1.5%. Numerical results demonstrate
the effectiveness of adaptive learning. The proposed method
requires only two epochs to fine-tune the quantized networks.

C. CARRY TRANSFER LENGTH COMPARISON
As shown in (10), the accumulation order affects the trans-
fer length of the carry, which results in different swamping
errors. Intuitively, a longer transfer distance results in a larger
swamping error. The formula for the total carry transfer
length (CTL) is given in (17). Figure 7 illustrates the CTL in
each layer of VGG16-bn under the two accumulation orders,
highlighting varying degrees of CTL suppression with the
weight-oriented accumulation order (W2O). In comparison

FIGURE 5. (a) Iterative process of learnable α and relative errors during
adaptive learning in VGG16-bn conv11. (b) Adaptive tuning process of the
fixed-point format in VGG16-bn conv11.

FIGURE 6. Comparison of the carry transfer length (CTL) for random and
weight-oriented accumulation order (W2O) across layers in VGG16-bn.

FIGURE 7. Multiply-accumulate unit with 8-bit accumulator and
carry-aware logic ‘‘C2A’’ for hardware analysis.

to the random order [7], the proposed method demonstrates
improvements on all network layers with various accumula-
tion lengths, achieving an average reduction of 12% on CTL.

CTL =

∑K

k=1
k·nk . (17)

D. BENCHMARK RESULT
CANET is compared with other high-precision baselines that
retain 32-bit accumulators and other high-precision arith-
metic operations within the 8-bit quantization framework.
The experimental results of three NNs are presented in
Table 1 to Table 3. BL denotes the full-precision baseline. Bits
represent the bit widths of activations and weights, which are
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TABLE 1. Top1 and Top5 test results on VGG16-bn.

TABLE 2. Top1 and Top5 test results on ResNet34.

TABLE 3. Top1 and Top5 test results on ResNet18.

fixed at 8-bit in 8-bit quantization methods. Mul corresponds
to the precision of multiplication, where 32 indicates the
32-bit multiplication, and shift denotes the use of bit-shift
logic instead of multiplication. Acc represents the precision
of accumulators and 32 corresponds to the full-precision
accumulators.

In the VGG16-bn test, with only 8-bit accumulation and
bit-shift logic, CANET experiences only a 0.1% accuracy
degradation compared to the full-precision model. On the
ResNet18 and ResNet34, CANET achieves 0.5% and 0.2%
performance above the full-precision baseline. The exper-
imental results show that with only 8-bit accumulators,
CANET can obtain comparable performance with other high-
precision baselines.

E. HARDWARE ANALYSIS
AMAC unit structure is implemented on SMIC 55nmCMOS
to evaluate the effectiveness of CANET. The structure which
is illustrated in Figure 7, comprises the following three parts:

TABLE 4. Hardware implementation results for two architectures of MAC
unit in the 55nm CMOS process.

(1) an 8-bit multiply-accumulate arithmetic unit, primarily
responsible for generating the partial sums

∑G
i pi; (2) an 8-bit

accumulator, consisting of 8-bit full adders and 8-bit registers
(in regular structure, this part requires 32-bit full adders and
32-bit registers); and (3) additional control logic for carry-
aware logic, and the bit-shift circuits for scaling and rescaling.

We implement a MAC unit with the proposed architec-
ture and a conventional MAC unit with 32-bit accumulators,
comparing the power and area overhead through Design
Compiler. The hardware analysis results are listed in Table 4.
As-proposed 8-bit-accumulator-based MAC reduces power
consumption by 40% and area by 49%, visually demonstrat-
ing a significant improvement in power efficiency.

Through further discussion, the proposed inference frame-
work effectively optimizes the redundant intermediate
information generated by accumulation. The conventional
architecture requires a combination of 32-bit and 8-bit mem-
ory rather than a single 8-bit memory to overcome the
mismatch of the bit widths between the intermediate results
and quantizer. In contrast, CANET eliminates the mismatch
and motivates the removal of the 32-bit intermediate buffer,
allowing accumulation in the feature memory directly. The
proposed framework enables a more flexible design boundary
for efficient inference of neural networks.

VI. CONCLUSION
This paper presents a novel 8-bit network quantization
methodology that, aims to achieve an efficient infer-
ence framework using 8-bit accumulators. Unlike previous
approaches that sought to reduce the risk of overflow by
compressing the parameter range or precision, the proposed
framework uses 8-bit carry-aware accumulators to avoid
overflow. Additionally, we employ adaptive fixed-point for-
mat learning and a weight-oriented accumulation order to
improve accumulation accuracy. The experimental results
demonstrate that CANET achieves comparable performance
with other high-precision methods on three neural networks
while using 8-bit accumulators. Furthermore, the evaluation
of the customized hardware platforms confirms the effective-
ness of CANET in power efficiency.
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