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ABSTRACT Heart rate variability (HRV), which is the variation of inter-beat intervals, exhibits complex
characteristics on multiple temporal scales due to the balancing function of the autonomic nervous system.
Although there are various nonlinear analysis methods for assessing the complexity of HRV, quantifying
HRV over multiple scales is lacking. Here, we present a novel multiscale fuzzy dispersion entropy (MFDE)
measure that incorporates quantifying fuzzy dispersion entropy over multiple temporal scales. The proposed
MFDE comprises two steps: First, a coarse-graining procedure is carried out for themultiscale decomposition
of an inter-beat interval. Second, it conducts FDE computation for each coarse-grained time series. It results
in the quantification of complexity, reflecting the long-range correlations inherent in HRV. Using synthetic
signals and actual electrocardiogram (ECG), we evaluate the performance of MFDE and compare it to
the traditional multiscale entropy methods. The results using synthetic signals show better robustness
of MFDE for quantifying complexity with various lengths and predefined parameters. The results using
ECGs demonstrate that the proposed MFDE leads to more significant discrimination of HRVs of different
cardiovascular states regarding p-values from theMann-WhitneyU test. The capability ofMFDE can provide
a prospective tool for real-time and practical computer-aided diagnosis using HRV analysis.

INDEX TERMS Heart rate variability, RR intervals, complexity, multiscale fuzzy dispersion entropy.

I. INTRODUCTION
Electrocardiogram (ECG) is a medical diagnostic tool that
measures and records the electrical activity of the heart [1],
[2], [3]. Heart rate variability (HRV), which is the variation of
inter-beat intervals between consecutive heartbeats, namely
RR intervals, reflects the mechanism that is controlled by the
autonomic nervous system (ANS) [4]. Because the fluctua-
tion of heartbeats is controlled by dynamic ANS, RR intervals
vary depending on the conditions of ANS [5], [6]. For
example, healthy people have higher HRV levels with auto-
nomic health mechanisms, while patients have lower HRV
levels because of the insufficient adaption of the ANS [7].
It is known that the physiological mechanisms of healthy
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people are more complex than patients with ill-conditioned
cardiovascular systems. Thus, the complexity of patients is
reduced [8], [9], [10]. However, differentiating the HRVs of
patients remains challenging since the HRV level depends
on the type of disease. For instance, patients with atrial
fibrillation (AF) indicate high HRVs [11], while ones with
congestive heart failure (CHF) show low HRVs [12].
Recently, various nonlinear analysis methods, especially

entropy measurements, have been widely used in assess-
ing HRVs. Entropy is a quantitative measure of the degree
of irregularity of a time series, which has been widely
used in various physiological signal analyses, such as elec-
troencephalogram (EEG), electrocardiogram (ECG), and so
on [13], [14], [15], [16]. Sample entropy (SE), the negative
logarithm of the conditional probability, has gained a lot
of attention in analyzing various physiological signals [17].
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However, SE has the shortcoming of having undefined or
unreliable values for short signals. As an alternative tool
for SE, fuzzy entropy (FE), which uses various fuzzy mem-
bership functions to mitigate the threshold effect, has been
developed [18]. However, FE is computationally expensive
and still sensitive to the length of a time series. To address
the issues of SE and FE, dispersion entropy (DE) has been
presented [19]. The DE method, which is a technique that
considers the dispersion pattern itself, not only provides
reliable entropy values for short signals but also has low com-
putational complexity. Recently, fuzzy dispersion entropy
(FDE) has been introduced to address the sensitivity for noise
of DE by utilizing fuzzy membership functions [20].

Although entropy is a powerful tool for quantifying the ran-
domness of a time series, there are limitations in quantifying
the inherent complexity of a physiological time series, which
reveals structures with long-range correlations on multiple
spatial and temporal scales [9], [21]. In the physiological
complexity context, complex fluctuations of a healthy system
are similar to 1/f noise that contains long-range correlations,
and 1/f decay produces a fractal structure [22]. Compared
to the 1/f noise, the white Gaussian noise (WGN), which is
completely disordered and more irregular, has a lower com-
plex structure. However, a WGN is assigned to a higher value
than 1/f noise on a single scale by conventional entropy algo-
rithms. It suggests the inappropriate entropy for adaptation in
quantifying the complexity of biological signals.

To solve themismatching between complexity and entropy,
Costa et al. [9], [21] have proposed the multiscale SE (MSE).
A coarse-graining procedure is used to utilize multiple time
series with distinct time scales, followed by the computation
of SE on each coarse-grained time series. However, the use of
the coarse-grained procedure results in an insufficient length
of time series for evaluating SE, leading to undefined and
inaccurate entropy values. Unreliable entropy values arising
with shortened time series are mainly caused by the existence
of the threshold parameter of SE. In order to overcome the
sensitivity for predefined parameters of the MSE, several
multiscale based entropy methods have been introduced [23],
[24], [25], [26], [27]. Among them, the multiscale disper-
sion entropy (MDE) gained popularity due to its ability in
biomedical applications [28]. However, previous multiscale
based entropy methods possess inherent shortcomings of
original single scale based entropy methods where the com-
plexity quantification onmultiscale is still unreliable for short
physiological signals and easily influenced by predetermined
parameters.

To address the above issues, here, a novel multiscale
fuzzy dispersion entropy (MFDE), which quantifies the
FDE entropy over multiple temporal scales for reflecting
dynamic complexity, is presented. The proposed MFDE con-
sists of a multiscale decomposition of a time series by a
coarse-graining procedure and quantification of complexity
over multiple time scales using FDE computation. To the
best of the authors’ knowledge, the use of multiscale based

computation of FDE has not been used for biological signals
yet. Although FDE is effective for quantifying the uncertainty
of time series, it may fail to capture the complexity of physi-
ological signals over multiple temporal scales. By inheriting
the advantage of FDE and multiscale based entropy, the
MFDE method results in enhanced quantification of com-
plexity with better robustness than conventional multiscale
based entropy methods. Throughout the experiments using
synthetic signals, i.e., WGN and 1/f noise, the results demon-
strate that MFDE is more capable of reflecting complexities
of WGN and 1/f noise for various conditions of lengths and
predefined parameters. Moreover, using real ECG signals of
distinct physiological states, i.e., CHF, AF, and healthy sub-
jects, the proposed MFDE achieves better discrimination of
HRV between different groups compared to the conventional
MSE and MDE, which is validated by p-values from the
Mann-Whitney U test [29].

The contribution of the proposed MFDE is summarized as
follows:

1) The proposedMFDE not only employs reliable compu-
tation even for short-term time series but also reflects
long-range correlations inherited in physiological sys-
tems.

2) The proposed MFDE possesses robustness in quan-
tifying complexity on the length of time series and
predefined parameters.

3) The proposedMFDE is better capable of discriminating
complexity in HRV of distinct physiological states,
especially for short-term time series.

Given the capability of MFDE, it may play a role in the
rapid monitoring and diagnosis of individuals with a high risk
of cardiovascular disease such as cardiac arrhythmias.

The remainder of this paper is organized as follows: In
Section II, we introduce the conventional entropy methods,
followed by the introduction of the proposedMFDEmethods.
Section III describes synthetic signals and real ECG datasets.
In Section IV, the performance of MFDE using synthetic
signals and real ECG recordings is demonstrated. Section V
concludes this work.

II. MATERIALS AND METHODS
A. DISPERSION ENTROPY
For the univariate time series x = {x1, x2, . . . , xN } with a
length of N , dispersion entropy (DE) proceeds in five steps
according to [19].

1) The univariate time series x = {x1, x2, . . . , xN } is
normalized to time series y = {y1, y2, . . . , yN } by
the normal cumulative distribution function (NCDF) as
in (1). The components of the series y have real values
from 0 to 1. Without using NCDF, there is a problem of
bias to few values because of extremely large or small
values compared with a median value.

yi =
1

σ
√
2π

∫ xi

−∞

e
−(t−γ )2

2σ2 dt, i = 1, 2, · · · ,N (1)
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FIGURE 1. Trapezoidal (k = 1,3) and triangle membership function (k = 2) when the number of classes is c = 3.

where γ is the mean and σ is the standard deviation
(SD) value of the time series x.

2) The normalized time series y = {y1, y2, . . . , yN } is
mapped to the series zc =

{
zc1, z

c
2, . . . , z

c
N

}
by the

round function as follows:

zci = round (c · yi + 0.5) , i = 1, 2, · · · ,N (2)

where c is the number of classes. zci is assigned to
integer classes 1 to c by the round function.

3) The embedding vector zm,c
i that has zci as members is

created as follows:

zm,c
i =

{
zci , z

c
i+d , . . . , z

c
i+(m−1)d

}
,

i = 1, 2, . . . ,N − (m− 1) d (3)

where m is the embedding dimension, c is the number
of classes and d is the time delay. zm,c

i is mapped
to a dispersion pattern πv0v1...vm−1 . Each member of
zm,c
i , zci , z

c
i+d , . . . , z

c
i+(m−1)d , corresponds to the classes

v0, v1, . . . , vm−1, respectively. Because the dispersion
pattern has m classes with values from 1 to c, the
number of possible dispersion patterns is cm.

4) The relative frequency of dispersion patterns is
calculated as follows (4), as shown at the bottom of the
next page, where the numerator of p

(
πv0v1...vm−1

)
rep-

resents the number of zm,c
i with the dispersion pattern

πv0v1...vm−1 .
5) Finally,DE (x,m, c, d) is calculated using the Shannon

entropy [30] as follows:

DE (x,m, c, d)=−

cm∑
π=1

p
(
πv0v1...vm−1

)
ln p

(
πv0v1...vm−1

)
(5)

where x is the original time series,m is the embedding
dimension, c is the number of classes, and d is the time
delay.

B. FUZZY DISPERSION ENTROPY
For the univariate time series x = {x1, x2, . . . , xN } with a
length of N, FDE proceeds in six steps according to [17].
1) The univariate time series x = {x1, x2, . . . , xN } is

normalized to the time series y = {y1, y2, . . . , yN } by
NCDF. The NCDF function is the same as (1).

2) In DE, a round function is included for mapping
y = {y1, y2, . . . , yN } to zc =

{
zc1, z

c
2, . . . , z

c
N

}
. Due to

the existence of the round function, which maps to
a single class only, DE is sensitive to the parameters
and signal lengths [20]. Therefore, FDE eliminates the
round function of DE as follows:

zci = c · yi + 0.5, i = 1, 2, · · · ,N (6)

where c is the number of classes
3) In a way that reflects all classes, fuzzy functions are

used instead of a round function. The fuzzy member-
ship functionMk is allocated to each class k . Then, the
degree of membership µMk (z

c
i ) is measured for each

class k , satisfying the following

c∑
k=1

µMk

(
zci

)
= 1 (7)

µMk

(
zci

)
= 1

if 0.5 ≤ zci ≤ 1
µMk

(
zci

)
+ µMk+1

(
zci

)
= 1, k =

⌊
zci

⌋
if 1 ≤ zci ≤ c

µMk

(
zci

)
= 1

if c ≤ zci ≤ c+ 0.5

(8)

If the class k is 1 or c,Mk is the trapezoidal membership
function. For the class k between 1 and c,Mk is the tri-
angle membership function. The degree of membership
µMk (z

c
i ) for each class k is as follows:

µM1 (α) =


1 α < 1
2 − α 1 < α < 2
0 2 < α

(9)

µMk (α) =


0 α < k − 1
α − k + 1 k−1≤α≤k
k+1−α k≤α≤k+1
0 k+1 < α

, 1<k<c

(10)
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µMc (α)=


0 α < c− 1
α − c+1 c−1 ≤ α ≤ c
1 c < α

(11)

Fig. 1 shows the example of fuzzy functions when the
number of classes is c = 3.

4) Embedding vector zm,c
i that has zci as members are

generated identically to (3) in DE. The degree of mem-
bership µπv0v1 ...vm−1

(
zm,c
i

)
for the dispersion pattern

πv0v1...vm−1 is defined as follows:

µπv0v1 ...vm−1

(
zm,c
i

)
=

∏m−1

j=0
µMvj

(
zci+j·d

)
(12)

5) The probability of the dispersion pattern πv0v1...vm−1 is
defined as follows:

p
(
πv0v1...vm−1

)
=

∑N−(m−1)d
i=1 µπv0v1 ...vm−1

(
zm,c
i

)
N − (m− 1) d

(13)

6) Finally, based on the Shannon entropy [30], FDE is
calculated for all dispersion patterns.

FDE (x,m, c, d)

= −

∑cm

π=1
p

(
πv0v1...vm−1

)
ln p

(
πv0v1...vm−1

)
(14)

where x is the original time series, m is the embedding
dimension, c is the number of classes, and d is the time
delay.

C. MULTISCALE FUZZY DISPERSION ENTROPY
To compute FDE at multiple scales, we propose mul-
tiscale fuzzy dispersion entropy (MFDE). We utilize a
coarse-graining process for decomposing an original time
series into a multiscale time series [9]. The coarse-graining
process generates new time series as a collection of
mean values of time series within non-overlapping win-
dows. For a given the original univariate time series
x = {x1, x2, · · · , xN } , the coarse-grained time series us =

{us1, u
s
2, · · · , us

⌊N/s⌋ is generated as follows:

usj =
1
s

j·s∑
i=(j−1)s+1

xi, 1 ≤ j ≤ ⌊N/s⌋ (15)

where s is the scale factor and non-overlapping window size.
If the scale factor s is 1, the us is identical to the original
time series. For the coarse-grained time series us(s > 1), the
MFDEfollows the same steps as the FDE with the exception
of NCDF mapping. In MFDE algorithms, each of the mean
and SD values remains the same as the first scale across all
scales. This means that the average and SD of the original

signal are used for all scales [25]. The normalized MFDE is
calculated by dividing MFDE by the maximum value ln (cm).

For the given univariate time series x = {1.2, 3.7, 2.2, 5.0,
4.1, 10.3, 2.7, 6.5, 7.3, 1.6} with the length N=10, MFDE
with parameterm = 2, c = 3, d = 1, s = 2 has the following
procedure:

First, a coarse-grained time series u2 = {u21, u
2
2, · · · , u25} is

created through coarse-graining process:

u2j =
1
2

∑2·j

i=2(j−1)+1
xi, 1 ≤ j ≤ ⌊10/2⌋ = 5

Second, the coarse-grained time series u2 is mapped to the
z3. The u2 = {2.45, 3.6, 7.2, 4.6, 4.45} is normalized to the
series y = {0.242, 0.382, 0.830, 0.519, 0.499} by NCDF, and
y is mapped to the series z3 = {1.227, 1.647, 2.989, 2.058,
1.996} by (6). The embedding vectors z2,3i =

{
z3i , z

3
i+1

}
,

in which i is from 1 to 4, are created from the z3.

Third, the degree of membership µπv0v1

(
z2,3i

)
of z2,3i for

the dispersion pattern πv0v1 is calculated. Because both the
classes v0 and v1 have values from 1 to 3, the number of
possible dispersion patterns is 32 = 9. Therefore, the patterns
can be (π11, π12, π13, π21, π22, π23, π31, π32, π33).

For each embedding vector z2,3i in which i is from 1 to 4,

the degree of membership µπv0v1

(
z2,3i

)
is calculated for

allocated dispersion patterns. For instance, the degree of
membership of the z2,32 = {1.647, 2.989} is calculated as
below:

µπ12

(
z2,32

)
= µM1

(
z32

)
· µM2

(
z33

)
= 0.0037,

µπ13

(
z2,32

)
= µM1

(
z32

)
· µM3

(
z33

)
= 0.3491,

µπ22

(
z2,32

)
= µM2

(
z32

)
· µM2

(
z33

)
= 0.0069,

µπ23

(
z2,32

)
= µM2

(
z32

)
· µM3

(
z33

)
= 0.6403

where M1,M3 is the trapezoidal membership function, and
M2 is the triangle membership function. For all dispersion

patterns other than π12, π13, π22, and π23, µπv0v1

(
z2,32

)
is 0.

Here, let’s assume that the round function is used in DE
instead of the degree of membership µπv0v1

(·). Then, z2,3i =

{1.647, 2.989} are mapped to the integer classes 2 and 3,
respectively. Although z3i = 1.647 is clearly the real number
between 1 and 2, the round function forces to map to the
integer class 2, excluding the class 3. It causes the DE to be
sensitive to the length of the time series and the parameters
m and c. FDE overcomes the limitations of DE by reflecting
the information of all adjacent classes.

Fourth, the probability of the dispersion pattern πv0v1 is
calculated. For instance, the probabilities of the dispersion

p
(
πv0v1...vm−1

)
=
Number

{
i | i ≤ N−(m−1) d, zm,c

i has typeπv0v1...vm−1

}
N − (m− 1) d

(4)
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FIGURE 2. ECG data sampled at 250 samples per second: (a) Congestive heart failure (CHF); (b) Atrial fibrillation (AF); (c) Healthy.

FIGURE 3. RR intervals extracted from ECG data sampled at 250 samples per second: (a) Congestive heart failure (CHF); (b) Atrial fibrillation
(AF); (c) Healthy.

patterns π12, π13, π22, and π23 are calculated as below:

p (π12) =

∑4
j=1 µπ12

(
z2,3j

)
4

=
0.5043

4
= 0.1261,

p (π13) =

∑4
j=1 µπ13

(
z2,3j

)
4

=
0.3491

4
= 0.0873,

p (π22) =

∑4
j=1 µπ22

(
z2,3j

)
4

=
1.1013

4
= 0.2753,

p (π23) =

∑4
j=1 µπ23

(
z2,3j

)
4

=
0.6409

4
= 0.1602

Finally, for all possible dispersion patterns, MFDE is cal-
culated as −

∑3
i=1

∑3
j=1 p

(
πij

)
lnp

(
πij

)
= 1.794 at the scale

factor 2, and the normalized MFDE is 1.793
ln(32)

= 0.8164.

III. EVALUATION SIGNALS
A. SYNTHETIC SIGNALS
Two synthetic signals are used in experiments: white Gaus-
sian noise (WGN) and 1/f noise. WGN has the same energy
at all frequencies, which means power spectral density is
a constant, and 1/f noise has the characteristics that power
spectral density is inversely proportional to frequency [31].
In other words, it means that the energy of 1/f noise con-
tains complex dynamics that vary depending on frequency.
Through analysis of multiscale based entropy, it appears that
1/f noise is a more complex structure than WGN [9], [27],
[32], [33]. Multiscale entropy values for the synthetic signals,

WGN and 1/f noise, provide important insight with respect
to physiological complexity. Besides, 1/f noise, which has a
fractal (self-similar) structure, is closely related to the com-
plicated behavior of various physiological signals. Therefore,
several multiscale entropy methods still use synthetic signals
as performance evaluations for biomedical signals [25], [27],
[34].

B. REAL ECG DATASET
Three ECG datasets are publicly available on Phys-
ionet [35] and explained precisely as follows. BIDMC CHF
database [36] includes ECG recordings from 15 patients
(11 men, aged 22 to 71, and 4 women, aged 54 to 63 with
severe congestive heart failure NYHA class 3–4). The indi-
vidual recordings are each about 20 hours in duration, and
the sampling frequency is 250Hz. MIT-BIH Atrial Fibrilla-
tion database [37] includes 25 ECG recordings of patients
with atrial fibrillation (mostly paroxysmal). The individual
recordings are each 10 hours in duration, and the sampling
frequency is 250 Hz. Fantasia database [38] includes ECG
recordings from 40 healthy subjects (twenty young aged 21 to
34 and twenty elderly aged 68 to 85). Each subgroup of
subjects includes an equal number of men and women. The
individual recordings are each 2 hours in duration, and the
sampling frequency is 250 Hz.

The typical ECG signals of the CHF, AF, and healthy sub-
jects are shown in Fig. 2. To analyzeHRV, inter-beat intervals,
namely RR interval, are extracted from ECGs. RR interval
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FIGURE 4. MSE of 50 independent WGN and 1/f noise signals; (a) N=100;
(b) N=300; (c) N=500; (d) N=1000.

FIGURE 5. MDE of 50 independent WGN and 1/f noise signals; (a) N=100;
(b) N=300; (c) N=500; (d) N=1000.

represents the change of time intervals between two consec-
utive R waves of ECG [39], [40], [41]. Fig. 3 shows the RR
intervals of CHF, AF, and healthy subjects, respectively.

IV. EXPERIMENT RESULTS
A. SYNTHETIC SIGNALS
1) DIFFERENT LENGTHS OF SYNTHETIC SIGNALS
To evaluate the performance of the proposed MFDE in
terms of the length of synthetic signals, we compare it
with the conventional MSE and MDE. All methods use the
coarse-graining process with a range of scale factor between
1 and 20. The synthetic signals for the experiment are 50 inde-
pendent WGNs and 1/f noises with four different lengths
(N=100, 300, 500, and 1000). In simulations, MSE, MDE,
and MFDE have the following parameters. The parameter of

FIGURE 6. MFDE of 50 independent WGN and 1/f noise signals;
(a) N=100; (b) N=300; (c) N=500; (d) N=1000.

MSE is r = 0.2 × SD,m = 2, d = 1, where SD means the
standard deviation of the original time series. For MDE and
MFDE, m = 3, c = 3, and d = 1 are used.
Fig. 4 shows the MSE of WGN and 1/f noise with length

N=100, 300, 500, and 1000. In Fig. 4 (a), MSE values of
the noises with N=100 are not defined at all scales except
scale 1. In Fig. 4 (b) and (c), there are undefined MSE
values with N=300 and N=500 at large scales. It indicates
the shortcoming of SE, which is undefined for short signals.
Furthermore, the use of a coarse-graining process makes a
signal shorter as the scale factor increases, which implies
that MSE suffers from analyzing short signals. Fig. 4 (d)
shows that all MSE values are defined. Additionally, WGN
has higher entropy values for s < 3 and lower entropy values
for s > 3 than 1/f noise. Here, the MSE values of 1/f noise
remain constant at all scales, while the MSE values of WGN
decrease monotonically. It shows that the 1/f noise has higher
complexity than the WGN, which is a consistent result with
the complexity analysis of WGN and 1/f noise [27], [34].

Fig. 5 shows the MDE of WGN and 1/f noise with length
N=100, 300, 500, and 1000. As shown in Fig. 5, all MDE
values are defined for all lengths, unlike MSE. However,
in Figs. 5 (a) and (b), the MDE values of the 1/f noise with
N=100 and 300 decrease as the scale increases. By compar-
ison, Figs. 5 (c) and (d) indicate that MDE can capture the
complexity of WGN and 1/f noises.

Fig. 6 shows the MFDE of WGN and 1/f noise with
length N=100, 300, 500, and 1000. As shown in Fig. 6, all
MFDE values are defined for all lengths. Notably, as shown
in Fig. 6 (a), the MFDE values of WGN and 1/f noise with
N=100 are more similar to those with N=1000 compared
to the MDE values of WGN and 1/f noise with N=100.
Figs. 6 (b)-(d) show that the MFDE values of the 1/f noise
with N=300, 500, and 1000 are similar, implying that MFDE
is robust to the length of synthetic signals. In addition, the
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FIGURE 7. Normalized MDE and MFDE of 1/f noise with fixed m and
different c (m = 3, c = 3-6): (a) Normalized MDE; (b) Normalized MFDE.

FIGURE 8. Normalized MDE and MFDE of 1/f noise with fixed c and
different m (m = 2-5, c = 3): (a) Normalized MDE; (b) Normalized MFDE.

FIGURE 9. MSE of RR intervals extracted from CHF, AF, and Healthy ECG
data: (a) N=100; (b) N=300; (c) N=500; (d) N=1000.

standard deviations of the MFDE values are lower at most
scales than those of MSE and MDE.

Considering the previous works for complexity [9], [10],
[42], MFDE significantly enhances the quantification of the
complexity of two synthetic signals for various lengths. Espe-
cially for short-length cases such as N=100 and 300, the
MFDE values of 1/f noise are higher than ones of WGN and
remain constant over scales, reflecting its property having
long-range correlations. On the other hand, the MSE and
MDE values fail to quantify the complexity of two synthetic
signals correctly. These observations suggest that MFDE can
reflect more accurate complexity regardless of the length of
signals and leads to better robustness to the length of signals
compared to MSE and MDE.

FIGURE 10. MDE of RR intervals extracted from CHF, AF, and Healthy ECG
data: (a) N=100; (b) N=300; (c) N=500; (d) N=1000.

FIGURE 11. MFDE of RR intervals extracted from CHF, AF, and Healthy
ECG data: (a) N=100; (b) N=300; (c) N=500; (d) N=1000.

2) EFFECT OF PARAMETER ON SYNTHESIZED SIGNALS
To verify the dependency of MDE and the proposed MFDE
on predefined parameters, the computation of MDE and
MFDE with different values of predefined parameters was
carried out.

According to Sections II-A and II-B, MDE and MFDE
have common parameters, i.e., the embedding dimension m
and the number of class c. The parameters c and m are
chosen from 3 to 6 and 2 to 5, respectively. In addition,
when one parameter is changing, another parameter is fixed.
The synthetic signal 1/f noise with a length of N=1000 is
used for analyzing the influence of c and m on MDE and
MFDE. Normalized MDE and MFDE are used to analyze
MDE and MFDE in the same range. All methods use the
coarse-graining process for multiscale analysis and the range
of scale factor is 1 to 20.
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TABLE 1. The MSE p-values between RR intervals of the CHF and AF, AF and Healthy, CHF and Healthy (scale 1- 20). The ‘C-A’, ‘A-H’, and ‘C-H’ are the
abbreviations of the comparison of CHF and AF, AF and Healthy, and CHF and Healthy, respectively. ‘N/A’ denotes ‘Not Available’. If a p-value is smaller
than 0.05, the value is painted in gray.

Fig. 7 shows the normalized MDE and MFDE of 1/f
noise with the different numbers of class c between 3 and 6.
As shown in Fig. 7(a), the MDE values of 1/f noise tend to
decrease for large scales as the number of classes c increases.
On the other hand, Fig. 7(b) demonstrates that the MFDE

values of 1/f noise remain constant for various values of the
number of classes c.

Fig. 8 exhibits the normalized MDE and MFDE of 1/f
noise in cases where the embedding dimension m varies
from 2 to 5. Fig. 8(a) shows that the MDE values of 1/f
noise decrease for all scales as the embedding dimension m
increases. In Fig. 8(b), the MFDE values of 1/f noise remain
similar for different embedding dimensions.

The results in Figs. 7 and 8 imply that the proposed MFDE
can compute complexity robustly in cases of varying pre-
defined parameters. On the other hand, the MDE results in
inconsistent entropy values if the parameters are changed.

These results are consistent with the fact that the MFDE
inherits the strength of FDE less sensitive to the predefined
parameters c andm [20]. It might suggest that MFDE is more
appropriate for healthcare applications due to its robustness.

B. REAL ECG DATASET
1) VISUAL ANALYSIS OF EXPERIMENT RESULTS
We use RR interval time series extracted from real ECG
data which comes from BIDMC CHF, MIT-BIH Atrial

Fibrillation, and Fantasia dataset. The R waves from ECG
signals are extracted using the Pan-Tompkins algorithm [43].
Then, the RR interval on the ECG signal represents the

time between consecutive R waves, which are the prominent
upward spikes seen on an ECG trace. Here, the subjects in
each dataset are called CHF, AF, and Healthy, respectively.
The complexity of the RR interval is analyzed using MSE,
MDE, and MFDE. The parameter of MSE is r = 0.2 ×

SD,m = 2, c = 3, and d = 1, where SD means the standard
deviation of original RR intervals. For MDE and MFDE,
m = 3, c = 3, and d = 1 are used. Those parameters are
the same as in Section IV-A1. All multiscale entropy methods
utilize the coarse-graining process with a range of scale factor
between 1 and 20.

To verify the statistical significance, the Mann-Whitney
U test was carried out. Here, the significance level of the
hypothesis test decision to 0.05, thus if the p-value is less
than 0.05, it indicates strong evidence against the null hypoth-
esis, which is the entropy values of two different. groups
are not discriminated. The asterisks in Figs. 9-11 indicate
a significant difference between groups obtained by the
Mann-Whitney U test (p <0.05).
Fig. 9 shows the MSE results of RR intervals of the CHF,

AF, and Healthy ECG signals with lengths N=100, 300, 500,
and 1000. In Figs. 9 (a) – (c), the undefined MSE values
are happened with N=100, 300, and 500 at scale 1, 6, and
8 and above, respectively. It confirms the vulnerability of
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TABLE 2. The MDE p-values between RR intervals of the CHF and AF, AF and Healthy, CHF and Healthy (scale 1- 20). The ‘C-A’, ‘A-H’, and ‘C-H’ are the
abbreviations of the comparison of CHF and AF, AF and Healthy, and CHF and Healthy, respectively. ‘N/A’ denotes ‘Not Available’. If a p-value is smaller
than 0.05, the value is painted in gray.

MSE to short-length RR intervals, as previously reported
in [24] and [27]. Even though the RR interval length is
sufficient, the coarse-grained process prevents the MSE from
being computed at large scales. In Fig. 9 (d), although MSE
values with N=1000 are defined at all scales, the distinction
of distinct groups performs poorly.

Fig. 10 shows the MDE results of RR intervals of the
CHF, AF, andHealthy ECG signals with lengths N=100, 300,
500, and 1000. As shown in Figs. 10 (a) – (c), the MDE
values are defined at all scales for length N=100, 300, and
500, unlike the MSE. In Figs 10. (c) and (d), in cases of the
length is N=500 and 1000, there are significant differences
between scales 4 and 6 (Fig. 10 (c), N=500), and between
3 and 6 (Fig. 10 (d), N=1000), respectively. It shows that
MDE has better distinction performance than MSE with the
same lengths of RR intervals. However, the subjects CHF, AF,
and Healthy are not distinguished well at large scales.

Fig. 11 shows the MFDE results of RR intervals of the
CHF, AF, andHealthy ECG signals with lengths N=100, 300,
500, and 1000. Figs. 11 (a) – (d) show that MFDE leads to
reliable computation at all scales for short and relatively short
lengths of signals compared with the existing methods in
Figs. 9 and 10. In Figs. 11 (c) and (d), MFDE results with RR
intervals withN=500 and 1000 show that there are significant
differences between scales 4 and 6 (Fig. 11 (c), N=500),
and between 3 and 9 (Fig. 11 (d), N=1000), respectively.
Notably, if the length is N=1000, MFDE results in a broader

range of scales in which three groups are statistically distinct
compared with MSE and MDE. In addition, the standard
deviations of MFDE values with various lengths are lower
than those of MDE values over all scales.

Given the results using the synthetic signals in Sec IV-A,
although MDE and MFDE appear to have similar discrimi-
nation performance, the inaccurate results of MDE for short
signals and its susceptibility to parameter variation suggest
that MFDE may be a better measure of HRV complexity in
the three groups.

2) STATISTICAL ANALYSIS OF EXPERIMENT RESULTS
The Mann-Whitney U test was carried out to verify the dis-
criminating performance of MSE, MDE, andMFDE between
two groups. The significance level of the hypothesis test
decision to 0.05. The statistical results of pairwise compar-
ison using MSE, MDE, and MFDE are shown in Tables 1-3,
respectively. In Tables, if the p-value is less than 0.05, a sta-
tistically significant difference is accepted and highlighted as
gray in Tables. The notations ‘C-A’, ‘A-H’, and ‘C-H’ denote
the abbreviations of the comparison of CHF and AF, AF and
Healthy, and CHF and Healthy, respectively.

Table. 1 shows the p-value of the Mann-Whitney U test
using MSE of the CHF, AF, and Healthy RR intervals with
lengths of N=100, 300, 500, and 1000. In Table. 1, several
computations of p-values are unavailable, mainly in cases of
N=100, 300, and 500. It means undefined entropy values
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TABLE 3. The MFDE p-values between RR intervals of the CHF and AF, AF and Healthy, CHF and Healthy (scale 1- 20). The ‘C-A’, ‘A-H’, and ‘C-H’ are the
abbreviations of the comparison of CHF and AF, AF and Healthy, and CHF and Healthy, respectively. ‘N/A’ denotes ‘Not Available’. if a p-value is smaller
than 0.05, the value is painted in gray.

or p-values equal 1.0, where two different samples are not
discriminated. It is clear that the shorter the data length is, the
more the p-values are not available. In addition, the longer
the data length is, the more the p-values are statistically
significant. Especially, the number of significant p-values is
larger between CHF and Healthy subjects than other com-
parisons. These results suggest that MSE cannot discriminate
the complexity of HRV between different groups for short RR
intervals.

Table. 2 shows the p-value of the Mann-Whitney U test
using MDE of the CHF, AF, and Healthy RR intervals with
lengths of N=100, 300, 500, and 1000. In Table. 2, com-
pared to the MSE results, all p-values using MDE values
are available and there is an increased number of significant
p-values for all lengths of RR intervals. However, the number
of significant p-values between CHF and AF is smaller than
the comparison of AF and Healthy and CHF and Healthy.
In other words, although the discriminative ability of the
MDE is superior to that of the MSE, it still suffers from
distinguishing between the patient groups CHF and AF.

In Table. 3, the p-value of the Mann-Whitney U test utiliz-
ing MFDE is displayed for the same comparison. As shown
in Table. 3, MFDE leads to significantly more significant
pairwise discriminations than MSE, regardless of the length
of the RR intervals. In the case of discrimination between
AF and Healthy, the discrimination performance of MFDE

is better or comparable to that of MDE in comparison to its
results except for N=100. Besides, for all lengths, MFDE
performs noticeably well in discriminating between CHF and
Healthy. It is noteworthy that MFDE is superior to MDE in
terms of discriminating between CHF and AF for N=1000.

It has been known that the classification between CHF or
AF disorder from a normal condition is most important [1],
[44]. Generally, MFDE has a superior ability to differentiate
between cardiovascular patients (CHF, AF) and the healthy
than MSE and MDE. However, distinguishing between CHF
and AF for short lengths of ECGs remains a challenge.

The proposed method for discriminating abnormal ECGs
with short-term ECGs may provide a significant step forward
in cardiac health monitoring. Its potential for application in
clinical settings and further research could lead to remarkable
improvements in cardiovascular disease diagnosis and treat-
ment. Furthermore, integrating this technique into wearable
ECG monitoring devices could pave the way for continuous,
real-time monitoring of patients at high risk.

V. CONCLUSION
For an improved quantification of the variation of inter-beat
intervals, namely HRV, we have proposed a multiscale-based
entropy utilizing FDE, named MFDE. The proposed MFDE
possesses a stable computation of complexity using time
series with short and sufficient lengths compared to
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conventional MSE and MDE. In addition, MFDE achieves
a more robust quantification of complexity on the predefined
parameters. Through experiments using synthetic signals and
real ECG signals, the results show that MFDE improves
a capability for representing complexity regardless of the
length of time series. By applying MFDE for discriminating
distinct physiological statutes using RR intervals, it achieves
an improvement over widely used entropy measures. While
promising, this work has a limitation on a coarse-grained
procedure. Future work needs to develop a refined version of
multiscale decomposition. Considering the properties of the
proposed MFDE, it might play an essential role in utilizing
HRV for a variety of applications.
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