
Received 10 November 2023, accepted 17 January 2024, date of publication 26 February 2024, date of current version 4 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3369891

A Data Filling Methodology for Time Series Based
on CNN and (Bi)LSTM Neural Networks
KOSTAS TZOUMPAS 1, AARON ESTRADA 1, PIETRO MIRAGLIO 2, AND PIETRO ZAMBELLI 3
1Eurac Research—Institute for Renewable Energy, 39100 Bolzano, Italy
2CMCC Foundation—Euro-Mediterranean Center on Climate Change, 40127 Bologna, Italy
3SynapsEES—Smart Energy Efficiency Systems, 38086 Rovereto, Italy

Corresponding author: Pietro Miraglio (pietro.miraglio@cmcc.it)

This work was supported in part by European Union’s Seventh Program for Research, Technological Development and Demonstration
within SINFONIA Project 609019; and in part by the Department of Innovation, Research and University of the Autonomous
Province of Bozen/Bolzano (Open Access Publication).

ABSTRACT During data collection from sensors, several circumstances can affect their continuity and
validity, resulting in alterations or loss of data. Although classical statistics methods can reasonably
approximate the missing data in a time series, the recent developments in Deep Learning (DL) have given
impetus to innovative and much more accurate forecasting techniques. In the present paper, we develop two
DLmodels aimed at filling data gaps in internal temperature time series obtained frommonitored apartments
located in Bolzano, Italy. These models exploit both pre- and post-gap data, and a correlated time series
(the external temperature) in order to predict the internal temperature. The first one consists of two twin
networks, each of which is a combination of Convolutional Neural Networks (CNN) and Long Short-Term
Memory Neural Networks (LSTM), which are run in opposite directions and then combined. Our second DL
model, instead, is a single network containing CNN and Bidirectional LSTM layers (BiLSTM). Both of them
capture the fluctuating nature of the data and show good accuracy in reconstructing the target time series.
The results they achieve, both in terms of error metrics and of R2-score, are better than those of a simpler
DL architecture proposed in the literature for a similar scope, that we take as a baseline. Comparing our two
models, the CNN-BiLSTM outperforms the CNN-LSTM, indicating a more effective way of combining past
and future information, which is learnt from the data, than the explicit interpolation via a sigmoid function
of onward and backwards predictions.

INDEX TERMS Data filling, time series, sensor data, LSTM, neural networks.

I. INTRODUCTION
A time series is a sequence of discrete-time data in which
the information is indexed at successive points in time. Data
sequences of this kind are largely used in Finance, Natural
Sciences, Humanities, and in general in any domain in
which some quantity can be repeatedly measured over time.
During the last decades, the ability to analyze time series has
grown significantly; on the one hand due to the increasingly
higher availability of data in multiple contexts, on the other
hand thanks to the advances in Computer Science, both in
terms of algorithms and computational power. Nowadays,

The associate editor coordinating the review of this manuscript and

approving it for publication was Dost Muhammad Khan .

the motivations for analyzing time series and for trying to
forecast their future values can be diverse, including the
search for trends in the data and the modelling of natural or
human phenomena.

The collection of time series data can be done by several
means and the interval between subsequent measurements
can vary a lot depending on the context and goal. When
granular and reliable monitoring of some variables is
required, like in the case of air temperature or wind speed, the
recording is made through sensors. Leaving aside the quality
and accuracy of such sensors, some external factors, like
power outages or failures of the data transmission systems,
can hinder the data collection. These incidents can cause data
losses, leading to impaired time series that cannot be used

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 31443

https://orcid.org/0000-0001-7552-2688
https://orcid.org/0000-0002-6891-7101
https://orcid.org/0000-0002-9032-9058
https://orcid.org/0000-0002-6187-3572
https://orcid.org/0000-0002-3919-8136

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

in deeper analysis due to the lack of continuity in the data
stream. For these reasons, the development of new algorithms
able to forecast or reconstruct the missing data in a time series
has become a relevant research topic in the last few decades.

In this paper, we deal with a data filling problem for
internal temperature time series collected by sensors in
monitored buildings, where measurements are taken with a
5-minute granularity. Our approach is based on the use of
cutting-edge Deep Learning techniques, that we combine in
an original fashion in order to produce two different and
independent data filling models. Our two models, one based
on CNNs and LSTMs and the other one on CNNs and Bi-
LSTMs, show better data filling capabilities than a model
developed in [1] that we take as a baseline. Besides, in cases
where the prediction of the missing values is inaccurate, our
models still succeed in identifying the general trend of the
series.

It is important to stress that the performances of our models
are linked to the context in which we operate (temperature
sensors in monitored apartments) and that the model we take
as a baseline was developed for filling data gaps in time series
recorded in a different sphere. Nevertheless, in analogy with
the DL algorithms for image recognition, it is legitimate to
expect that DLmodels developed to reconstruct time series in
a specific framework can achieve good results when trained
with time-indexed sequences coming from another context.
As we are going to describe, this is indeed what happens
with the model we take as a baseline. For what concerns
our work instead, the models we present can be applied in
any domain in which a target time series is reconstructed
using information coming from the time series itself and from
another time series, correlated with the target one, that has no
gaps.

The rest of the paper is structured as follows: in Section II
we describe the problem of data filling and time series
forecasting, introduce the DL network that we use, and
outline the model that we take as a baseline; in Section III
we focus on the details of our framework, describing the
methodology we followed for the data preparation and the
architecture of the models we developed; in Section IV
we present the results of our two models compared to the
baseline; finally, in Section V we summarize the implications
of our work and our interpretation of the results we achieved,
while in Section VI we present our conclusions and some
possible future lines of research.

II. STATE OF THE ART
A. DATA FILLING AND TIME SERIES FORECASTING
Broadly speaking, data filling consists of reconstructing
the missing values in a data set based on the available
data. The nature of the data to be reconstructed is problem
dependent and in many cases the filling process is based
on features which are not time-indexed, like for instance in
the reconstruction of corrupted satellite images. Thus, data
filling is not necessarily related to predicting future values,

but those two notions are strictly related in the case of time
series that we treat in this paper. Indeed, the problem of filling
a gap in a time series is very similar to the forecasting of
the same series, with the important difference that for data
filling we have available also the data following, and not only
preceding, the values we want to predict. Indeed, the most
advanced approaches to fill time series use both forward and
backward in time forecasting to obtain their final results as
a combination of the two previsions, like done for instance
in [1]. This idea, compared to using only the forward in time
forecast of the missing values, brings the great advantage of
using more information to fill the data gap. In this paper,
we follow this more advanced approach, proposing novel
ways of combining forward and backwards predictions in a
single data filling model.

In time series forecasting, an essential distinction is
made between one- and multi-step prediction algorithms.
Essentially, a one-step prediction algorithm creates one future
predicted value at a time, while a multi-step prediction
algorithm predicts multiple steps at once. In the case of
filling a gap of more than one value, multi-step prediction
algorithms predict all the values of the data gap in a
single prediction, using only the originally available data.
In contrast, one-step prediction algorithms forecast one value
at a time and use already predicted data to proceed and fill
the whole gap, resulting in the risk of propagating errors
throughout the data gap. The models we present in this paper
belong to the class of multi-step prediction algorithms, which
are considered more advanced and reliable than one-step
prediction.

In the context of multi-step predictions, the Machine
Learning and DL algorithms have been recently shown
to perform better than other more traditional techniques,
such as Generalized Regression Neural Networks, Gaussian
Processes, or AutoRegressive Integrated Moving Average
(ARIMA) [2], [3], [4]. In particular, among all different
DL techniques, the most widely used in time series fore-
casting are currently the Long Short-Term Memory Neural
Networks (LSTM), which were introduced in the influential
paper [5] — see [6], [7] for some applications. This kind of
neural networks has recently been successfully applied also to
data filling problems coming from a variety of fields. Indeed,
in [1] the authors use forward and backwards in time LSTM
models to forecast the missing sequences in a biological
context, obtaining their final output as a linear combination of
the forward and backward predictions. In another paper [8],
the authors use a single (and forward in time) stacked model
of LSTMs for filling multi-dimensional time series from
hydrological monitoring. In the context of oceanography, the
authors of [9] propose three different models based on LSTM
networks aimed at filling data gaps in time series. Those
three models are used for gaps of different lengths: the first
two run standalone to reconstruct data gaps shorter than a
certain threshold, while the third one is used to fill longer
gaps of the time series, making use of the outputs of the
first two models. In practice, this third model is trained on

31444 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

longer time sequences that consists of data processed by the
other two models. An advantage of this technique is that it
allows to deal with longer gaps. However, it has the drawback
of accumulating errors from the first two models. Although
their models ‘‘preserve [. . .] the seasonal or shorter timescale
variability’’, the authors recognize that they ‘‘struggle to
reproduce even shorter timescale variability present in the
observations’’ [9, p. 11].
All the works we mentioned so far propose DL models

composed mainly of LSTM layers. Instead, the recent review
paper [10] highlights how combinations of LSTMs and
Convolutional Neural Networks (CNNs) can outperform
individual models of LSTMs or CNNs. Our work follows
this promising line of research, integrating CNN and LSTM
architectures in two new DL models.

The first of our models, to which we refer as CNN-
LSTM (see Subsection III-C1), consists of a forward in time
DL network combined with a backwards in time one. The
two networks have identical structure but are trained on
data respectively preceding and following the data gap. The
final output of the model is then a combination of the two
networks’ outputs. The second model presented in this paper,
to which we refer as CNN-BiLSTM (see Subsection III-C2),
consists instead of CNN and BiLSTM layers combined in
a single DL architecture. Thus, once trained, it outputs
its predictions in a single step, and not as a combination
of two sequences. We were motivated in developing this
second model by several recent studies [11], [12], [13]
suggesting that CNN-BiLSTM substantially improve other
DL alternatives such as CNN-LSTMs in the context of time
series forecasting.

In the present paper, we choose as a baseline an LSTM
model developed in [1], which was shown to perform
largely better than traditional methods in the case of highly
fluctuating and nonlinear data, as is the case of the internal
temperature time series we treat. Indeed, both works [1]
and [8] mentioned above compare their results with the
more traditional AutoRegressive Integrated Moving Average
(ARIMA), which, as it is stressed in [1, p. 14], is considered to
be in this field ‘‘the best among several traditional methods’’.
The results in [1] and [8] make evident that LSTM-based
neural networks outperform ARIMA when there are high
nonlinearities and several fluctuations in the data to be filled.

B. DEEP LEARNING ARCHITECTURES
This section is a concise presentation of the Deep Learning
architectures used in this paper. Without the claim of being
exhaustive, it aims at providing an outline of their structure
and functioning before applying them to our specific case.
Specifically, the deep networks we use are the Convolutional
Neural Networks (CNN), the Long Short-Term Memory
Neural Networks (LSTM), and their Bidirectional form
(BiLSTM). CNN and LSTM layers are used in the first model
presented in this work (see Section III-C1), while the second
model uses CNN and BiLSTM layers (see Section III-C2).

CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNNs are a class of neural networks able to detect simple
and also more complex patterns in the data, often used in
processing multidimensional inputs. They were originally
developed to recognize visual patterns in images (lines,
curves, but also objects or parts of), becoming quickly one of
the most important tools in computer vision and particularly
in image recognition [14]. Moreover, CNNs normally reduce
the number of parameters necessary to build up the model,
which is another advantage of using them in a network,
especially in the first part.

The core of a CNN architecture consists of the convolution
layers, that perform a convolution operation on the input
data and transmit the output to the pooling layers (that are
essentially downsampling). A convolution is an operation that
takes a sliding portion of the input, multiplies it element-wise
with a matrix named Convolution filter (or simply kernel),
and sums the elements. The output is a single value for every
sample of the input matrix, as shown in Fig. 1. The kernel
size (equal to 3 in Fig. 1) must be specified and it is normally
the same for all spatial dimensions. Another hyper-parameter
that must be set is the stride value (or sliding value), that
determines the strides of the convolution filter along each
dimension. Normally, also the stride value is constant for all
spatial dimensions.

FIGURE 1. A representation of a convolution operation with a kernel of
size 3 × 3.

LONG SHORT-TERM MEMORY NEURAL NETWORKS (LSTM)
LSTMs belong to the wide category of Recurrent Neural
Networks (RNN), whose key feature is the ability of
using loops to keep part of the processed information
inside the network. Networks of this type are thus able
to use information from prior experiences to predict future
events, allowing the detection of order dependency in
sequences of data. This is why RNNs are employed in
several areas regarding data sequences, such as speech
recognition, text generation, machine translation, and time
series forecasting. Though, one of the main disadvantages
of the RNNs is that they suffer from the vanishing gradient

VOLUME 12, 2024 31445

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

problem [15], [16]. Briefly, it consists of the gradient of the
loss function being the product of numerous small terms and
thus possibly tending to zero. This is due to the chain rule
of calculus and the fact that the loss function depends on
all the neurons preceding that point. If the gradient tends to
zero, since the model training is based on the update of the
weights via the gradient itself, the model is stuck and does
not improve.

LSTMs were proposed in the seminal paper [5] as an
improvement of RNNs. An LSTM cell has three gate units:
a memory gate, a forget gate, and an output gate. Those
gates behave like the nodes of a neural network, blocking
or passing on information based on a filtering by their own
weights, which are modified during the learning process
of the network. One of the main advances compared to
RNNs is in the ability of LSTMs to maintain the information
that is propagated over time, preserving a more stable error
and overcoming the vanishing gradient problem. Since it
would be difficult to visualise an LSTM network with
multiple layers, weights, and gates, Fig. 2 simply shows the
positioning of the contents inside an LSTM memory block
with one cell [17].

FIGURE 2. A simple case of LSTM memory block with one cell, as shown
in [17].

BIDIRECTIONAL LONG SHORT-TERM MEMORY NEURAL
NETWORKS (BILSTM)
Bidirectional Recurrent Neural Networks (BRNN) were
introduced in [18] as special RNNs processing the sequence
of data in both directions. They inherit all the character-
istics of RNNs and extend their capabilities to contexts
in which past and future information affects the output,
such as natural language processing, sentence completion,
translation, relation classification in semantics, and video
captioning [19], [20].

A BiLSTM network is thus a combination of a Bidirec-
tional neural layer and an LSTM layer. That is, the LSTM is
applied within the Bidirectional layer, resulting in two hidden

layers, one for the Forward LSTM and one for the Backward
LSTM [21]. As a consequence, the output of a BiLSTM
network contains twice as many neurons as an LSTM
layer with the same input. Then, the outputs are combined
depending on the user’s preference and the task to solve.
Normally, the results from the forward and backward LSTM
are simply concatenated or merged by either multiplication,
addition, or their average. The key characteristic of BiLSTMs
is that ‘‘for every point in a given sequence, the network has
complete, sequential information about all points before and
after it’’ [20, p. 74].

C. BASELINE MODEL
In what follows, we briefly describe the data-filling models
developed in [1], focusing in particular on the one that we
take as a baseline for the present work.

In [1], the authors deal with a data-filling problem for
time series in a biological context. More precisely, the time
series for which they want to fill data gaps contain the
values of stem moisture of a particular species of plants.
Besides this information, they also have time series of other
environmental parameters, which are the soil temperature,
air humidity, and photo-synthetically active radiation. This
additional information is taken into consideration since the
authors show there is a high correlation with the plant stem
moisture, which is the target of their data-filling work.

All the DL models developed in [1] have an LSTM
architecture at their core. This neuronal structure is shown
in detail in Table 1, and consists of an LSTM layer of
256 neurons, a Dropout layer, two consecutive LSTM layers
of 128 and 64 neurons respectively, and a Fully Connected
(Dense) layer.

TABLE 1. The layers and trainable parameters of the LSTM network in [1].

In [1], the authors develop several data-filling models that
can be grouped into two different categories, depending on
the type of input data they use in order to fill the gaps in
the target time series. The first group of methods, called
‘‘One-dimensional’’, uses only the target time series for the
prediction of its missing values. The data-filling capability
is restricted to gaps of about one day, but the results are
much better than the ones obtained by traditional data filling
methods, such as ARIMA, that do not use Deep Learning
techniques. For filling longer gaps, these ‘‘One-dimensional’’
methods would need to be applied several times on sliding

31446 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

1-day windows, using already predicted values for subse-
quent predictions. This procedure would accumulate the
errors and reduce the overall accuracy. The second approach,
called ‘‘Multidimensional’’, does not use the target time
series as input but rather other three correlated time
series without gaps (soil temperature, air humidity, and
photo-synthetically active radiation) in order to predict the
values of stem moisture. The advantage compared to the first
case is the ability of this method to fill gaps of any length
in a single step, without accumulating errors. Although the
second case is more successful when the gap lengths are
arbitrarily long, the results in [1] show that the first approach
performs much better in filling sequences of a limited length.

Concerning the most effective ‘‘One-dimensional’’
approach, the authors in [1] present two different
LSTM-based forecasting networks and three different ways
of combining them in order to improve the accuracy of
the data filling. The first network is called LSTM Forward
and it is the straightforward application of the LSTM
architecture summarized in Table 1. This model is able to
make predictions using only the values preceding the gap.
The second network, which is called LSTM Reverse, has the
same architecture as the first one, but it is trained on the
chronologically reversed version of the data.More concretely,
it predicts the missing values using the data following the gap
in a reverse order. Finally, the authors in [1] present three
different ways of combining the predictions of the LSTM
Forward and LSTM Reverse models in order to exploit both
the data preceding and following the gap they want to fill. All
these three different methods of combining the forward and
reversed models result in lower errors than the standalone
LSTM Forward and LSTM Reverse. Among them, the best
performing formula is the linear combination, called the
decreasing weights model in [1]. More precisely, for every
time step i = 0, . . . , n − 1, with ai being the forecasting of
LSTM Forward and bi the forecasting of the LSTM Reverse,
the resulting prediction is:

zi = (1 − ci)ai + cibi, (1)

where ci = i/(n−1). The linear combination (1) of the LSTM
Forward and the LSTMReverse is thus themodel from [1] that
we take as a baseline for the present work, and to which we
refer as ‘‘Baseline model’’, or simply ‘‘Baseline’’, throughout
the paper.

III. METHODOLOGY
A. DATASET DESCRIPTION AND VALIDATION
This work is based on data that come from sensors located
in monitored apartments in Bolzano, Italy, which were
refurbished during the Sinfonia project. Sinfonia is an HORI-
ZON 2020 five-year project, concluded in June 2020 and
committed to the deployment of large-scale, integrated and
scalable energy solutions in mid-sized European cities.
Part of the activities carried out in Bolzano consisted of
refurbishing social housing apartments, in order to pursue
the maximum energy efficiency and a large use of renewable

energy, improving also the comfort levels of the tenants. The
building groups that are available for analysis are located in
four different sites of Bolzano: via Passeggiata dei Castani,
via Aslago, via Similaun, and via Brescia - via Cagliari.
In these locations, about 300 apartments were refurbished
and about 120 of these are monitored using sensors, after
obtaining the consent of tenants. More details about the
locations of the buildings and their socioeconomic context
can be found in [22] and [23].

The monitoring system in the buildings is made of several
sensors that track information about internal and external
temperature, indoor relative humidity and CO2 concentration,
energy consumption for space heating, electricity, domestic
hot water, energy production from different sources (photo-
voltaics, geothermal, solar thermal, boiler), and the opening
and closure of windows in the apartments. In the context
of this paper, the sensors that are used are those of internal
temperature in the apartments (referred to as TEM sensor)
and the sensor of external temperature (referred to as TEXT
sensor).

The final part of the Sinfonia project involved validating
and analysing the available data from the refurbished
buildings in order to assess the results of the project and
to ensure that it met its goals in terms of energy efficiency
and tenants’ comfort. The validation showed that the data
presented some gaps caused by the sensors malfunctioning
or the interruption of data transmission. Besides the missing
values due to transmission system failures, glitches of the
sensors produced a few unreliable measurements (outliers)
that we identified by setting a specific percentile threshold for
each variable. Last, we had occurrences of sensors stuck on
a constant value for multiple consecutive time steps, and we
removed those records. The frequency of the resulting data
gaps was not uniform across the different sites and across the
sensors, with some specific sites or sensor types being more
affected than others. Naive interpolation can be a valid option
to fill those gaps only if a few time steps are missing. In our
case, instead, some sensors hadmissing values for longer than
hours or even a whole day, motivating the implementation of
predictive algorithms done in the present work.

We chose the TEM sensor as the target of our data filling
since the internal temperature is a fundamental variable when
assessing the comfort of the tenants. In addition, it shows
a high correlation with the TEXT time series, which was
available almost without gaps. Concerning the data for the
external temperature, only one TEXT sensor is available for
the whole Sinfonia project in Bolzano, and it is located on the
roof of the building in via Brescia - via Cagliari.
For computability reasons, during the training phase of

our models we had to use only one of the available building
sites for the TEM sensor. The data sets of via Similaun
and via Passeggiata dei Castani were the most appropriate
ones, having two thirds of the monitored apartments with
more than 96% of data availability and the remaining third
with less than 90% of data availability. The building site of
via Aslago instead was largely affected by technical errors

VOLUME 12, 2024 31447

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

on the sensors, while the site of via Brescia - via Cagliari
had the large majority apartments with about 90% data
availability and only 10 with more than 98%. Our final
choice was via Similaun due to the fact that via Brescia - via
Cagliari, where the only TEXT sensor is located, is closer
to via Similaun than via Passeggiata dei Castani. Indeed,
via Similaun and via Brescia - via Cagliari have similar
urban contexts and external climatic conditions. Since we
are interested in the hourly and daily oscillations of the
external temperature, which can be assumed to be sufficiently
homogeneous between the two locations, the 1.5 km distance
between the two sites does not represent an issue for this
work. The sensors in the via Similaun buildings were placed
at the end of 2019. Consequently, we had reliable data for
the purpose of this work from January 15th, 2020 until
August 15th, 2021.

B. DATA PREPARATION
In this section, the main initial decisions and the preparatory
work on the data are explained. Those include:

• the data analyses before the selection of the apartments
and the time periods;

• the window size of the time series and the granularity of
the sensor-incoming data;

• the separation of the data set into training-validation-test
sets.

Firstly, the apartments from the buildings in via Similaun
had occurrences of malfunctioning TEM sensors that resulted
in missing values, but much less frequently than in the
other building sites. More precisely, the average length of
the gaps per apartment over the whole period was between
0.58 and 0.78 days (average of all apartments 0.64 days), with
standard deviation between 0.68 and 0.9 days (average of all
apartments 0.74 days). Those values had to be either removed
or filled via interpolation before proceeding to the training of
the models. We decided to exclude those periods from the
training and testing samples instead of interpolating them,
since interpolation creates synthetic information in the input
dataset. This removal is expected to have a very small impact
on the characteristics and periodicity of the time series, while
avoiding the elimination of the majority of the apartments.

In addition, defining the size of the data window is
an important decision, and the possibilities are varied.
We decided to use 6 days of data for predicting the next
1 day, which sets the window size to 6-to-1 (or overall 7)
days, even if this choice implies higher running complexity
and requires more computational resources than using shorter
periods (e.g. 20-to-4 hours). We decided to work with the
6-to-1 days window size for the following reasons:

• After the analysis of the time series, we observed daily,
weekly and seasonal periodicity in the internal tem-
perature sequences. Leaving aside the seasonal range
for computational reasons, choosing data sequences of
7 days allows capturing both daily and weekly patterns
in the data.

• We performed tests for different window sizes
(20-to-4 hours, 1-to-1 days, 3-to-1 days, 6-to-1 days) and
the models showed the best results on the 6-to-1 window
frame. Trying with longer frames is an interesting
option, but it would require more computational
resources and a longer time span as well, that were not
available for the project.

• The majority of data gaps that we would like to actually
fill are of shorter duration than one day.

Another consideration before proceeding to the actual
development of the model is the data granularity. In the
preliminary data analysis, we observed that the internal
temperature in the apartments tends to have very small
variations within a 15-minute interval, typically in the order
of the accuracy range of the sensors installed. Therefore,
we decided to lower the granularity to a 15-minute interval
using the average of the 5-minute values. In this way, we were
able to increase the efficiency of the training of the models,
without compromising the high granularity and having still 4
measurements per hour.

The last preparation step consists of splitting the time series
samples into training, validation, and test sets. Concerning
the training set, we chose to use a whole year of data, from
January 15th, 2020 until January 14th, 2021. The easiest
and most naive option for splitting the remaining samples
into validation and test sets would have been using the next
3.5 months as validation set and the remaining 3.5 months
as test set. Although this is normally chosen in cases of time
series forecasting problems, we avoided it since the testing
of the model would have been applied on data that belongs
to only one season of the year (May 1st, 2021 - August
15th, 2021). Indeed, as shown in Fig. 3, during the summer
months the internal temperature data show higher variations
than in the winter period, in which the heating system is
activated and the internal temperatures are more stable. The
purpose of the testing phase, on the contrary, is to evaluate the
models in all the different seasonal circumstances andwithout
biases with respect to the training and validation sets. Hence,
we separated the 7 non-training months (January 15th, 2021
- August 15th, 2021) into:

• a validation set that includes samples from the periods
January 15th, 2021 - February 28th, 2021 andApril 16th,
2021 - May 31st, 2021,

FIGURE 3. An example of TEM sensor data over the 19 months used for
this work.

31448 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

• a test set with samples from the periods March
1st, 2021 - April 15th, 2021 and June 1st, 2021 -
August 15th, 2021.

In this way, the validation set includes a period when the
space heating is activated (January 15th - February 28th)
and another one in which it is deactivated (April 16th -
May 31st). Similarly for the test set, the space heating is on
for 1.5 months (March 1st - April 15th), but is off for the other
2.5 months (June 1st - August 15th).

In the remaining part of this subsection, we describe how
we define a uniform data structure starting from the separate
TEM time series from multiple apartments and the TEXT
sensor. This structure contains samples of fixed-length two-
dimensional time series, and it is realized following also the
guidelines in [24].

First, for each apartment the series of TEM sensor values
is horizontally merged with the series of TEXT sensor
values, creating two columns of series. During the training
phase of the models, each column is treated as a distinct
feature, justifying the notion of multivariate time series.
We point out that the data from all the selected apartments
are used to train the models without considering the ID of
the apartment they come from. In this way, we manage to
process the available data sequences as if they all belonged
to one archetype apartment. This is used both to have
more training data and to avoid over-fitting to one single
apartment, improving the ability of the models to generalize.
Finally, from each time series we extract sequences of
values of fixed length, using a sliding window that moves
one step (15 minutes) at a time for a total window size
of 6-to-1 days. This procedure is repeated for all apartments
and the sequences are simply added as samples in the general
data structure.

An additional step is to normalize the temperature values,
both internal and external, in order to assist the training of
the models. All values are scaled to a range between 0 and 1,
while their previous range is approximately from -4 to 34.
This task is accomplished by calculating the overall minimum
and maximum values for each of the different kinds of
temperatures and then applying theMinMax scaler from [25],
as done in several studies [10], [13], [26]. The examination of
how different means could affect the accuracy of the models
is out of the scope of this work.

After this pipeline is completed, the initial data is separated
into three different time series sets (training, validation, test)
in the way described above. However, their form is not yet
completely appropriate for being used by the models. The
reason is that, in order to forecast a specific day, the models
receive as input 6 (past) days of TEM sensor series and
7 days (past and day of prediction) of TEXT sensor series.
Therefore, we separate each rolling split of one week into an
input sample of 6 days of TEM sensor data and 7 days of
TEXT sensor data, and an output sample of 1 day of TEM
sensor data. Finally, after carrying out this procedure for all
sets (training, validation, testing), the data samples are ready
to be fed to the models for training.

C. MODELS ARCHITECTURE
In the followingwe outline the selection, implementation, and
characteristics of the data-filling models that are developed
in this work. For the sake of completeness, we specify that
to create and evaluate the DL models of the present work,
we used Python version 3.7.9 and the following packages:

• TensorFlow [27] | version 2.4.1,
• Keras [28] | version 2.4.0,
• Scikit-learn [25] | version 0.23.2.

1) CNN-LSTM MODEL
The first data filling model that we present in this work is
based on the use of CNN and LSTM neural networks, and
we refer to it as CNN-LSTM. This approach consists of two
different DL networks, namely the CNN-LSTM-Onwards
and the CNN-LSTM-Backwards, which are combined to
produce the final predictions for the data filling. The CNN-
LSTM-Onwards and the CNN-LSTM-Backwards have the
exact same neuronal structure, which is outlined in Fig. 4,
but differ in the data sequences they are trained with. Indeed,
while the former model is trained on the time series with the
usual chronological order, the latter is trained on the reversed
form of the same time series. In other words, the first network
learns to predict a sequence of 1 day using as input the past
6 days while the second network learns to predict 1 day
using as input the following 6 days. Lastly, the two different
predictions are combined in order to produce the final output
of the CNN-LSTM data-filling model. In this way, we exploit
both the past and the future data in order to predict the target
missing values.

We will now describe the structure of the CNN-LSTM-
Onwards and the CNN-LSTM-Backwards networks, which
is identical and it is shown in Fig. 4, and the way in which the
model combines their predictions. Firstly, the input sequences
are time series samples of 6 days of TEM sensor and 7 days
of TEXT sensor, with a 15-minute interval between the
measurements. The first sequence refers to the TEM sensor
and has a shape1 of (576, 1), since 6 days of TEM sensor
values are used as input:

6 days × 24 hours × 4 values per hour

= 576 values. (TEM)

The second sequence, instead, regards the TEXT sensor and
has a shape of (672, 1), since TEXT data of 7 days is used as
part of the input:

7 days × 24 hours × 4 values per hour

= 672 values. (TEXT)

As shown in Fig. 4, which outlines the structure of the whole
network, the above sequences are passed separately into two
different Input Layers.

1In this work, with shape we refer to the dimensions of a tensor (data
object used by the DL framework). The first number represents the time
steps, while the second the number of features (either TEM, TEXT, or both).

VOLUME 12, 2024 31449

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

After this, two sub-networks of CNN architectures run
in parallel and have the same type of layers but a different
number of neurons. This part, which is the first core of the
network, has the scope of extracting key information from
the inputs. The left part in Fig. 4 receives data from the
TEM sensor, while the right one from the TEXT sensor.
In both, the first layer is a convolutional layer of one
dimension (named Conv1D) with 16 neurons, 3 kernels,
and the Rectified Linear Unit (ReLU) activation function.
Afterwards, a second convolutional layer of the same type
is applied with 32 neurons this time, but the same activation
function and number of kernels.

Concerning the selection of the hyper-parameters of the
Conv1D, we specified the length of the 1D convolution
filter (kernel size) and the number of output filters in the
convolution. Both were set manually after numerous tests
by inspecting the models accuracy. The stride value for the
convolution kernel was always taken to be equal to one.
In addition, we ran tests using different activation functions
(sigmoid, hyperbolic tangent, softmax, and ReLU) and even
no activation at all. The lowest errors were achieved using
the ReLU activation, which is indeed one of the most used
in DL architectures. As described for instance in [11, p. 3],
ReLU ‘‘effectively handles the gradient vanishing as well as
gradient exploding problems’’.

As a next step, the size of the outputs of the CNN layers
is reduced by half after applying an Average Pooling layer
in both parallel pipelines. The usage of Max Pooling was
also tested as an alternative, but the errors of the results were
lower with Average Pooling. Then, in the last step of the CNN
part of the model, the outputs of the two sub-networks are
concatenated on the same number of neurons (32) in order to
save all the information extracted from the TEM and TEXT
series. As shown in Fig. 4, the shape of the layer resulting
from the CNN part is (624, 32).

In the second half of the network architecture, a single
LSTM layer is applied, as shown in Fig. 4. The LSTM layer
receives data with shape (624, 32), and it is applied using
16 neurons. Also, it is run enabling the return of the hidden
units, instead of simply returning as output the last (output)
layer of the LSTM structure. This results in having a 2-
dimensional array with shape (624, 16), instead of (1, 16),
as the output of the LSTM. In that way, more information is
transferred to the following layers as the structure approaches
the final prediction.

After the LSTM layer, two Fully Connected (Dense) layers
are designed to reduce the output size matching the desired
shape of the final prediction. To avoid the over-fitting of the
model, we add Dropout layers after the LSTM and between
the Dense layers for dropping 10% of the units before moving
to the next layer. As described in [29, p. 88], in this way the
model is ‘‘. . . forced to learn more robust features that are
useful in conjunction with many different random subsets of
the other neurons’’.

The possibility of inserting Dropout layers also between
Pooling, CNN, or LSTM layers was explored, as done

FIGURE 4. The CNN-LSTM networks.

in [11], [13], but the errors of the predictions were
significantly higher. We had the lowest errors when using
Dropout after the LSTM layers and between the Dense layers.
This is a standard procedure in the recent literature, followed
for instance in [12] and [21]. Finally, the output shape is
(96, 1), which is the number of timestamps covering our
target prediction of a whole day. Table 2 below shows the
number of neurons parameters in each layer.

TABLE 2. The layers and trainable parameters of the CNN-LSTM networks.

31450 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

Up to this point, we described the common structure of the
two networks in the CNN-LSTM model. Despite they have
the same structure, the two networks are trained separately
and without any interaction: the CNN-LSTM-Onwards on
time series with the usual chronological order, and the CNN-
LSTM-Backwards with the reversed time series, as explained
above. Thus, there is no risk of one of the two networks
optimizing the loss by using information from the other
network. After their training is completed, they are used
for forecasting forward and backward in time accordingly.
Moreover, the last key step for obtaining the CNN-LSTM
model predictions is to combine the two different predicted
sequences coming from CNN-LSTM-Onwards and CNN-
LSTM-Backwards into one single sequence of predicted data.
The motivation of combining the forward and backward
predictions lies in the observations of the results of each
model separately and it was already part of the approach
in [1]. Indeed, the forecasting of the forward network shows
lower errors in the first part of the predicted sequence,
while the predictions for the last time steps are often unable
to follow the real trend of the series. Similarly, but in a
symmetric way, the backward network is muchmore accurate
in the last time steps of the data gap. Hence, we combine the
outputs from the two networks using the sigmoid function.
Specifically, we create a 96-points sequence from -6 to 6, with
a constant step. Then, we transform this sequence using the
sigmoid function. The final output of the CNN-LSTMmodel
is the result of the following combination

Pi = (1 − si) · fi + si · bi, (2)

where for each time step i, si is the ith weight from the
Sigmoid transformation, fi is the forward prediction, bi the
backward prediction, and Pi the final prediction.

Using the sigmoid function allows to weight the pre-
dictions of the forward and backward models in a time-
dependent way. The idea is that for each timestamp the
combined model gives more weight to the prediction that is
more likely to be accurate. In Fig. 5, we provide an example of
the predictions made by the CNN-LSTM model on a sample
from our test data set, in order to understand the contribution
of the two separate networks and of their combination via
formula (2). In Fig. 5, the past 6 days and the real values of
the target day are plotted (in red) along with the predictions
from the CNN-LSTM-Backwards (in blue), the CNN-LSTM-
Onwards (in yellow), and their sigmoid combination (in
green) which is the final output of the CNN-LSTM model.
The 6 days following the target day are also provided to the
model as input, even if they are not plotted here for visibility
purposes. Focusing on the predictions made for the last day
displayed in Fig. 5b, the three different sequences show the
behavior described earlier. In particular, it is important to
highlight that in this specific examples the true values (in red)
show a trend reversal during the prediction day with respect
to the previous six days. This is only partially captured by the
forward prediction, that underestimates the temperature rise
in the second part of the gap. This is balanced by the backward

FIGURE 5. A 6-days time series and the predictions for the following day
using the CNN-LSTM model.

prediction, that instead is closer to the real values in the last
part of the interval. As a result, their sigmoid combination (in
green) achieves the best result, being the closest to the real
values (in red) throughout the prediction day. This example
clearly shows the importance of considering also the data
after the data gap as inputs of a data filling problem for time
series. For a complete assessment of the model results we
refer to Section IV.

2) CNN-BILSTM MODEL
The second data filling model that we present in this work
is based on the use of CNN and BiLSTM neural networks,
and we refer to it as ‘‘CNN-BiLSTM’’. In contrast with
the CNN-LSTM model outlined in the previous section, this
approach uses only one DL network and obtains the final
predictions directly as the outputs of the network itself.
Despite of this structural difference, the length of the gaps
that are filled by the CNN-BiLSTM model remains the
same as the CNN-LSTM model, that is, spanning 1 day of
measurements.

It is important to stress that the model uses as input

• 12 days of TEM: the past 6 days and the following 6 days
of the TEM sensor time series;

VOLUME 12, 2024 31451

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

• 13 days of TEXT: the past 6 days, the day corresponding
to the prediction, and the following 6 days of the TEXT
sensor time series.

In contrast to our first model that uses forward and
backwards inputs, the input data for the CNN-BiLSTMmodel
consists of time series in the usual chronological order. The
sequences are initially prepared as described in Section III-B,
where the time series are transformed into samples with
7 days of data (6 days as input - 1 day for prediction).
In addition, to create windows of 13 days, we concatenate the
following 6 days of data at the end of each 7-days sequence.

The TEM sensor sequence fed into the CNN-BiLSTM
model has a shape of (1152, 1), since 12 days of TEM sensor
values are used as input:

12 days × 24 hours × 4 values per hour =

1152 values. (TEM)

The second input sequence, containing data from the TEXT
sensor, has a shape of (1248, 1), since TEXT data of 13 days
is used as part of the input:

13 days × 24 hours × 4 values per hour =

1248 values. (TEXT)

Consequently, the above sequences are passed separately to
two different input layers. The shapes of the layers can be seen
in Fig. 6, which represents the structure of the whole model.

The first core part of the CNN-BiLSTM model is
a convolutional architecture, identical to the one of the
CNN-LSTM networks shown in Fig. 4. We decided to
maintain the same CNN-part in all networks in order to focus
our investigation on the impacts of using different LSTM
architectures. Concerning the CNN part of the model, the
only difference here with respect to the CNN-LSTM network
is in the shapes of the tensors, which is a straightforward
consequence of having input data of different length. For
the details about the CNN architecture we thus refer to
Section III-C1. As shown in Fig. 6, the shape of the resulting
layer is (1200, 32).
The second main component of the model architecture is

the BiLSTM network, starting with a single Bidirectional
LSTM layer. The input to the BiLSTM layer has a shape
of (1200, 32) and its output consists of 16 neurons. As it
is done in the case of the LSTM layers in the CNN-LSTM
networks described above, we run it with the return of the
hidden units enabled. Therefore, the output of the BiLSTM
layer is of shape (1200, 32). The main difference now is
that the BiLSTM architecture consists of a combination of
a Bidirectional layer and an LSTM layer. The Bidirectional
layer connects two hidden layers — the two LSTMs running
in the opposite directions — to the same output. In this way,
the output layer gets information from past and future states
simultaneously, as explained in detail in Section II-B.
The final step is to use two Fully Connected (Dense)

layers combined with Dropout layers for creating the final
output while also avoiding the over-fitting of the model.

The architecture of this part is identical to the one of the
CNN-LSTM model and motivated accordingly. At the end,
the final output has the target shape of the 1-day prediction,
which is (96, 1). As for the first model, we outline the number
of neurons and parameters per layer in a table, that for the
CNN-BiLSTM model is Table 3 below.

TABLE 3. The layers and trainable parameters of the CNN-BiLSTM model.

FIGURE 6. The CNN-BiLSTM model structure.

IV. DISCUSSION OF THE RESULTS
In this section, we outline the results achieved by the
models presented in the previous chapter (CNN-LSTM and

31452 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

CNN-BiLSTM), compared to the Baseline model from [1]
described in Section II-C. This section will also serve as a
proof of the validity of the Baseline model. Indeed, the same
validation and test metrics will be applied to all three models
and some dimensionless metrics will allow a comparison
between the results we achieve for the Baseline on our dataset
and the original implementation in [1]. We point out that the
training, validation, and test time series are the same for all
three models and we refer to Section III-B for the details of
the data preparation. Besides this, we clarify that we ran all
three data-filling models under the same conditions of hyper-
parameters.

First, we set the same maximum number of epochs to
100 for all three models. Additionally, an early stopping
(callback) of 20 epochs is applied, allowing the training to
continue for maximum 20 epochs even if it does not improve
its validation loss. These numbers are selected as a result of
several tests from which we recognised that:

• 20 epochs as early stopping is a balanced trade-off to
allow the models to ‘‘have patience’’ until the possibility
of a late improvement but also restricting them from
running too long when there is no improvement,

• 100 epochs is a safe upper limit for the maximum epochs
to be run since in all tests we made, due to the early
stopping, the models never surpassed 85 epochs.

All three models show a similar behavior during the
training: they achieve a very low training error before
reaching 30 epochs and keep improving it slightly afterwards.
On the contrary, the validation errors oscillate periodically
since the first 20 epochs at latest, showing an expected
trend of first over-fitting and then escaping from it.
In Fig. 7, 8, and 9, we show the training and validation losses
during the training of all the networks composing the three
models.

FIGURE 7. Training and validation losses of the Baseline model:
LSTM-Forward above, LSTM-Reverse below.

Another hyper-parameter that we set equal for all the
models is the batch size, that is the number of samples that

FIGURE 8. Training and validation losses of the CNN-LSTM-Onwards
(above) and the CNN-LSTM-Backwards (below).

FIGURE 9. Training and validation losses of CNN-BiLSTM network.

are propagated through the network training at each iteration.
We set the batch size to 512 in order to reduce the duration of
the training for each model, since the number of samples was
more than half a million.

Concerning the loss function, we point out that we use the
same one (the Mean Absolute Error, see (4)) for the training
of all three models. This allows us to fairly compare how fast
the models are trained and how they behave with respect to
over-fitting.

A. PERFORMANCE METRICS
In the following we briefly describe the evaluation metrics
we used during the training and testing of our models. Apart
from one custom metric we define, all the other functions are
the standard ones used in the literature for similar data-filling
problems — see for instance [4], [6], [7], [10], [11], [30].
Three classical error metrics that we use are the Mean
Absolute Error (MAE), the Mean Squared Error (MSE), and
the Mean Absolute Percentage Error (MAPE). To define
them, for every array extracted from a time series we take n
as the total number of time steps, i = 1, . . . , n as the pointer
of each time step, Pi as the predicted values, and Ti as the
true values. Then, the metrics are defined according to the
formulas:

MSE =
1
n

n∑
i=1

(Pi − Ti)2, (3)

VOLUME 12, 2024 31453

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

MAE =
1
n

n∑
i=1

|Pi − Ti| , (4)

MAPE =
100
n

n∑
i=1

∣∣∣∣Pi − Ti
Ti

∣∣∣∣ . (5)

Using more than one metric to assess the results of
data-filling models is indeed a standard procedure, which
is mainly due to the fact that different metrics allows to
evaluate different characteristics of the proposed models.
First, the MSE and MAE are the most commonly used
metrics in a large variety of statistical and machine learning
problems, including time series forecasting and data-filling.
The difference among them lies in applying the power 2
(MSE) or the absolute value (MAE) to the difference between
true and predicted values — see (3)-(4). This difference
normally results in the MSE being more affected by outliers
than the MAE, due to the fact that the power 2 penalises
large errors more than the absolute value does. Nevertheless,
it is important to stress that when the data ranges between
0 and 1, as it is in our case during the training phase, the
roles are reversed and the errors computed with MSE will be
lower than the ones computed with MAE. Next, the MAPE
allows to make a significant comparison between models
developed for different data filling problems. Indeed, being a
percentage error, it eliminates the biases given by the different
measurement units and range of values. However, a downside
of MAPE — see (5) — is that its values may diverge when
the true values are close to 0. We point out that, indeed,
we use the MAPE only in the testing phase, that is when the
internal temperature values are in their original form, that in
our dataset is always above 10◦C.
During the training phase of the models, we used the MAE

as the unique loss function for the fitting of the models and
theMSE as an additional metric to assess how fast the models
improve their performances. Indeed, since our training data
is scaled to the range (0, 1), MAE penalises large errors more
than the MSE and thus is more indicated to be used as loss
function. During the test phase, instead, we used all the three
metrics defined above together with the R2 and the MSTDR
that we are going to define.

The R2 Score, or Coefficient of Determination, is calcu-
lated for each of the 96 predicted values by the models (1 day
divided into 15-minutes intervals). For every i = 1, . . . , 96,
we define

R2i = 1 −

∑N
j=1(Pj,i − Tj,i)2∑N
j=1(T i − Tj,i)2

, (6)

where j = 1, . . . ,N is the pointer of each 1-day sample
predicted by the model, Pj,i and Tj,i are respectively the
predicted and true i-th value in the j-th sample, and T i
is the average of the i-th true value over all the samples:
T i =

1
N

∑N
j=1 Tj,i.

To have a scalar version of this metric, we define its
average over i = 1, . . . , 96 as

R2 =
1
96

96∑
i=1

R2i . (7)

The R2i is, at each point i, a statistical measure of how well
that point of the sequence is predicted with respect to the
average of its true values. It can assume negative values and
its maximum value (corresponding to perfect predictions)
is 1. Several studies— see for instance [31]— point out a big
advantage of R2 against other evaluation metrics in regression
analysis. Indeed,MSE,MAE, andMAPE values do not reveal
the regression’s quality with respect to the distribution of the
true values. Instead, the R2 can distinguish two apparently
equally (in terms of MAE for instance) accurate models by
quantifying how much better (or worse) are the predictions
given by each model with respect to the simple average of
the true values. That is, a model always predicting the mean
of the real values, which is very far from what we aim at,
might reach a good MSE or MAE, but its R2 score will be 0.
Finally, in this paper we use also a custommetric, theMean

Standard Deviation Ratio (MSTDR), that calculates the mean
of the ratios between the Standard Deviation (STD) of the
predicted values and the STD of the true values. For every
1-day sample j = 1, . . . ,N predicted by the model, we define
the Standard Deviation Ratio (STDR) as

STDRj =
STD(Pj)
STD(Tj)

, (8)

where Tj is the vector of 96 true values of sample j, and Pj
the predicted vector for the same sample. Then, the MSTDR
is defined as the average of the STD ratios over the samples,
that is

MSTDR =
1
N

N∑
j=1

SDTRj, (9)

where N is the total number of samples over which the
average is taken.

The MSTDR expresses the similarity of the STD of the
predicted values with the STD of the real values. Being a
ratio of two positive quantities, the MSDTR ranges from
0 to infinity, with 1 denoting identical STDs. The important
difference with the R2 metric is that in (6) the average is taken
over the N samples in the dataset, while in (8) the standard
deviation is computed over the 96 values that compose a
single sample. In this way, STDRj is a measure of how
well the model represents the variations in the original j-th
sequence. TheMSTDR is then simply the average over all the
samples of the STDRj, that summarizes how well the model
reproduces the oscillating nature of the true values.

B. ERRORS AND MODELS COMPARISON
We outline here the results of the testing phase of our models,
that we divided in two parts. We recall that all three models
have been trained with data coming from 17 apartments

31454 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

located in via Similaun (SIM) for the period from January
15th, 2020 until January 14th, 2021. Thus, we first test
the models on data coming from the same apartments used
for training, but for a different time period, as discussed
in III-B. Then, we test the models also on data coming from
apartments located in a different site, the one of Via Brescia
- Via Cagliari (BRE-CAG). This additional test is made to
assess the ability of the models to perform on data coming
from totally new sources, given the correlation between data
coming from the same apartments in different periods.

We begin by showing in Table 4 the results of the models
on SIM apartments for the test period. In the upper half of
the table, with the error metrics MSE, MAE, and MAPE,
lower values mean that the model is performing better.
On the contrary, in the lower half of the table containing
the score metrics R2 and MSDTR, the values are better as
they get closer to 1. The first comparison of the models
predictions shows that all three models are sufficiently
accurate. In particular, all the error metrics appoint the
CNN-BiLSTMas the best performingmodel (values in bold),
while the other two perform similarly, with the CNN-LSTM
having mildly higher errors than the Baseline. Besides, the
R2 values are very similar among the three models, with
the CNN-BiLSTM predictions showing a slightly better
correlation to the real values than the other two. Concerning
theMSDTR, our twomodels achieve a very high similarity of
the predictions STDs with the STDs of the real values (above
90%), while the Baseline model shows lower similarity
(around 75%). This fact suggests that the Baseline model
is capturing less variability in the data than our models do.
That is, even though the CNN-LTSM shows the highest errors
among the three, its predictions fluctuates more realistically
than those of the Baseline. Nevertheless, the main outcome
of Table 4 is that the CNN-BiLSTM shows both the lowest
errors and the most realistic approximations.

TABLE 4. The results of the three models on the test set — SIM
apartments.

As mentioned in Section IV-A, the R2 is a significant
measure of correlation between each time step’s predictions
and the real values. Thus, we inspect also its distribution
across the whole window of predicted data instead of

considering only its final mean R2. In Fig. 10, we show
the R2 values for all three models for each time step of the

1-day target prediction, together with their mean R2 plotted
as dotted lines. From Fig. 10, we observe that:

FIGURE 10. R2 and their means (R2, dotted lines) for all models on the
test set — SIM apartments.

• The CNN-BiLSTM has the best performing approxi-
mation of the time series, both overall and of every
individual time step. We can also observe how the
performances are better in the first and last part of
the 1-day forecast, due to the more proximity to the
available data, and how symmetric those performances
are, suggesting that the model exploits both past and
future data in a similar way.

• Both the CNN-LSTM and the Baseline model show a
higher R2 score in the last part of the window with
respect to the initial one. This suggests that the backward
networks are performing better than the forward ones
and that, arguably, future sequences (6 following days)
are more effective to the data-filling result than the past
sequences (6 preceding days).

• Although the Baseline model shows better R2 values
from the beginning until the 70th time step, the
CNN-LSTMmodel overtakes it after that point. Besides
the differences in the networks, this could also be due
the selection of the sigmoid formula (2) over the linear
combination (1) of the forward and backward predic-
tions. Indeed, the sigmoid combination strengthens the
very first and very early predictions more than the linear
combination does.

As mentioned above, in the testing phase we also aim to
evaluate our models on data coming from apartments that has
not been accessed by themodels and are completely unrelated
to the data used for training. Particularly, we outline in the
following the results of the models on data from apartments
belonging to the via Brescia - via Cagliari (BRE-CAG) site,
while the training phase was done on apartments located in
via Similaun (SIM). The period in which we ran the tests are
the same for both groups of apartments and are discussed in
Section III-B. Therefore, Table 5 shows the errors and scores
of all three models, similarly to Table 4 above, but this time
for data coming from BRE-CAG apartments.

VOLUME 12, 2024 31455

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

TABLE 5. The results of the three models on the test set — BRE-CAG
apartments.

Since the BRE-CAG apartments are ‘‘unseen’’ by the
models in their training phase, the higher errors in Table 5
with respect to Table 4 are in line with the expectations.
As in the case of SIM apartments, the CNN-BiLSTM shows
the best results among the three models. However, it is
interesting to notice how the CNN-LSTM model worsens its
performance in the error metrics (MSE, MAE, MAPE) much
less than the Baseline does. This suggests a higher ability
of the CNN-LSTM model in generalising its predictions
compared to the Baseline. Indeed, this is confirmed by
the R2 and the MSDTR, with the CNN-LSTM and the
BiLSTM clearly outperforming the Baseline. We must point
out that for the first time the CNN-BiLSTM has a slightly
worse result than the CNN-LSTM, with the latter having
the highest MSDTR, even though the two results are very
similar. In general, these results show that ourmodels perform
understandably worse on totally new apartments, but the
performances are still good, and sensibly better than the
Baseline model. This indicates a good ability of our models
in generalizing to new data.

As done above for the tests on the SIM data, we inspect the
R2 of the threemodels on the BRE-CAG apartments for all the
96 time steps composing the 1-day predictions. This is shown
in Fig 11, from which we make the following observations:

• Also in the case of unseen apartments, the CNN-BiLSTM
achieves the best performances, both overall and in every
single time step.

• Both CNN-BiLSTM and CNN-LSTM models achieve
good results, showing a promising ability of generalizing
to unseen data. In addition, both models show a better
accuracy in the first and last part of the window (as
expected), with results that are symmetric in time, thus
suggesting a good balance in exploiting past and future
data.

• In contrast to the case of SIM apartments (see Fig. 10),
the Baseline model’s values show very high variation in
the whole sequence of 96 time steps, besides a lower
average (< 90%). This is the first evidence of a model
working much worse than the other two.

To summarize, the results of the tests over both SIM and
BRE-CAG apartments point out the following:

1) All three models achieve low errors and relatively high
R2, meaning that they all are effective enough for being

FIGURE 11. R2 and their means (R2, dotted lines) for all models on
BRE-CAG apartments.

used in a data-filling task. Also, the MAPE values, that
can be used for comparison with completely different
works, range in very low levels and show how well
the models approximate the real values. In particular,
the MAPE achieved by the Baseline on our dataset is
lower than theMAPE achieved by the samemodel in its
original implementation in [1]. This, together with the
relatively high R2, proves the validity of the Baseline
on our dataset.

2) The CNN-BiLSTM model performs significantly bet-
ter than the other two, showing in some cases almost
half of their errors.

3) With respect to the Baseline model, the CNN-LSTM
has slightly higher errors in the case of SIM apartments,
but way lower errors on data from the BRE-CAG
apartments. For both SIM and BRE-CAG apartments,
the CNN-LSTM model approximates the true values
more realistically than the Baseline, better reproducing
the fluctuations in the original data.

Generally, the preferable method of filling fluctuating time
series is a model with low errors but enough variation in
its predictions, avoiding flat predictions around the mean
of the real values. Therefore, the CNN-BiLSTM is the best
performing among the three models, and the CNN-LSTM,
despite the higher errors on the SIM apartments, is preferable
to the Baseline model for its ability to generalize to unseen
data.

To conclude this section, we provide some visual examples
of predictions done by the three models. This collection
of examples includes some of the different situations that
we encountered while visually inspecting the results, but it
is not meant to be exhaustive due to the huge number of
samples in our dataset. Furthermore, these examples are not
relevant for a thorough comparison of the models, since they
show specific situations whose frequency in the samples has
not been computed. For a comprehensive assessment of the

31456 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

three models and their performances, indeed, we refer to the
previous part of this section.

Each of the following figures (Fig. 12-17) consists of three
sub-plots that show the real internal temperature values (in
orange) and their predicted approximations (in blue) from
the three models respectively. In all figures, the left plot
refers to the Baseline model, the middle one to the CNN-
LSTM, and the right one to the CNN-BiLSTM. Moreover,
the x-axis displays the time steps covering an entire prediction
window (24 hours), while the temperatures in degree Celsius
are mapped on the y-axis.

Figures 12, 13, 14 refer to samples from the test set of
the SIM apartments, which are the apartments used for the
training of the models. In the example shown in Fig. 12,
all three models achieve a relatively good approximation of
the true values. While the Baseline’s prediction are more
flattened, the other two accurately estimate the real values,
with the CNN-BiLSTM having the best fit. Fig. 13 instead
shows a case in which all three models fail to accurately
predict a sample with frequent oscillations. Despite the poor
results of this sample, we must point out how the Base-
line provides the most flattened prediction, while the
CNN-BiLSTM captures the general oscillation but it is
affected by a positive bias in the first two thirds of thewindow.
Finally, Fig. 14 shows an example where the CNN-LSTM
achieves the best approximation. While the Baseline seems
close to the right trend but flattened, the CNN-BiLSTM also
follows a relevant trend but is again positively biased.

FIGURE 12. Predictions from the three models. Example 1, SIM
apartments.

FIGURE 13. Predictions from the three models. Example 2, SIM
apartments.

Figures 15, 16, 17 are obtained instead from samples
of the BRE-CAG apartments, which are unseen from the
models during training. Generally, the predictions in this case
were significantly worse than those of the SIM apartments,
as expected. Fig. 15 shows an example where all three models
are sufficiently good in capturing the overall trend of the
real values. More in depth, while the Baseline does not

FIGURE 14. Predictions from the three models. Example 3, SIM
apartments.

FIGURE 15. Predictions from the three models. Example 1, BRE-CAG
apartments.

FIGURE 16. Predictions from the three models. Example 2, BRE-CAG
apartments.

FIGURE 17. Predictions from the three models. Example 3, BRE-CAG
apartments.

capture the sudden drop around the mid of the window, the
CNN-LSTM and CNN-BiLSTM seem to correctly grasp it,
even if underestimating the drop.

Fig. 16 is instead an example in which all three models fail
to estimate the real values and their trends. Nevertheless, only
CNN-BiLSTM seems to be slightly outperforming the other
two by creating some fluctuations that approach the curve
of real values. Lastly, Fig. 17 shows an example where the

VOLUME 12, 2024 31457

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

Baseline captures better the variation and the values of the
true time series, while the other two models show a slightly
worse behavior, but still capture the main trend.

V. IMPLICATIONS OF THE STUDY
In general, the results outlined in the previous section
demonstrate the effectiveness of all three models — the two
brand new ones presented in this paper plus the one from [1]
taken as a baseline — in achieving good data filling results.
In detail, both models we developed work substantially better
than the Baseline, especially when generalizing to totally
unseen data. In particular, the high performances obtained by
the CNN-BiLSTM model can be seen as the main outcome
of this work. Moreover, the fact that the Baseline achieves
sufficient results on our dataset demonstrates the robustness
of the LSTM approach and of our choice to use this model as
a comparison for our work.

An important difference between our two models and the
Baseline is that the CNN-LSTM and the CNN-BiLSTM
make use of external data (the TEXT sensor) in order to
predict the target time series (the TEM sensor). This is not
the case of the Baseline, that uses only data from the TEM
time series in order to forecast the missing values. This
disparity contributed probably in an essential way to the
higher performances of our models, especially when testing
on data coming from unseen apartments (the ones of BRE-
CAG, see Table 5). The other major difference between our
work and the Baseline is the presence of CNN layers in our
models. The fact that combinations of CNN and LSTM layers
show more promising results than purely LSTM networks
was suggested already by [10] and finds confirmation in
our work. Nevertheless, we must point out that a precise
quantification of the added value given by CNN layers and
the use of external data would require further investigation
and it is outside the scope of this work.

Restricting instead the focus on our two models, it is
interesting to analyse why the CNN-BiLSTM achieves the
highest performances. Both our models make use of the same
input data, but they differ in the way they handle and combine
the information preceding (past) and following (future) the
data gap to be filled. Indeed, the CNN-LSTM model is made
of two twin networks containing CNN and LSTM layers that
estimate the data gap using, respectively, the previous and
the following 6 days. Both networks are trained and, after
training, their forecasts are interpolated using the sigmoid
function — see (2) — obtaining the final output of the
CNN-LSTM model. On the contrary, the CNN-BiLSTM
is made of one single network that exploits the power of
BiLSTM layers to process the data from the previous and
the following 6 days in both directions. Thus, for this model,
the way in which past and future data are combined is not
constrained a priori but it is part of what the network learns
during the training. An interesting follow-up of our work
could be to study the dependencies of the predicted points
in the data gap from the input data (past and future). For the
CNN-LSTM model we already know, for instance, that the

first occurrences in the data gap do not depend on the future
data, because of the sigmoid interpolation (2) that combines
onwards and backwards forecasts. This is not necessarily
true for the CNN-BiLSTM model, in which (a priori) all
the past and future data points can be used to predict the
output. Our work shows that this more complex strategy
of combining forward and backward previsions, which is
learnt by the CNN-BiLSTM from the data, is more effective
than the interpolation formula (2) used by our CNN-LSTM
model. In addition, considering the performances of the
separate CNN-LSTM-Onwards and CNN-LSTM-Backwards
networks, we tend to exclude that using another interpolation
function instead of the sigmoid can lead to overcome the
results achieved by the CNN-BiLSTM.

Concerning instead the size of the data gaps, we decided
to keep the same one for the whole work in order to focus
on the differences among the models. Besides, the size of
the gap we chose (1 day) is large enough to require a more
sophisticated approach than simple interpolation, but it is
short enough to maintain some predictability. Nevertheless,
it would be interesting to assess the proposed models on
gaps of different lengths, in particular for what concerns
the most promising CNN-BiLSTM model. For the case of
shorter time scales, such as few hours, it would be worth
comparing this kind of LSTM-based models with classical
statistical methods. Indeed, when the oscillations in the data
are small, the advantage of using DL techniques might be
reduced. Regarding longer time scales instead, we point out
that a combination of the models we developed could be
used to fill gaps longer than one day, even if this was not
the scope of the present work. Indeed, the CNN-LSTM-
Onwards and the CNN-LSTM-Backwards (which are the
two networks composing the CNN-LSTM model) can be
used to predict missing data using, respectively, only the
past and future samples. In this way, a larger gap can be
progressively reduced until it reaches the size of 1 day and
then the CNN-BiLSTM model can be applied. Naturally,
as pointed out also in [9], this approach is highly exposed
to accumulate the error.

VI. CONCLUSION
In this paper we presented two Deep Learning models based
on CNN and (Bi)LSTM networks, aimed at reconstructing
missing data in internal temperature time series from
monitored apartments. Our work provides a comparison of
the effectiveness in a larger model of combined one-way
LSTM networks versus bidirectional ones (BiLSTM), when
performing the same task. In addition, a strong novelty in
our models is the use of an external time series (the TEXT
sensor) as additional model input. In a short synthesis, both
our models achieved low errors and good ability to represent
the variability of the target time series. In particular, they
were shown to perform better than the chosen Baseline, and
the best results were achieved by the CNN-BiLSTM model.
We discussed the importance of the new features of our
models to achieve these results in the previous section.

31458 VOLUME 12, 2024

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

Despite of the good results achieved in general by the
models we propose, we must point out that the visual
inspection of some particular cases at the end of Section IV-B
shows large margins for improvement of the forecasts. Being
aware that the randomness in the data prevents the models
from achieving extremely high accuracy, using other inputs in
addition to TEMandTEXT could lead to substantial advance-
ments. Some possibilities are heating, cooling, or ventilation
time series, which have a direct effect on the temperature.
Using as additional input the CO2 levels, which are correlated
with the number of people present inside the apartment,
or the relative humidity, are also interesting options. In our
case, this was prevented by the fact that one sensor unit
captures, at the same time, the internal temperature, the
relative humidity, and the CO2 concentration, which means
that all three values are lost in case of failure of the
sensor. The best way to exploit additional features would
probably be to do feature engineering to obtain the input
for the DL model. This would open up several possibilities
on how to combine features and could potentially lead
to substantial improvement in the results. Moreover, the
hyper-parameters of the models were decided manually
after several experiments while the training and validation
metrics were monitored. The model selection phase could
be strengthened by following automated procedures, such as
Grid-Search or Hyper-parameters Optimization Algorithms,
which allow assessingmore options for the hyper-parameters.
Finally, embedding physical principles in the model would
be another promising approach. Specifically, two possibilities
would be inserting equations into the neural network or
creating an interface between the DL model and a physical
model of the apartments.

ACKNOWLEDGMENT
The authors would like to thank Mouna Kacimi and Matteo
Ceccarello for fruitful discussions on the topic of this article
and for providing valuable input to this work. The European
union is not liable for any use that may be made of the
information contained in this document which is merely
representing the authors view.

REFERENCES
[1] W. Song, C. Gao, Y. Zhao, and Y. Zhao, ‘‘A time series data filling method

based on LSTM—Taking the stem moisture as an example,’’ Sensors,
vol. 20, no. 18, p. 5045, Sep. 2020.

[2] A. F. Atiya, S. M. El-Shoura, S. I. Shaheen, and M. S. El-Sherif, ‘‘A
comparison between neural-network forecasting techniques-case study:
River flow forecasting,’’ IEEE Trans. Neural Netw., vol. 10, no. 2,
pp. 402–409, Mar. 1999.

[3] N. K. Ahmed, A. F. Atiya, N. E. Gayar, and H. El-Shishiny, ‘‘An empirical
comparison of machine learning models for time series forecasting,’’ Econ.
Rev., vol. 29, nos. 5–6, pp. 594–621, Aug. 2010.

[4] M. Cai, M. Pipattanasomporn, and S. Rahman, ‘‘Day-ahead building-level
load forecasts using deep learning vs. Traditional time-series techniques,’’
Appl. Energy, vol. 236, pp. 1078–1088, Feb. 2019.

[5] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[6] I. E. Livieris, E. Pintelas, and P. Pintelas, ‘‘A CNN–LSTM model for
gold price time-series forecasting,’’ Neural Comput. Appl., vol. 32, no. 23,
pp. 17351–17360, Dec. 2020.

[7] T.-Y. Kim and S.-B. Cho, ‘‘Predicting residential energy consumption
using CNN-LSTM neural networks,’’ Energy, vol. 182, pp. 72–81,
Sep. 2019.

[8] H. Ren, E. Cromwell, B. Kravitz, and X. Chen, ‘‘Using deep learning
to fill spatio-temporal data gaps in hydrological monitoring networks,’’
in Hydrology and Earth System Sciences Discussions. Copernicus
Publications, 2019, pp. 1–20.

[9] S. Contractor and M. Roughan, ‘‘Efficacy of feedforward and LSTM
neural networks at predicting and gap filling coastal ocean timeseries:
Oxygen, nutrients, and temperature,’’FrontiersMar. Sci., vol. 8,May 2021,
Art. no. 637759.

[10] P. Lara-Benítez, M. Carranza-García, and J. C. Riquelme, ‘‘An experimen-
tal review on deep learning architectures for time series forecasting,’’ Int.
J. Neural Syst., vol. 31, no. 3, Mar. 2021, Art. no. 2130001.

[11] A. Rai, A. Shrivastava, and K. C. Jana, ‘‘A CNN-BiLSTM based deep
learning model for mid-term solar radiation prediction,’’ Int. Trans. Electr.
Energy Syst., vol. 31, no. 9, Sep. 2021, Art. no. e12664.

[12] T. Le, M. T. Vo, B. Vo, E. Hwang, S. Rho, and S. W. Baik, ‘‘Improving
electric energy consumption prediction using CNN and bi-LSTM,’’ Appl.
Sci., vol. 9, no. 20, p. 4237, Oct. 2019.

[13] C. W. Hong, K. Lee, M.-S. Ko, J.-K. Kim, K. Oh, and K. Hur,
‘‘Multivariate time series forecasting for remaining useful life of turbofan
engine using deep-stacked neural network and correlation analysis,’’ in
Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp), Feb. 2020,
pp. 63–70.

[14] C.-C.-J. Kuo, ‘‘Understanding convolutional neural networks with a
mathematical model,’’ J. Vis. Commun. Image Represent., vol. 41,
pp. 406–413, Nov. 2016.

[15] Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,’’ IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994.

[16] S. Hochreiter, ‘‘The vanishing gradient problem during learning recurrent
neural nets and problem solutions,’’ Int. J. Uncertainty, Fuzziness Knowl.-
Based Syst., vol. 6, no. 2, pp. 107–116, Apr. 1998.

[17] A. Graves, ‘‘Supervised sequence labelling,’’ in Supervised Sequence
Labelling With Recurrent Neural Networks. Cham, Switzerland: Springer,
2012, pp. 5–13.

[18] M. Schuster and K. K. Paliwal, ‘‘Bidirectional recurrent neural networks,’’
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[19] Y. Bin, Y. Yang, F. Shen, X. Xu, and H. T. Shen, ‘‘Bidirectional long-
short term memory for video description,’’ in Proc. 24th ACM Int. Conf.
Multimedia, Oct. 2016, pp. 436–440.

[20] S. Zhang, D. Zheng, X. Hu, and M. Yang, ‘‘Bidirectional long short-term
memory networks for relation classification,’’ in Proc. 29th Pacific Asia
Conf. Lang., Inf. Comput., 2015, pp. 73–78.

[21] Q. Fu, D. Niu, Z. Zang, J. Huang, and L. Diao, ‘‘Multi-stations’ weather
prediction based on hybrid model using 1D CNN and bi-LSTM,’’ in Proc.
Chin. Control Conf. (CCC), Jul. 2019, pp. 3771–3775.

[22] N. Caballero and N. D. Valle, ‘‘Tackling energy poverty through behavioral
change: A pilot study on social comparison interventions in social housing
districts,’’ Frontiers Sustain. Cities, vol. 2, p. 66, Jan. 2021.

[23] N. DellaValle, A. Bisello, and J. Balest, ‘‘In search of behavioural
and social levers for effective social housing retrofit programs,’’ Energy
Buildings, vol. 172, pp. 517–524, Aug. 2018.

[24] J. Brownlee, Deep Learning for Time Series Forecasting: Predict the
Future With MLPs, CNNs and LSTMs in Python. Vermont, VIC, Australia:
Machine Learning Mastery, 2018.

[25] F. Pedregosa, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn.
Res., vol. 12, pp. 2825–2830, Nov. 2011.

[26] E. R. Coutinho, R.M. D. Silva, J. G. F. Madeira, P. R. D. O. D. S. Coutinho,
R. A. M. Boloy, and A. R. S. Delgado, ‘‘Application of artificial
neural networks (ANNs) in the gap filling of meteorological time
series,’’ Revista Brasileira de Meteorologia, vol. 33, no. 2, pp. 317–328,
Jun. 2018.

[27] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[28] F. Chollet. (2015). Keras. [Online]. Available: https://github.
com/fchollet/keras

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

VOLUME 12, 2024 31459

K. Tzoumpas et al.: Data Filling Methodology for Time Series Based on CNN and (Bi)LSTM Neural Networks

[30] H. Cheng, Z. Xie, Y. Shi, and N. Xiong, ‘‘Multi-step data prediction in
wireless sensor networks based on one-dimensional CNN and bidirectional
LSTM,’’ IEEE Access, vol. 7, pp. 117883–117896, 2019.

[31] D. Chicco, M. J. Warrens, and G. Jurman, ‘‘The coefficient of determi-
nation R-squared is more informative than SMAPE, MAE, MAPE, MSE
and RMSE in regression analysis evaluation,’’ PeerJ Comput. Sci., vol. 7,
p. e623, Jul. 2021.

KOSTAS TZOUMPAS received the B.Sc. degree
in mathematics from the University of Ioannina,
Greece, and the M.Sc. degree in computational
data science from the University of Bolzano,
Italy. After a two year experience in teaching
mathematics to students of all levels, he completed
the M.Sc. degree. During his internship in Eurac
Research, Bolzano, he completed his M.Sc. thesis
in which he presented a deep learning approach
on reconstructing internal temperature time series

using both past and future data of internal and external temperature time
series. This paper originates from his M.Sc. thesis. After the graduation,
he was with Eurac Research as a Python Programmer and a Data Scientist.
The main tasks, he has been working on are the data preparation and analysis
for several works related to two projects, Sinfonia and Heart.

AARON ESTRADA received the M.Sc. degree
in computer science, with a focus on data and
knowledge engineering from the Free University
of Bozen-Bolzano. He is currently a Researcher
with the Institute of Renewable Energy, Eurac
Research. He has research and industrial experi-
ence in software development, data engineering,
and data analysis. He worked on Eurac Research
on several research projects, including the imple-
mentation of simulation tools (GRETA), definition

of data architecture and data collection from buildingmonitoring systems and
laboratories (Sinfonia and Integrids), and the analysis of data on smart cities
and e-mobility contexts (Sinfonia and LIFEalps).

PIETRO MIRAGLIO received the joint Ph.D.
degree in pure and applied mathematics from
Universitã degli Studi di Milano and Universitat
Politcnica de Catalunya, Barcelona. His Ph.D.
thesis was focused on rigidity and regularity prop-
erties of stable solutions to some nonlinear partial
differential equations. After the Ph.D. degree,
he was with Eurac Research, Bolzano, Italy, as a
Postdoctoral Researcher dealing mainly with data
analysis and mathematical modelling in renewable

energy-related contexts. In Fall 2021, he was a Postdoctoral Researcher
with the Euro-Mediterranean Centre on Climate Change (CMCC), Bologna,
where he works on data assimilation for the reanalysis of the Mediterranean
sea in the framework of the Copernicus marine service.

PIETRO ZAMBELLI received the Ph.D. degree
in environmental engineering. He is currently a
Senior Researcher with the Institute of Renewable
Energy, Eurac Research. He has experience in GIS,
modeling, and simulations tools applied to urban
and regional energy systems. He applied machine
learning algorithms to perform object-based image
analysis on multi- and hyper-spectral images, time
series data coming from building, and industrial
monitoring systems. He coordinated the activities

and tasks on several international research projects. The tasks are: assess
the renewable energy potential (recharge.green and GRETA), develop tools
to support decision makers to evaluate different aspects of the energy
systems (Hotmaps, Enermaps, and Life4HeatRecovery), collect and analyze
monitored data (Sinfonia, Heart, StarDust, ARV, JustNature, ExcEED, and
Matrix), assess building stock data (BuildHub and Moderate), simulate and
evaluate policies that aim to tackle energy justice through the implementation
of positive energy districts (SmartBEEjS).

31460 VOLUME 12, 2024

