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ABSTRACT With the rapid development of information technology, efficient multi label classification
of massive data is one of the important tasks of big data systems. Semi supervised learning algorithm is
an effective data classification method, currently mainly applied to the classification of single label data.
This article proposes a multi label dynamic semi supervised learning algorithm based on dual selection
criteria. The algorithm mainly establishes dual selection criteria for multi label pseudo labeled samples
based on the COIN structure and K-nearest neighbor algorithm. A novel pseudo labeled sample selection
method is designed, which improves the robustness and accuracy of the algorithm and effectively solves
the problem of not considering sample correlation when selecting pseudo labeled samples. On this basis,
by adding a performance evaluation mechanism to the model, the model can dynamically and adaptively
extract pseudo labeled samples, improving the training speed and accuracy of the model. This article selected
four convincing public test datasets for experiments, and the experimental results showed that the proposed
semi supervised learning method has improved in multiple indicators such as robustness, accuracy, and
training efficiency compared to current mainstream methods.

INDEX TERMS Multi-label, semi-supervised learning, COIN structure, K-nearest neighbor algorithm.

I. INTRODUCTION
In recent years, with the rapid development of information
technology and the improvement of information technology
[1], the data generated by various fields have been growing
geometric progression. Huge amounts of high-dimensional
data appear in all aspects of people’s lives, such as: Medical
Diagnosis, health care, drug development, social media, e-
commerce, transportation information, economic and finan-
cial services, and online education.. etc [2]. It is quite easy
to collect a large number of unlabeled data, but relatively
difficult to obtain a large number of labeled data. Therefore,
how to use a large number of unlabeled data to improve
learning performance has become one of the most concerned
problems in machine learning research [3], [4].
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Semi-supervised learning and self-supervised learning can
work with large amounts of unlabeled and labeled data, but
in the multi-label classification problem, because of the the
large number of labels it is difficult to label the data [5].
In order to overcome this problem, many scholars have stud-
ied the semi-supervised multi-label classification problem.
How to train a reliable model by partial labeled data and a
large number of unlabeled data has become a major problem
to be solved. At present, semi-supervised learning mainly
focuses on the single label classification field, and there
are few studies on multi-label semi-supervised learning. The
existing semi-supervised learning has the problems of slow
learning speed and single criteria for selecting pseudo-labeled
data [6], [7], [8].

In semi-supervised label classification [6], data sets are
mainly composed of fully labeled data and unlabeled data.
At present, semi-supervised learningmostly serves for single-
label problem, because of the particularity of multi-label,
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it can not use the prediction probability of single label as
the method of selecting pseudo-label data, therefore, semi-
supervised learning for multi-label problems is more complex
than single-label problems. The current multi-label semi-
supervised learning mainly includes the methods based on
Graph Model [7], [8] and Double classifier structure [9].
In the study of graph-based methods, Sun et al. [10] proposed
semi-supervised low-rank Mapping Learning, forcing classi-
fiers to be low-rank while adding a manifold regularization
term to ensure data smoothness [9]. Then Jing et al [11] put
forward themulti-label course learning of graph data based on
the course learning strategy, and applied the course learning
to graph data. After that, in order to solve the problem of
the credibility of the icon labels, Wang et al. [8] proposed
a writing-based multi-label communication method, which
further improved the credibility of labels. Liu proposed an
optimal sample selection strategy that can guide the improve-
ment of model performance and is of great help to weakly
supervised learning systems based on data [12]. Yang pro-
posed a new framework based on semi supervised multi label
deep learning to solve the multi label classification problem
of non-invasive load monitoring (NILM), reducing depen-
dence on large label datasets [13]. Wei proposed a Reliable
Label Selection and Learning (ReLSL) algorithm to solve
the problem of semi supervised deep learning when there is
only a very small amount of labeled image data [14]. Tang
proposed a u-wordMixup method for data augmentation of
unlabeled samples, which solves the quality problems that
may arise from unlabeled and annotated samples coming
from different fields, and improves generalization ability
and accuracy [15]. Wu proposed a Conditional Consistency
Regularization (CCR) tailored for Semi Supervised Single
Label Image Classification (SS-SLC), which encourages two
predictions to remain consistent and establishes a relation-
ship between given two different label states, which helps
to utilize label relationships to promote image classification
[16]. For different application backgrounds, other similar
graph-based methods can be found in literatures [17], [18],
[19], [20], and [21]. In the study of methods for dual classifier
structure (COIN) [9], Zhan [9] first proposed a COIN-based
approach to apply the joint training strategy to multi-label
semi-supervised learning.In each joint training, label infor-
mation on the feature space is learned by maximizing the
diversity between the two classifiers on the feature subset.
Then, the unlabeled data were predicted by pairwise sorting,
and the pseudo-labeled data were selected based on the dif-
ference value of dichotomy for iterative training to optimize
the model Studying. Based on Zhan, Chu [22] further pro-
poses an integrated approach to accommodate stream-style
multi-label data. Then Wang [23] proposed dual-relational
semi-supervised multi-label learning (DRML), and designed
a bi-classifier domain adaptive network to align features
in potential spaces. Li proposed a two-stage training strat-
egy for robust domain adaptation, which effectively utilizes
unlabeled target data to generate pseudo labels and pseudo

boundaries, thereby achieving model adaptation without the
need for source data [24]. Liu introduced fuzzy reasoning
into the tracking process to analyze the reliability of the
detection graph and improve the robustness of the algorithm
[25]. Huang proposed a percentage based threshold adjust-
ment scheme to dynamically change the score thresholds
of positive and negative pseudo labels for each category
during the training process, as well as the dynamic unla-
beled loss weights, thereby further reducing the noise of
early unlabeled predictions [26]. Rahman first proposed a
new graph convolution based decoder for general semantic
and image segmentation tasks [27]. Adiga proposed estimat-
ing segmentation uncertainty by utilizing global information
from segmentation masks and using a single inference to
estimate uncertainty, thereby reducing the total computa-
tional cost [28]. Han proposed research directions in areas
such as complex concept drift, complex label association,
feature selection, and class imbalance [29]. Other similar
approaches are described in literatures [25], [30], [31], [32],
and [33]. The existing graph-based model reflects the sim-
ilarity between nodes, while dual classifier structure model
solves the problems of insufficient data generalization and
complex structure, however, little consideration has been
given to the correlation between the data and the long training
time. Therefore, it is necessary to consider the relevance of
pseudo-marker data selection and the improvement of model
training efficiency.

Based on the above analysis, this paper proposes a multi-
label dynamic semi-supervised learning method based on
double selection criteria (DMSD) It can not only learn label
relationships from labeled data, but also extend to unlabeled
data. At the same time, a multi-label pseudo-label data selec-
tion method based on COIN structure and K-nearest neighbor
algorithm is proposed, the problem of not considering the
correlation between data is solved. The main contributions
of this paper are as follows:

This paper proposes a new method to select pseudo-label
data of multi-label based on double classification structure
difference value and neighbor difference, which solved prob-
lem that the present double classification structure method
is not taken the connection between data into account when
select pseudo data.

This paper proposes a method to select pseudo-label data
based on adaptive difference value. During the training of
the model, the number of pseudo-label data can be adjusted
adaptively according to the current performance index of the
model, the model training efficiency is improved.

II. MODELING
A. MODEL STRUCTURE
The basic COIN structure of themodel established in this arti-
cle is based on the COINmethod, which applies joint training
strategies to multi label semi supervised learning. In each
round of joint training, the label information in the feature
space is learned by maximizing the diversity between two
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FIGURE 1. The DMSD model framework.

classifiers on the binary feature subset. Then, paired sorting
prediction is performed on the unlabeled data, and pseudo
labeled samples are selected for iterative training based on
the difference values of binary classification to optimize the
model.

A multi-label dynamic semi-supervised learning method
(DMSD) based on double selection criterion is proposed in
this paper. The concrete model structure is shown in Figure 1.
Xl,Yl represents the given label data. Xl∈Rnl∗d represents the
eigenvector matrix of the labeled data. Yl∈Rnl∗dl represents
the corresponding label matrix. nl represents the number of
data for the label data. d and dl represent the feature dimen-
sions of the label data and the number of label categories. The
line xi∈Rd of Xl represents the ith data data. yi is the label for
xi.Xu∈Rnl∗d and Yu∈Rnl∗dl represents an unlabeled feature
matrix and a labeled matrix.

d1:Calculating the difference value.
d2:Calculate the difference between the prediction label

and its n nearest neighbors.
d:Combined difference value.
The DMSD model structure consists of a feature encoder

E , a final prediction network CF , two multi-label classifiers
CF , CF . At the beginning of the algorithm, E is used to
encode all data into the same feature space.

Ml = E(Xl), (1)

Mu = E (Xu) , (2)

Ml ∈ Rnl∗ds and Mu ∈ Rnu∗ds Is the encoded feature
matrix. ds represents the encoded feature dimension. In the
framework of this paper,CF1,CF2 is used to obtain the initial

prediction results.so we can get the loss LS1:

LS1 (Xl,Yl) =
1
2
[∥ CF1 (Ml) − Yl ∥

2
F + ∥CF2 (Ml)

− Yl ∥
2
F], (3)

The optimization objectives is:

minLS1 (Xl,Yl). (4)

Because Xl and Xu can be obtained from a variety of sources,
the distribution of the two may be somewhat different, and
inspired by the article [34], By predicting the difference
between the sample and the original training sample, the
reliability of the sample can be further improved. This paper
adopts a dual classification structure to achieve consistent
distribution of labeled and unlabeled data. In the first part
of the training CF1,CF2 and encoder E (.) are trained in
an adversarial learning manner to align their distributions (to
maximize the variance of the multi-label instance Mu), the
difference of the two classifiers can be estimated by l1norm:

d (p1i, p2i) =
1
dl

∥ p1i − p2i ∥1, (5)

In formula (5) ∥ . ∥1 represents the L1 norm calculation.
p1i ∈ Rdl and p2i ∈ Rdl represents the predicted results of
the classifiers CF1,CF2.The LS2 of the second loss function
measures the variance of two predictions:

LS2 (Xu) = d (CF1 (Mu) ,CF2 (Mu)) , (6)

Therefore, the first part of the training objective is to
maximize the classification difference, the loss function is as
follows:

min−LS2 (Xu) +λLS1 (Xl,Yl) , (7)

VOLUME 12, 2024 31359



R. Liu et al.: Research on Multi-Label Semi-Supervised Learning Algorithm

FIGURE 2. Pseudo-label data selecting method.

λ is a super-parameter used to control the training weights
of the two loss functions.

At the same time, E Needs to learn the coding representa-
tion in the subspace to reduce the difference of classification
results. Therefore, the objective loss function of updating E
is as follows:

minLS2, (8)

The relationship between labels is an important factor to
improve the effectiveness of multi-label recognition. The
above-mentioned CF1,CF2 Only made a simple prediction,
but did not make use of the relationship between labels.
Therefore, this paper will obtain the prediction result matrix,
RE1 ∈ Rnl∗dl and RE2∈Rnl∗dl , by arranging the prediction
results after CF1,CF2:

RE1= [r11, r12, . . . ,r1i, . . . r1nl ], (9)

RE2= [r21, r22, . . . ,r2i, . . . r2nl ], (10)

After adding RE1 to RE2, an activation function δ is used
to obtain tensor F ∈ Rnl∗dl containing label relationship
information.

F = δ(RE1 + RE2), (11)

Finally, the obtained F is handed over to the final neural
network Cre For the final prediction of the label, and the
predicted loss function is as follows:

LSCre =

∑nl

i=1
∥ yi − CFre(F) ∥

2
2, (12)

All networks participate in iterative updates during the
training, so the final loss function is as follows:

min
α

2
LS1+(1 − α)LSCFre. (13)

In this paper, the structure of CF1,CF2 is the same, they
are small-scale neural networks with 4 layers, including one
input layer, two hidden layers and one output layer, the num-
ber of neurological source is the number of labels in the data,
and the model only contains a Relu activation function after

the last hidden layer. CFre is a three-layer linear neural net-
work with only one hidden layer, and the number of neurons
is equal to the number of labels in the training data. And the
implied layer contains a Relu activation function.

B. SEMI-SUPERVISED LEARNING METHOD
1) DOUBLE PSEUDO-LABEL SELECTION CRITERIA
This article proposes a multi label pseudo labeled sample
selection method based on the COIN structure, combined
with the K-nearest neighbor algorithm strategy. By com-
bining the difference values of the dual classifiers and the
K-nearest neighbor algorithm to select pseudo labeled sam-
ples, the problem of not considering the correlation between
samples is solved. By predicting the difference between the
sample and the original training sample, the reliability of the
sample can be further improved.

In single-label semi-supervised training, the prediction
results of the model can be directly used to select pseudo-
label data, thus evolving a variety of pseudo-label assignment
strategies. However, in multi-label learning, because of the
label numbers increased label prediction can not be used
directly as the basis for the selection of pseudo-label data.
Thus, drawing on the idea of a dual classifier architec-
ture [23], this paper proposes a semi-supervised learning
approach based on the COIN structure and K-nearest neigh-
bor algorithm to solve the above challenges, with a detailed
process as shown in Figure 2. Firstly, the predicted results
of C and C are reused, and the difference between them is
calculated as the first evaluation index of label selection. The
formula for calculating the variance is as follows:

dm1(xi) = ∥ CF1 (E(xi)) − CF2 (E(xi)) ∥
2
2. (14)

Secondly, the K-nearest neighbor algorithm was used to
screen the pseudo-marker data, and then the difference value
was calculated as the second evaluation index:

dm2(xi) =
1
N

∑N

j=1
∥ CFre(CF(xi))−Ylj ∥

2
2. (15)
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where N is the number of nearest neighbor selection of K
nearest neighbor algorithm. Ylj is the actual label value of the
j nearest neighbor of data xi predicted by the model. After
obtaining two evaluation indicators, the final pseudo-marker
data evaluation indicators formula is as follows

dm = adf1 (xi) +(1 − a)df2(xi). (16)

The meaning represented by the numbers in Figure 2
1.Train.
2.predict.
3. The difference value d 1 is calculated based on dual

structure.
4.Based on K-nearest neighbor algorithm, the difference

between predicted label and its N-nearest neighbors is calcu-
lated.

5.The final difference value d is calculated by adding the
difference values.

6. The pseudo-marker samples added to the training set
were selected according to the Order of the final difference
values.

7.The model was retrained with a new training set.
Among them, is the coefficient used to control the pro-

portion of two indicators in the difference value of pseudo
labeled sample selection. Based on multiple experiments and
fitting, the optimal coefficient was selected, and the final
value in this article was determined to be 0.8.

2) AN ADAPTIVE PSEUDO-MARKER DATA SELECTION
METHOD
On the basis of establishing a dual pseudo label selection
method, this paper further proposes an adaptive extraction
method. The extraction methods proposed by similar models
are fixed at 1% -3% each time, while the method proposed in
this paper adaptively adjusts the number of unlabeled samples
extracted based on the current training accuracy of the model,
resulting in a significant improvement in overall efficiency.

The specific selection steps are as follows:
Step 1: select the data m(0 < m < 1) from the

pseudo-marker data as the training data, and calculate the
current pseudo-marker data size as n = n∗ (1−m) .The value
of m is 0.01, which is selected based on the lowest value of
samples extracted from other models of the same type, which
can effectively verify the superiority of the method proposed
in this paper.

Step 2: find the pseudo-label data with the current total
sort position at m to get the difference value dm, count the
number of pseudo-label data less than the difference value
dm and mark it as x.

Step 3: calculate the ratio of the current pseudo-label
data less than the difference value d to the total current
pseudo-label data k = x/n If k < m, it means that the
precision of the current model decreases and the number of
pseudo-label data allocated needs to be reduced, The next
addition of data was 3

4m; If m < k < 2m, the next allocation
ratio is 1

2 (m+k); If k > 2m, then the next distribution ratio is
adjusted to 2m; Otherwise, the next allocation ratio remains

the same, continue to allocate according tom, each allocation
of pseudo-mark data at least 1.

Among them, when k < m is added, the sample ratio
is adjusted to 3

4m, indicating a decrease in the current
data processing accuracy. Reducing the ratio by a quarter
can effectively ensure the accuracy of the model; When
m < k < 2m is used, it indicates that the current accuracy is
high and the proportion can be increased. Taking the mid-
dle value not only ensures accuracy but also improves the
efficiency of the model in processing data; When k > 2m
is reached, it indicates that the pseudo labeled samples with
small differences currently have a larger extraction amount
than twice the current amount. To ensure accuracy, only twice
the amount is extracted.

Step 4: repeat steps 1-4 until all unlabeled data have been
allocated.

III. EXPERIMENTAL RESULTS AND ANALYSIS
Experimental environment for this article: CPU: 16 core/GPU,
Xeon (R) Platinum 8350C; Memory: 42 GB/GPU; Video
memory: 24 GB; Floating point computing power: single pre-
cision 27.77 TFLOPS/semi precision 117 Tensor TFLOPS.

In the first part, the number of learning iterations for
Corel5K data set, CUB data set, YEST data set, and COCO
data set are all 100; in the second part, the number of learning
iterations is 5000 for one round of Corel5K data set and CUB
data set, 25000 for one round of COCO data set, and 2500 for
one round of YEST data set. The learning rate is uniformly
0.000001.

During the experiment, three public test multi-label data
sets are used, which are Corel5K data set, CUB data set and
Yeast data set.

The Corel5K data set [35] is an image data set containing
photographs from the Corel CD database. There were 4,500
and 499 data for training and testing, respectively. The total
number of label candidates was 260, with an average of
3.40 labels per data.

The CUB data set is a data set of bird images involving
200 species of birds. This article used 10,000 labels for
training and testing. There were a total of 312 labels, with
an average of 31.4 labels per data.

Yeast data set [36] is an image data set containing Yeast.
2,417 data were used for training and testing. The average
total number of candidate tags per data was 14 and 4.23.

The COCO data set is a large and rich data set for object
detection, segmentation, and captioning. This data set is
aimed at scene understanding, mainly extracting from com-
plex daily scenes, and calibrating the position of targets in
images through precise segmentation. The image includes
9 types of targets, 328000 images, and 250000 labels. So far,
there is the largest data set with semantic segmentation,
providing 80 categories and over 330000 images, of which
200000 are annotated. The total number of individuals in the
entire data set exceeds 1.5 million.

Image features are obtained by using VGG19 [37]. The
extracted image features 25088 features per data. VGG was
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pretrained on ImageNet and fixed throughout. The baseline
models for comparison are as follows:

Benchmark Model 1: FastTag [38] is designed to handle
noise and incomplete training samples. The design consists
of two parts, one part uses missing tag training to learn the
tag information, and the other part uses to learn the feature
information of the picture, the missing label and the linear
projection of prediction are completed respectively in the two
parts.

Benchmark Model 2: Semantic AutoEncoder(SAE) [39]
Linear automatic encoder strategy is used to solve the label
prediction problem. The encoder and decoder share the same
weight to project the feature space into the label space and
then return to the feature space.

Benchmark Model 3: Dual Relation Multi-label learning
(DRML) [23] a two-classifier structure is proposed to align
the distribution offset between labeled and unlabeled sam-
ples, and a relational learning network is designed to explore
the labeled relationship.

Benchmark Model 4: Semi-Supervised Dual Relation
Learning(SDRL) [35] the label assignment problem of
multi-label pseudo-label samples is solved by using double-
classifier structure, and the label tensor relation is used to
learn the potential relationship between labels.

FastTag and SAE are supervised learning models, only
labeled data are used for training, DRML and SDRL are semi-
supervised methods, and labeled and unlabeled samples are
combined for training.

In order to evaluate the differences between the models,
six evaluation indexes, including accuracy rate, accuracy
rate, recall rate, F1 score, absolute matching rate and Ham-
ming loss, were selected according to the relevant evaluation
indexes in literature [40], the higher the accuracy rate, the
accuracy rate, the recall rate, the absolute matching rate and
the F1 score, the better the Hamming loss.

IV. LABLE CLASSIFICATION ABILITY ASSESSMENT
A detailed explanation of the relevant indicators in the
above table:

1. Absolute matching rate refers to the fact that for each
sample, the prediction is only considered correct if the pre-
dicted value is exactly the same as the true value, which
means that as long as there is a difference in the prediction
results of a category, it is considered incorrect prediction.
Therefore, the larger the value, the higher the accuracy of
classification.

2.Hamming Loss measures the proportion of incorrectly
predicted labels to the number of labels in all samples. So,
for the Hamming Loss, the smaller its value, the better the
performance of the model.

3.Accuracy refers to the proportion of correctly predicted
sample size in the total sample size. It considers both positive
and negative samples, but the disadvantage is that it is not
suitable for imbalanced data. Therefore, the larger the value,
the higher the accuracy of classification.

TABLE 1. The performance of each model on different data sets.

4.Precision actually calculates the average accuracy of
all samples. For each sample, accuracy is the proportion of
correctly predicted labels to the total number of correctly
predicted labels by the classifier. Therefore, the larger the
value, the higher the accuracy of classification.

5.The recall rate actually calculates the average accuracy
of all samples. For each sample, recall is the proportion of
correctly predicted labels to the total number of correct labels.
Therefore, the larger the value, the higher the accuracy of
classification.

6.The F1 value is also calculated as the average F1 value
of all samples, which can measure the overall accuracy of the
model. Therefore, the larger the value, the better.

Table 1 shows that the model proposed in this article has
shown some improvement in comprehensive ability com-
pared to previous models on all four datasets:

1.On a relatively simple Yeast data set, the model proposed
in this article has an absolute matching rate that is about 3%
higher than the best performing SDRL, an accuracy rate that
is about 1% higher than the best performing SDRL, an accu-
racy rate that is about 0.5% higher than the best performing
model SDRL, and is on par with the best performing model in

31362 VOLUME 12, 2024



R. Liu et al.: Research on Multi-Label Semi-Supervised Learning Algorithm

FIGURE 3. The change of m value during training.

TABLE 2. The training time of each model.

terms of recall and F1 values. In contrast, the model proposed
in this article predicts more accurately.

2.On the Corel5k data set, the model proposed in this
paper leads the best performing benchmark model by 1% in
Hamming loss, 1% higher in accuracy, 1% higher in accuracy,
7% higher in recall, and 5% higher in accuracy. In contrast,
the model proposed in this article predicts more accurately.

3.On the most complex CUB data set, the model proposed
in this article leads the benchmark model by 20% in absolute
matching rate, is basically on par with the best performing
model in accuracy, and is 35%, 17%, and 22% ahead of the
best performing benchmark model in accuracy, recall, and F1
value. In contrast, the model proposed in this article predicts
more accurately.

4.On the COCO data set, the model proposed in this arti-
cle leads the best performing benchmark model by 10% in
accuracy, 17% in F1 value, and slightly ahead of the best
performing benchmarkmodel in Hamming loss and accuracy.
In contrast, the model proposed in this article predicts more
accurately.

From the experiment, it can be seen that the proposed
DMSD has better classification performance than previous
benchmark models on both simple and complex datasets.

At the same time, as can be seen from figure 3, the overall
trend of M values is increasing, which means that the model
is indeed improving, therefore, we can also testify the ratio-
nality of the adaptive unlabeled sample selection method.

The training time of the model is also an important factor
whether themodel can be applied in industry. Taking the CUB

data set as an example, this paper compares the training time
of the benchmark model with that of DMSD, table 2 shows
that DMSD outperforms the benchmark model with better
classification performance in both classification efficiency
and time cost. Compared with the SDRL with the best classi-
fication performance in the three data sets, DMSD achieves
better performance on CUB data sets with only one-third of
the training time of SDRL.

V. CONCLUSION
The experimental results show that compared with exist-
ing benchmark models, our model not only exhibits strong
robustness on multiple datasets, but also has significant
advantages in training efficiency, which is particularly impor-
tant when dealing with large-scale datasets.

The multi label semi supervised learning algorithm based
on COIN structure and K-nearest neighbor algorithm pro-
posed in this article has achieved significant results in solving
the problem of multi label data classification. By introduc-
ing the COIN structure and K-nearest neighbor algorithm to
establish a DMSD model, we effectively solved the prob-
lem of insufficient consideration of sample correlation in
multi label learning, which has been a common challenge
in previous research. At the same time, based on the DMSD
model structure, we have added a new performance evalu-
ation mechanism to enable the model to dynamically and
adaptively adjust the amount of pseudo labeled samples
extracted. Compared with current mainstream methods, this
has improved the training speed and accuracy of the model.

Our research provides new ideas and methods for the field
of multi label semi supervised learning. Despite achieving
positive results in the experiment, there is still room for
further improvement. Future work can be explored in the
following directions:

1. Algorithm optimization: We will continue to explore
algorithm optimization to further improve the classification
accuracy and robustness of the model, especially in handling
more complex and noisy data.
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2. Ensemble learning strategy: Study how to combine our
model with other advanced machine learning technologies,
such as ensemble learning, to further enhance the model’s
generalization ability and performance.

3. Real time learning and online updates: Considering the
dynamic and real-time nature of data, future research can
focus on how to enable models to learn and adapt to new data
streams in real time.

4. Cross domain application: The model proposed in this
article performs well on specific datasets, and future research
can apply it to a wider range of fields, such as medical diag-
nosis, financial risk assessment, etc., to verify its applicability
and effectiveness in different fields.

5. Interpretability and Transparency: In order to improve
the interpretability and transparency of the model, future
research can focus on developing methods to explain the
decision-making process of the model, which is crucial for
understanding and trusting the predictive results of themodel.

In summary, this study not only provides new solutions
for the field of multi label semi supervised learning, but also
lays a solid foundation for future algorithm improvement,
application expansion, and theoretical deepening.
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