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ABSTRACT The novelty of Federated Learning (FL) has emerged as a promising alternative to centralized
machine learning systems in the context of anomaly-based intrusion detection systems (AIDS) deployed on
Internet of Things (IoT) devices. Unlike traditional centralized models, FL allows on-device model training
and updates, reducing privacy concerns and issues such as single points of failure and high false alarm
rates (FAR). This approach, termed ‘Fed-AIDS,’ offers a more secure and efficient solution. However,
the development of Fed-AIDS models faces challenges related to limited training data and the diverse
nature of IoT datasets. Additionally, FL’s decentralized nature introduces weight divergence issues arising
from non-Independently and Identically Distributed (non-IID) clients. To address these challenges and
optimize Fed-AIDS modeling, interdisciplinary research efforts are vital. The primary objective of this
study is to conduct an up-to-date review by adopting a Systematic Literature Review (SLR) approach to
analyze existing studies of Fed-AIDS modeling procedures for IoT devices. Data from the published studies
were retrieved from Scopus database, which covered major publishers such as IEEE, Elsevier and others.
Specifically, our review conducted from the following Fed-AIDS perspectives: workflow and tools, training
dataset, complexities of non-IID data in Fed-AIDSmodels, classification tasks, aggregation tasks, and model
validation metrics. Based on the research findings, the study highlights a series of challenges and proposes
potential solutions to stand in future research in Fed-AIDS modeling, aiming to advance the field of IoT
device security.

INDEX TERMS Federated learning modeling, IoT devices, anomaly-based intrusion detection, aggregation
function, non-IDD data.

I. INTRODUCTION
The rapid data production at the Internet of Things (IoT)
network edge is growing exponentially owing to the increased
demand for IoT devices by industries and individuals [1].
Notably, corporations such as Clarivate Analytics, Azure
Data Lake, and Oracle, which rely on data evaluation for
industry intelligence and market modeling interpretation to
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expand their services [2], give utmost priority to information
provided by IoT. Consequently, the continuous advancement
and adoption of IoT devices have expanded the attack surface,
and the lack of security measures on many of these devices
makes them easy targets for attackers. Thus, the continuous
advancement and adoption of IoT devices has created a larger
attack surface, and the lack of security measures on many of
these devices makes them easy targets for attackers [3]. As a
result, the number of attacks on IoT devices has potentially
increased [4], [5], [6]. This exacerbate by the fact that many
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IoT devices are designed to be always-on and connected
to the internet, constantly transmitting data and potentially
exposing themselves to attacks. Meanwhile, Machine Learn-
ing (ML) has been well known in IoT cybersecurity. Many
researchers have become interested in Anomaly-based Intru-
sion Detection Systems (AIDS) [7], [8], [9], [10], [11], [12],
which uses classification ML that forecasts a certain discrete
value, such as anomalous or normal outcomes [8], [13]. This
employs the centralized approach to train the model, that
needing the concentration of training data in a single server
[14], [15]. However, given the volume and severity of the data
shared by smart devices in centralized IoT scenarios, thus, the
impact of attack such of DoS andDDoS on a single device can
have unpredictable consequences for other devices [16], [17].
Consequently, Federated Learning (FL) has been intro-

duced to tackle such issues of centralized technique
[18], [19]. FL creates initial model, allows on-device training
and further updating the initial model based on the local
on-device model training [20]. For instance, an AIDS sce-
nario for IoT devices. The AIDS application collects IoT
network data of the connected devices, each with its own
network features. This data is then used to train an AIDS
model that can improve the accuracy of detecting attacks.
Since the data is distributed across thousands of devices with
varying data volumes and patterns [20], FL provides a way
to aggregate this data without compromising the privacy of
the users, thus will strongly increase the attacks detection on
IoT devices. Hence, we term this approach of using FL and
AIDS approach asFed-AIDS. Meanwhile, the development of
Fed-AIDS models faces challenges related to limited training
data while networks have a wide variety of features and with
the diverse nature of IoT device [21], [22]. Additionally,
FL’s decentralized nature introduces weight divergence issues
arising from non-Independently and Identically Distributed
(non-IID) clients [23], [24]. Tackling these issues and opti-
mizing the performance of Fed-AIDS modeling to achieve
near optimal accuracy necessitates this research.

Considering the research challenges, a systematic review
of literature can significantly contribute to the advancement
of the Fed-AIDS model for IoT devices. Employing the
systematic literature review (SLR) methodology, we examine
existing Fed-AIDS models for IoT devices from various
angles. Firstly, we scrutinize modeling tools and frame-
works, aiming to identify those well suited for Fed-AIDS
modeling, particularly those compatible with IoT device
scenarios. Secondly, we analyze prevalent datasets used in
Fed-AIDS modeling, considering factors such as publication
year, inclusion of IoT network traces, instance availability,
and coverage of unknown attacks, offering insights into
suitable datasets for Fed-AIDSmodeling. Thirdly, we explore
the complexities associated with handling non-iid data in
Fed-AIDSmodels, dissecting the underlying principles of the
employedmethods. Fourthly, we investigate the classification
models utilized, with the goal of standardizing them. Fifthly,
we examine Federated Learning (FL) aggregation functions
in Fed-AIDS modeling for IoT devices. Lastly, a systematic

survey of evaluation metrics is conducted to improve our
understanding of the result integrity.

A. MOTIVATION AND RELATED WORKS
Recently, the intersection of IoT technology with various
facets of our lives, both in academic research and industrial
applications, has garnered substantial attention. The potential
of IoT to enhance the quality of life is evident, as illustrated
by devices such as those that smartwatches equipped with
sensors for health monitoring. The widespread availability of
cost-effective sensors, remote storage services, and big data
has fueled the proliferation of IoT technologies. This rapid
expansion, however, has introduced a pressing security con-
cern. As IoT devices with varying capabilities interconnect,
the need for robust security measures becomes paramount.
Ensuring effective modeling, guiding ethical tools usage, and
ultimately contributing to a secure and beneficial future for
this transformative technology are critical motivations driv-
ing our research. Meanwhile, numerous studies have already
conducted review in the field of ML/FL under the hypothesis
that there is a requirement for effective AIDS modeling to
protect IoT devices against internet threats. This assumption
is derived from the state-of-the-art reviews of ML systems
employed in AIDS for IoT. For this, Costa et al. [25] focused
on recent research on IDS and intelligent techniques used
in conjunction with IoT. This is to protect IoT devices data.
They note that the issue of FAR remains a challenge that
needs to be addressed in all surveys. While in the review of
Chatterjee and Ahmed, [26] presents a detailed outline of the
current detection methods and their applications in the topic
of IoT anomaly detection. Whereas Agrawal et al. [27] inves-
tigates the difficulties and weaknesses of FL implementations
related to false alarms, poisoning attacks, and high latency,
among other issues in IDS. Additionally, Belenguer et al. [29]
assesses the absence of consistency in model evaluation,
provides the development of a road map for quality stan-
dards to deal with advancement of IDS models. Meanwhile,
Mohanta et al. [30] investigate the applications of ML, AI,
and Blockchain in resolving these security challenges in IoT.

Another sensational work [31] that outlined the criteria
for assessing deep transfer learning applications in IDS for
industrial control network. Table 1 shows the summary of the
related works. However, none of these studies addressed the
difficulties that would come up when Fed-AIDS modeling
for IoT devices for the best practice. Instead, they primarily
focused on specific domain ensuring security to IoT devices
from assaults. For examples, Kheddar et. al [31] specifically
focused on industrial control IoT devices network for deep
transfer learning through IDS. In this context, our research
stands out as it purposely goes beyond the confines of specific
domains within the field of IoT device security. Unlike
these previous studies that often confined their findings to
specific domain within the field of IoT device security,
our research goes beyond these limitations. We purposely
designed our paper to provide insights and methodologies
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TABLE 1. Evaluation of the related works. (Symbol (✓) shows the paper is limited the topic, and (x) shows papers that do not cover the topic).

that are universally applicable. This approach is particularly
relevant in the context of Fed-AIDS modeling for securing
IoT devices, where security concerns extend across diverse
industries, encompassing healthcare, transportation, smart
cities, and more.

By fixing our work in IoT device security, we inherently
tackle challenges and propose solutions that reach beyond the
confines of any single industry. The goal of this review is to
provide comprehensive information to assist researchers in
developing Fed-AIDS models for IoT devices. Specifically,
the article makes the following primary contributions.
■ An overview study on the FL system and its role in AIDS

modeling for IoT devices has been presented.
■ We use the SLR methodology to survey and study

Fed-AIDS modeling taxonomies, specifically for
securing IoT devices.

■ We present a systematic technical examination of the
Fed-AIDS modeling for IoT devices, encompasses a
focus on utilized tools/frameworks, training datasets,
complexity in handling non-IDD data, classification
model, aggregation functions, and model validation
metrics.

■ We examine the challenges and research directions for
Fed-AIDS modeling in IoT devices.

Meanwhile, the article is structured as follows: Section I
serves as the introduction. In Section II, the article delves into
methodology. Moving on to Section III, it presents the review

findings and discussion. In Section IV, the article discusses
the challenges and research directions. Finally, Section V
contains the concluding remarks.

B. BACKGROUND OF STUDY
The use of the Fed-AIDS approach for IoT-edge devices plays
a critical role in ensuring the security and privacy of these
devices, which operate at the edge of a network, helping to
prevent cyber-attacks and protect sensitive data. Therefore,
this section provides a background for the comprehensive
study, including a brief definition of IoT-edge devices, AIDS,
and its existing models for IoT-edge devices. Additionally,
it will delve into the definition of FL, the FL process and
protocol, and FL aggregation roles.

1) IOT DEVICES
The IoT ecosystem’s core elements is IoT-edge devices [32].
Moreover, IoT-edge devices refers to Internet-connected
devices that are deployed at the edge of a network [33],
often nearer the data source. In real time, data from sensors
and actuators are often collected, processed, and transmitted
using these devices. They are often lightweight, low-power
devices that can be quickly placed in a variety of settings.
IoT-edge device’s key role is to gather and process data
from sensors and other devices. Also, they are capable of
carrying out activities [34] including data analysis, storage,
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and interaction with some other devices. Hence, this permits
the devices to form decisions and actions on the data they
collect [32], [35], [36]. However, IoT-edge devices come in
a wide range of examples such as smart thermostats, smart
homes devices, industrial control systems, smart agriculture
devices, and smart transportation devices.

IoT-edge devices continue to create more data, as these
devices are increasing in our daily life, becoming more essen-
tials [37]. According to Jaidka [38] the majority of businesses
nowadays seek to collaborate with IoT development firms
to integrate this technology into their activities. Therefore,
IoT-edge devices must be secured since they frequently
handle sensitive data and handle significant systems [39].
Nevertheless, these devices are vulnerable to numerous cyber
threats, the vulnerabilities not only have the potential to
compromise the data collected by the devices, but also to
destroy the physical systems, causing economic loss, harm
to individuals, and even environmental degradation. This is to
say there is lack contributions of absence to built-in security
towards the devices design, as most of them are fairly similar,
they make use of same connection and network protocols and
share some exceptional characteristics which contain sensing,
self-configuring, connectivity, heterogeneity [40] leaving
them open to attacks. Additionally, IoT-edge device have
limited communications standards [41], making it challeng-
ing to interact with security management systems. However,
to address these challenges, the strong protection key that is
particularly made for IoT-edge devices, is keeping track of
the data produced by the devices while consistently checking
them for unusual activity, in which is widely accomplished
by AIDS.

2) AIDS DEFINITION
Intrusion Detection System (IDS) is a security instrument
that keeps an eye out for malicious activity or rules break-
ing on a network or system. A type of IDS known as
an Anomaly-based IDS (AIDS) employs ML techniques to
spot unusual activity on the network or system. Whereas
signature-based IDS, which is constrained to a particular set
of signatures. Therefore, AIDS may identify both known and
unknown attacks. Further, AIDS method collects legitimate
users’ behavior datasets [42], and then applies statistical
tests to determine whether the behavior is acceptable or not.
The main benefit of this strategy is that it can find attacks
that were not discovered before. Moreover, the rules for the
AIDS model must be created in an approach that can reduce
the FAR for all types of known and unidentified threats in
order for it to operate effectively [8]. Meanwhile, there are
numerous ways [12], [42], [43], [44], [45], [46], [47] that
AIDS models can operate. Initially when identifying patterns
of network behavior that differ from what is seen as nor-
mal, somemodels employ unsupervised learning approaches,
whilst other models employ supervised learning techniques to
identify well-known attack patterns. To learn from data and
recognize patterns of network behavior that are difficult to

specify through rules, other models employ machine learning
techniques such as neural networks or clustering. As a result,
both techniques have limitations when it comes to evaluat-
ing model performance and its applications. However, while
AIDS remains a challenge for both industries and academia,
the number of deployed IoT devices is increasing, thereby
increasing the potential for attacks on IoT environments
simultaneously.

3) AIDS MODELS FOR IOT DEVICES
The effectiveness of the AIDS model has been deployed and
validated by researchers using a variety of methods. In the
training phase of AIDS modeling, the training mode can be
classified as centralized, federated. While the use of theoreti-
cal, empirical, and simulationmethods are tools for validation
the AIDS model [45]. Additionally, the evaluation datasets
stand essential to the validation of any AIDS model because
they let us measure how effectively the proposed model can
identify normal or attack outcome in IoT-edge devices. Lastly,
the modeling algorithm also plays a vital role in validating
the proposed AIDSmodels. Accordingly, many related works
have been found in literature, each with different motivations.
Their concepts are described in Table 2 and are summed up as
follows. The proposed models in [10], [48], [49], [50], [51],
[52], [53], [54], and [55] focus on federated setting towards
modeling the IDS model. While models in [8], [9], [56], [57],
and [58] modelled in centralized training mode. In addition
to availability of various IDS-based dataset, [56], [58] used
Bot-IoT dataset in evaluation of their model. NID dataset has
been utilized in [57]. Meanwhile, the model proposed by [48]
get to use of IoT-23. Moreover, NSL-KDD dataset has been
found in the modeling of IDSmodels offered by [8], [9], [10],
and [49]. In the proposedmodel of [52], UNSW-NB15 dataset
has been used, while [55] have used ToN-IoT dataset.

Another very recent studies in the field of IoT security,
efforts to enhance the effectiveness of AIDS for IoT are
increased. One such effort is demonstrated in a study [57],
which focuses on UNSW-NB15, BOT-IoT and ToN-IoT
datasets and employs various ML techniques. The study
introduces a novel framework that incorporates specific tech-
niques designed to ensure the quality of both data andmodels.
In another study [58], researchers investigate the critical issue
of energy consumption in on-device MLmodels used for IDS
applications in IoT. The research conducted in a centralized
manner, seeks to quantify and compare the energy usage
during the training process across cloud, at the edge, and
ML directly on IoT devices settings. Moreover, a study [59],
centered on a particular dataset (UNSW-NB15). Notably inte-
grates a distinctive hybrid feature selection method, which
combines elements of different feature selection techniques.

However, AIDSmodeling for IoT-edge devices is an essen-
tial area that comprised many works that achieves successes
with different approaches. Thus, makes it a very interest-
ing research area with many open issues, that currently
require an up-to-date, comprehensive taxonomy and survey
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TABLE 2. Analysis of AIDS models for IoT devices.

of these recent works because ML has been used to enhance
intrusion detection over the past few decades [62]. While
security challenges in IoT environment are becoming broader
and becoming challenges to our physical and financial
well-being.

4) FL DEFINITION
The federated learning (FL) [18] is a productive approach for
utilizing distributed resources to actively train a ML model.
In which FL allows numerous IoT-edge devices to work
collectively to train a model without sharing the raw data on

the central server [63], [64].Moreover, FL promises to protect
the decentralized raw data’s privacy [65].
Further, in a standard practical approach [66], [67],

FLmakes the assumption that each of the k users (k1, k2. . . kn)
has their own database d (d1, d2. . . . dn) and that they are
all prohibited from directly accessing one another’s data to
increase their own database. Then, the user Ki can locally
train its own model Wi with the local data di. The server
creates a global model Wg from the aggregated local models
(w1, w2. . .wn) and updates the global model to replace each
user local model.
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FIGURE 1. FL process in terms of AIDS model for IoT devices.

5) FL PROCESS AND PROTOCOL
The network protocol is the ideal practice, when trying to
comprehend the conceptual context of FL [19]. The FL pro-
tocol’s primary participants are devices, which are referred
to as IoT-edge devices in this article. The FL server is also
referred to as a FL aggregator, on-device storage, FL task, and
FL population. Eventually, based on the kind of FL system
you want, the FL process consists of these four steps as
Figure 1 depicts in terms of AIDS model for IoT. Devices
first notify the server that they are prepared to execute a
FL task for a certain FL population and server will share
the initial model with them. Secondly, each participating
IoT-edge device computes locally using its local dataset.
Thirdly, the participating IoT-edge devices will report back
the trainedmodel to the FL aggregator. Finally, the aggregator
updates its global state with the adjustments, and the process
persists.

6) FL AGGREGATION FUNCTIONS
FL aggregation functions, also known as weighted averaging,
are employed to aggregate model updates across various FL
participating devices. Meanwhile, these procedures are often
used to aggregate the device’s model updates. FedAvg [18]
is one of the popular aggregation functions, in which
combines individual global models into one. Conversely,
FedAvg performs better, in which gradient descent compute
rounds to speed the learning and convergence. Additionally,
FedSGD [18] is a common FL aggregation function based on
Stochastic Gradient Descent (SGD), where IoT-edge devices
conduct one iteration of gradient descent for each training

process while the aggregator computes a simple weighted
average of all trained models to create a single shared
model. The function performs this by weighing each task
differently and then aggregating the set of parameters as a
result.

7) NEEDS FED-AIDS MODELS FOR IOT DEVICES
In order to execute distributed learning for IoT networks,
FL has emerged as a potent option that can identify a variety
of cyberattacks and help network security measures [39].
Federated intrusion detection and prevention solutions can be
implemented with the help of FL’s privacy-enhancing charac-
teristics, where each IoT edge device collaborate to run an AI
model such as DNN in order to retrain the threat model to
fight intruders [39]. FL also makes it easier to find corrupted
IoT devices in federated IoT networks [39]. In fact, given the
sophistication of attacks and threats, it is difficult to identify
those using current centralized systems, which frequently
identify attacks by deviating from user behavior profiles and
suffer from a high false alarm rate and a lengthy detection
delay. When performing intrusion detection for distributed
IoT networks, FL appears as a rational solution. Moreover,
a vast number of IoT networks with a wide variety of features
and gigantic datasets are involved, which improves learning
accuracy and intrusion detection effectiveness. A scalable FL
technique has recently been presented [39], [68] to enhance
the detectability of intrusions such as infiltration on a larger
scale. While maintaining the privacy of network traces, each
IoT device runs a neural network for packet classification at
the line speed of neighboring switches.
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II. REVIEW METHOD
This SLR study follows the phases of planning, conduct-
ing, and reporting, utilizing the methods outlined in [69].
In addition, it includes practices from the methods presented
in [70]. The initial emphasis is on thoroughly analyzing the
latest developments in Fed-IDS model for IoT devices as
identified research. Subsequently, identifies research ques-
tions, research contents with the sources. The subsequent
stage involves identifying the establishment of inclusion and
exclusion criteria. The creation of a data extraction pro-
cess, aimed at consolidating necessary data and addressing
research questions, is then outlined. Finally, a systematic
approach to analyzing data and reporting the findings of the
review is developed.

A. RESEARCH QUESTIONS
Concrete Research Questions (RQ) are defined, as outlined
in Table 3, providing directions for the analysis. These ques-
tions span various fields, including process flow and tools,
datasets in AIDS models, classification models, aggregation
functions, and evaluation metrics.

B. RESEARCH CONTENTS
Considering that certain articles on ‘‘anomaly-based intru-
sion detection models’’ fall under the broader category
of ‘‘intrusion detection,’’ we used both the specific term
‘‘anomaly-based intrusion detection models’’ and the broader
term ‘‘intrusion detection’’ in our search. Similarly, for
articles related to ‘‘IoT devices,’’ which may be catego-
rized as ‘‘IoT-edge devices,’’ we included both terms in the
search. Additionally, for articles on ‘‘federated learning’’ as a
methodology, we expanded the search terms to include both
‘‘federated learning’’ and the standalone term ‘‘federated.’’
This approach ensures that articles using federated learning
techniques are captured in the search results. By using both
general and specific search terms, we aimed to conduct a
targeted and inclusive search, encompassing both broad cat-
egories and relevant subcategories to ensure comprehensive
coverage of the literature.

To ensure a high-quality and relevant literature search,
we evaluated three prominent databases: Scopus, Google
Scholar, and Web of Science. While Scopus, covering major
publishers such as ACM, Springer, and IEEE, boasts greater
comprehensiveness than Web of Science, it doesn’t reach
the exhaustive scope of Google Scholar, which may include
non-peer-reviewed materials such as technical reports.
Considering this trade-off, we chose Scopus. It offered a
balanced approach, providing access to a substantial pool of
relevant sources while prioritizing peer-reviewed content.

Since FL has been introduced in 2017, we restricted
our search to the years 2018 to as recently as 2023. This
timeframe aligns with the emergence of FL as a method-
ology. We then applied the inclusion and exclusion criteria
listed in Table 4 for further evaluation in the subsequent
phase.

TABLE 3. Research questions.

C. STUDY SELECTION
Recognizing the importance of consistent and objective eval-
uation in research, we adhered to established principles in
our study. Table 4 clearly defines the criteria for inclusion
and exclusion, emphasizing research specifically focused on
AIDS models for IoT devices and those employing federated
learning methodologies. To justify the exclusion criteria for
article publications not in the form of journal articles, jour-
nals are authoritative in academia. Publications in reputable
journals contribute significantly to scholarly discourse. Other
forms, such as conference papers, may lack the same credi-
bility and scholarly standing [71]. This approach minimizes
subjectivity and ensures the selection of relevant studies for
analysis.

D. DATA EXTRACTION
To streamline the analysis, we implemented a systematic
filtering process guided by specific criteria, depicted in
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TABLE 4. Inclusion and exclusion criteria.

FIGURE 2. Papers extraction process.

Figure 2, resulting in a focused collection of 29 papers
directly relevant to the Fed-AIDS model for IoT devices.

However, these 29 articles highlight that FL is still
new to AIDS for securing IoT devices. Subsequently,
we then extracted key information from each paper based
on the defined research question in Table 3. This struc-
tured approach enabled us to efficiently extract essential
information without requiring a review of every paper’s full
text. Instead, we primarily focused on the title, abstract,
and introduction, and methodology, consulting the remain-
ing body text only when necessary to clarify specific
details.

E. DATA SYNTHESIS
To analyze the extracted data from chosen articles and answer
our research questions (RQs), we employed different synthe-
sis methods below, that we gained a nuanced understanding
of the extracted data and addressed our research objectives
effectively.

• For RQs 2, 3, 4 and 7, seeking qualitative insights:
We used narrative synthesis, tabulating and visualizing
results using charts to enhance understanding. This
helped us identify common themes and patterns across
studies.

• For RQs 1, 5 and 6, requiring quantitative analysis and
conceptual comparison: We employed the binary out-
come method, and reciprocal translation. This enabled
us to assess the effectiveness of specific techniques
across different studies related to specific Fed-AIDS
modeling taxonomy for securing IoT devices.

III. REVIEW FINDINGS AND DISCUSSION
This section dives deep into the research and practical aspects
of Fed-AIDS modeling for IoT devices. We explore key
elements such as the workflow and tools involved in building
such models, the data used to train them, the challenges of
dealing with non-IDD data in FL, the choice of classifica-
tion models, the methods used to combine model weights
from different devices (aggregation functions), and how we
measured the performance of Fed-AIDS models (evaluation
metrics). In simpler terms, it answers the defined research
question in Table 3, offering valuable insights for anyone
working in this field. However, the data extracted implies that
FL are at early use in AIDS for securing IoT devices. Figure 3
depicts the number of documents per year of published
articles.

FIGURE 3. Number of articles per year.

A. PROCESS FLOW AND TOOLS
To make sure the Fed-AIDS modeling functions well and
adheres to the specifications of the AIDS model for IoT
devices, the FL model engineer must simulate and test the
model in a controlled environment [72], [73]. Therefore,
assessing the model’s performance and robustness in such
various FL settings, may be necessary to use simulation tools
as TensorFlow Federated (TFF), FedML and PySyft.
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From RQ1, that to find what are the key frameworks/tools
commonly used? Table 4 provides a list and count of key
frameworks and tools relevant to developing Fed-AIDS
model specifically for IoT devices. Among the tools found,
TFF has the highest count with seven instances. Followed
by FedML/PyTorch, PySyft and TensorFlow/Raspberry-Pi
with three mentions. Other notable tools include Flower and
FL&DP with two mentions. While tools such as Pycharm
focused ones including IBMFL. Each of this tools/framework
contributes to the overall Fed-AIDS modeling for IoT
devices. Additionally, a set of Python interfaces [19] were
predominantly used in the implementation of these FL
models for the stated simulation tools.

These diverse tools have emerged to streamline shared
and privacy-preserving model training across decentralized
devices. For example, the flower [74] is an open-source
Python framework, simplifies model development by pro-
viding essential components for communication between
cloud server and clients. IBMFL [75], developed by IBM,
focuses on secure FL modeling, emphasizing collabora-
tion among multiple parties while keeping data localized.
While PySyft [76] extends popular DL libraries, such as
PyTorch and TF, facilitating privacy-preserving computations
on decentralized data. On the other side is TFF [18], which is
a Google framework, seamlessly integrates with TF, enabling
the creation of models trained across distributed devices.
The mention of FedML [77] in the context of Fed-AIDS
model indicates the implementation of FLmodel within these
widely used DL frameworks. Sherpa.AI has developed an
open-source FL&DP [78]. The objective is to encourage
the advancement of research and development in edge AI
services while prioritizing the protection of data privacy.
Additionally, the reference to running TF on Raspberry Pi
devices suggests exploration of FL modeling in edge com-
puting [79]. While PyCharm [80] isn’t explicitly designed
for FL, but it remains a popular choice among developers
for managing Python code, including tasks related to FL.
In summary, these tools collectively contribute to Fed-ADIS
modeling for IoT devices, each playing a unique role in
advancing collaborative and privacy-preserving practices for
IoT devices.

TABLE 5. Identified FL simulation tools.

Meanwhile, on how these tools contribute to the over-
all workflow development of Fed-AIDS models for IoT
devices fromRQ2. For this we categorize the tools functional

features as presented in Table 6. Frameworks such as FL&DP
and PySyft can act as ‘Privacy Guardians’ by securing data
during collaborative training. ‘Resourceful Scouts’ such as
Flower and TensorFlow/Raspberry Pi excel in quick deploy-
ments on limited devices. As deployments grow, ‘Scalability
Sergeants’ such as IBMFL and TFF step up, handling com-
plex updates and management. For intricate tasks, ‘Deep
Learning Dragons’ such as PyTorch and TensorFlow unleash
their extensive libraries and GPU support, even on resource-
constrained devices. Finally, ‘Customization Champions’
such as Python/scikit-learn and PyTorch/TensorFlow offer
flexibility to tailor models to specific device capabilities. This
diverse toolbox empowers developers to navigate Fed-AIDS
modeling for IoT devices, unlocking the full potential of this
technology through robust, efficient, and scalablemodels. For
example, modeling with TFF, the simulation phases serve as a
bridge between the development and real-world deployment
of the Fed-AIDS model. By employing TFF as a simulation
tool, this phase enables the emulation of FL tasks using proxy
data that closely replicates the characteristics of real IoT
device data. Leveraging TFF’s capabilities, researchers can
rigorously assess the performance of the Fed-AIDS model in
a controlled environment without exposing real-world data.
Subsequently, the FL Plan Generation tasks leverage TFF
to facilitate the creation of detailed FL plans, ensuring the
smooth execution of the Fed-AIDS model. Specifically, TFF
enables the specification of intricate plans for individual IoT
devices. These plans encompass elements such as Tensor-
Flow graph specifications, the development of local AIDS
models on each IoT device using ML algorithms tailored to
the task, and the management of operations such as loading
and saving model weights. On the server side, the FL plan
includes the aggregation task, detailing how model updates
from diverse devices should be aggregated. Consequently,
FL tasks equipped with FL plans are deployed to a sim-
ulated FL server and a set of emulated IoT devices. This
simulated FL environment faithfully replicates the expected
behavior of the Fed-AIDSmodel in a real-world IoT network.
At the conclusion of each FL round, the FL task and plan are
evaluated by the simulator to assess the performance metrics
of the simulated Fed-AIDS model before its deployment in a
real-world context. Hence, Figure 4 depicts hypothetical sim-
ulation process flow for Fed-AIDS considering TFF-based
for IoT-edge devices. Therefore, these findings demonstrate
the diverse selection of work tools by the authors, each offer-
ing its own unique strengths and weakness in the domain of
FL for IoT devices.

B. DATASETS ON MODELING Fed-AIDS FOR IOT DEVICE
One of the objectives that Fed-AIDS models aim for is to
create models that are generalizable and efficient of accu-
rately detecting attacks behavior. Therefore, for the model
to be trained and tested on accurate data, it is crucial that
we fully comprehend the data and its attributes. In this
regards, to answer RQ3 on what are datasets are widely
recognized in Fed-AIDS modeling for IoT devices, we iden-
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FIGURE 4. Modeling process flow for FL-AIDS model for IoT devices.

TABLE 6. FL simulation tools effectiveness.

FIGURE 5. Identified datasets for Fed-AIDS models.

tified and collected 15 datasets as depict in Figure 5 with
number of appearances in the studies related to Fed-AIDS
models for IoT device. Based on the information on each

dataset, we extracted the year of which it has been published,
availability of IoT network trace, instances count, feature
counts, and availability of unknown attacks as presented
in Table 7, these give our suggestion in terms of potential
methods to select the dataset for FL-AIDS modeling of IoT
devices.

Subsequently, the synthetic ecosystem at the UNSW ’s
cybersecurity center is used to build UNSWNB15 [97].While
the NSL-KDD [98] dataset has been built from the initial
KDD cup99 dataset. It is sufficient to enable practical appli-
cation of the entire NSL-KDD dataset without the need for
sampling selection. In CICIDS2017 [99] collection contains
data about both known malware assaults and benign behav-
ior, and it is identified according to the timestamp, source
and destination IP addresses, source and destination ports,
protocols, and attacks.

The dataset ISCX 2012 [100] is built on labelled, realistic
network traffic that includes a range of attack scenarios.
Furthermore, N-BaIoT [101] has been created by preprocess-
ing the traffic from 9 commercial IoT devices of diverse
categories that were either unaffected or affected by two
botnet malware assaults i.e. Mirai or Bashlite. Additionally,
Bot-IoT [102] has been created as an updated and accurate
dataset for evaluating models to detect botnet assaults in the
IoT, in which it is developed on a testbed made up of sev-
eral virtual computers running different operating systems.
Subsequently, the TON_IoT [103] comprises diverse data
sources such of sensor interpretations, operating system (OS)
logs on a network that contains a number of IoT devices.
Another most sensational dataset designed for cyber security
researchers to assess theirML-based IDSmodel i.e. the Edge-
IIoTset dataset [104]. It encompasses fourteen attacks linked
to IoT and IIoT connectivity protocols, which are classify into
five threats including the DoS/DDoS attacks, Information
gathering, Man in the Middle Attacks, Injection attacks, and
Malware attacks. These datasets include a variety of features
derived from various sources such as alerts, system resources,
logs, and network traffic. Notably, they introduce 61 novel
features with strong correlations among the 1176 features
identified. It’s noteworthy that the MNIST dataset [105],
dating back to 1998, is not an IoT dataset but is widely
recognized in ML for anomaly detection [91]. On the other
hand, the MQTT dataset [106] from 2020 is associated with
IoT, offering over 22 million instances with 29 features and
no information about unknown attacks.

The NF-BoT-IoT-v2 dataset from 2020 [107], the Power
demand dataset from 2016 [108], and the SCADA dataset
from 2017 [109] are also IoT-related datasets with vary-
ing characteristics. However, it is important to highlight the
unique case of the Apache Spark network dataset, where no
information about its generation has been provided by the
author [82]. This lack of transparency can affect the dataset’s
reliability and raises concerns about its suitability analyses.
The UMD Dataset from 2021 [110], though not IoT-related,
includes instances of unknown attacks and comprises over
30,000 instances with six features.
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TABLE 7. Analysis of most popular dataset for AIDS modeling.

There are some important datasets that are used AIDS
model evaluation for IoT devices. TheUnisaMalwareDataset
(UMD) has been utilized by [110], while the CICIDS2017
dataset found attention from [81] and [111]. Multiple
authors were involved in studying the TON_IoT dataset [55],
[83], [84], [90], [93], [94], [112], while on N-BaIoT
dataset [112],MNIST dataset [91], Edge-IIoTset dataset [77],
[92], CIC_IoT dataset [80], CSE-CIC-IDS dataset [113]. The
SCADA dataset [88], [89], NF-BoT-IoT-v2 dataset [114],
while BoT-IoT dataset [79], [86], [95], MQTT dataset [115],
and the Power Demand dataset [85]. This collaborative and
diverse engagement with datasets underscores the multidi-
mensional nature of research in Fed-AIDS modeling for IoT
devices. Each dataset serves a specific objective in enabling
the development and evaluation of Fed-AIDS models. More-
over, these datasets contribute to advancing research in AIDS
by providing real-world data and standardized evaluation
outlines. Consequently, the datasets exhibit variations in sev-
eral aspects. Firstly, they were created in different years,
ranging from 1998 to 2022, representing different times and
indicating probable changes in IoT network traffic patterns
over time. Secondly, some datasets focus on IoT network
traffic specifically, while others encompass a broader range
of network traffic. This distinction is significant as it allows
researchers to investigate IoT-specific security problems or
study a wider network. Additionally, the datasets differ in
terms of the number of instances and features they contain,
spanning from thousands to tens of millions of instances and
featuring 6 to 784 attributes. These distinctions in dataset
size provide researchers with options to analyze different
scales of IoT network traffic. Lastly, some datasets include
instances of unknown attacks, posing an additional challenge
for AIDS, as they need to be capable of identifying and
responding to previously unseen attack patterns. Thus, the
diverse datasets offer researchers opportunities to explore and
develop effective Fed-AIDS methods in the context of IoT
security.

C. NON-IDD DATA IN Fed-AIDS MODELING
Data in Fed-AIDSmodeling for IoT devices is diapers among
numerous devices rather than being kept in central server.
Besides, each device uses it is local device data train a local
model, sending updates to a centralized server. However,
in Fed-AIDS modeling, there are a few technical factors to
consider about training dataset, such as non-iid data (data
heterogeneity) that is limited amount of data, or due with
network constraints [116]. In FL, non-iid data refers to
data that is not distributed independently and identically
across participating devices in a data heterogeneous envi-
ronment. Thus, the model might not be able to generalize
to new data well because of the different data distributions
[117], [118], which might affect model convergence and
accuracy. We identified three strategies to answerRQ4. Each
appeared once in the existing reviewed studies as shown
Figure 6, while 26 studies have lack of responding to han-
dling complexity of non-IDD data in Fed-AIDS Modeling
for IoT device. Meanwhile, classifying IoT network traffic
for AIDS is a complex task due to the numerous attributes
involved [5]. While FL offers advantages due to its data
richness, but it introduces complexity by handling non-IID
data with variations in size, type, and complexity across IoT
devices [67]. This leads to unfairly trained local models,
resulting in inadequate global model fitting when aggregated.
Moreover, issues such as redundant or compromised data in
local clients can lead to model failures, which are significant
concerns in real-time AIDS scenarios. However, the data
augmentation [119] strategy employs artificially produced
data to equalize the distribution of data among IoT devices
to overcome this problem. Single Model Convergence [83]
approach prioritizes the creation of a global model by aggre-
gating knowledge from local models on individual devices
through an iterative process. While the iterative aggrega-
tion gradually converges with the global model, providing
a unified understanding that accommodates the diverse data
distributions present on different devices. On the other hand,
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Differential Privacy [55] addresses privacy concerns and
non-IID data challenges by deliberately introducing noise to
local updates during training. The noise protects individual
contributions’ privacy and acts as a regularization technique,
making the learning process less sensitive to the specifics
of each device’s data distribution. The aggregated noisy
updates contribute to a global model, enhancing robustness
and generalization in the federated learning framework for
IoT devices. Subsequently, it is imperative to meticulously
assess these technical strategies to guarantee the effectiveness
of Fed-AIDS modeling, given the lack of existing strategies
and complexity of the task and the challenges posed by
non-IID data.

FIGURE 6. Identified strategies for handling non-iid data complexity.

D. CLASSIFICATION MODELS
The classification task of AIDS is designed to predict one
of many (more than two) or one of two potential outcomes.
Thus, can be used to categorize network traffic of IoT-edge
devices in the context of AIDS into several categories of secu-
rity concerns [120], such as denial of service (DoS) assaults,
malware infections, and unauthorized access attempts. At the
same time, the model is trained on labelled data and makes
predictions based on attributes including network protocols,
source and destination IP addresses, and payload content.
Moreover, the model’s output is a class label that identifies
the internet threat type.

To answer RQ5, the question of which classification mod-
els are commonly employed in Fed-AIDS modeling for IoT
devices, we categorize the identified proposed classification
model into conventional ML models and DL models. For
conventional ML models, we identified five models each
proposed once as presented in Table 8. This includes Random
Forest (RF), Stochastic Gradient Decent (SGD), Multino-
mial Logistic Regression (MLR), toy classifier and One-class
SVM. From the second category in Table 9, DL models
are the mainstream methods with eight models with multi-
ple appearance in some models compared to conventional

ML models. This is due to acceptability to implement with
existing tools/frameworks; some tools/frameworks are very
limited to accept the conventional ML model, more specifi-
cally the boosting algorithms. However, these DL models are
CNN, RNN, NN, DNN, MLP, ANN, LSTM, Auto Encoder
and lastly AE-LSTM which is an ensemble method.

To explore the principles and attributes of these models,
we introduce them in the subsequent analyses. Utilization
of RF [115] in Fed-AIDS model for IoT device emerges as
ensembles of decision trees, each traversing a distinct path
through the labyrinthine depths of the data. By aggregating
the wisdom of these diverse perspectives,RF achieves robust
predictions, mitigating the pitfalls of overfitting inherent to
individual trees. On the other hand, SGD [94], function-
ing as a nimble navigator, traverses the vast expanse of
datasets. It iteratively refines model parameters through judi-
ciously chosen data samples. Its efficient steps minimize
the discrepancy between predictions and reality, paving the
way for accurate modeling. In the MLR [55], [83], extends
the reach of its binary counterpart, ventures into the realm
of multi-class classification. It deftly translates data into
a tapestry of probabilities, assigning each class a likeli-
hood based on the equation: log(P(Y=k|X))/(1-P(Y=k|X))=
β0 + β1X1 + . . .+ βpXp, where P(Y=k|X) embodies the
probability of reaching outcome k given data X and βs repre-
sent the nuanced weights assigned to each feature’s influence.
Toy classifiers [90], serving as training controls in this clas-
sification models, offer rudimentary decision rules, laying
the groundwork for comprehending more algorithms that are
intricate. Finally, in one-class SVMs stand as unsupervised
approach [111], vigilantly guarding the borders of normalcy
within the data. This unshackled from the constraints of
labeled anomalies, they excel at identifying outliers that devi-
ate from the established patterns, serving as invaluable tools
for anomaly detection.

An ANN refers to a computational model inspired by
the structure and functioning of the biological neural net-
works found in the human brain. ANNs can have diverse
architectures and may include various types of layers, such
as input layers, hidden layers, and output layers. They are
designed for information processing and learning from data.
A basic neural network comprises three layers: the initial
layer, referred to as the input layer of neurons, followed
by the middle layer, and concluding with outputs from the
final layer of neurons. ANNs have the capability to learn
rapidly from experiences and effectively address complex
nonlinear problems [121]. In the realm of IoT security,
ANNs excel in Fed-AIDS modeling for securing IoT device
[81], [115]. They demonstrate proficiency in analyzing exten-
sive sensor data from smart devices, identifying subtle
deviations from normal behavior, and signaling potential
threats such as malware or unauthorized access. An MLPs
is a type of ANN with a feedforward structure that uses
backpropagation to refine its parameters during the training
phase. When data is fed into the input layer, it travels through
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TABLE 8. Proposed conventional ML models.

TABLE 9. Proposed DL models.

interconnected nodes, each equippedwith weights and biases,
undergoing computations using activation functions. These
computations propagate through successive layers until the
output nodes generate the results [122]. In essence, while
ANNs encompass a wide range of neural network architec-
tures,MLPs specifically refer to a type of ANNwith a layered
structure that includes multiple layers for learning and pro-
cessing information. For this, MLP has been considered in
Fed-AIDS modeling for securing IoT device [51], [91].
The DNN is a type of ANN characterized by multiple

layers situated between the input and output layers. In a more
specific context, it can be described as a fully connected
neural network that closely resembles the structure of an
MLP. The lower-layer neurons within a fully connected DNN
have the capability to establish connections with all neurons
in the upper layers [123]. To accomplish supervised learning
tasks with nonlinear activation functions, a DNN employs the
backpropagation technique, due to this property; DNN has
received attention at Fed-AIDSmodeling for IoT device [80],
[86], [95], [96], [112]. In CNN, as meticulous detectives
examining fingerprints, CNNs scrutinize network data for
spatial anomalies. Their equation, y= f(

∑
wixi + b), where y

represents the output captures their core strength: extracting
intricate patterns from inputs (xi) using weighted filters (wi).
Convolutional layers within CNNs employ kernels that are
systematically applied across the input data, reducing the
number of parameters required compared to traditional neural
networks. The CNN has received attentions in Fed-AIDS
modeling for IoT devices [82], [124], due to their excellent
performance at handling IoT network flow. Compared to
DNN, where it has a fully connected structure, with each
neuron in one layer connected to every neuron in the next
layer, CNN has a layered structure. This structure includes

specialized layers such as convolutional layers and pooling
layers designed for processing grid-like data, such as images.

TheRNN belongs to a category of ANN capable of demon-
strating temporal memory behavior. This dynamic character-
istic is achieved through connections between nodes, forming
a directed graph over a time sequence [125]. The internal state
of the RNN enables it to effectively process input sequences
of varying lengths. The introduction of RNN aimed to address
the challenge faced by DNN in effectively accommodating
temporally changing data [126]. RNNs are now being utilized
more frequently in Fed-AIDS model for IoT device [92],
which often involve continuous streams of temporal data.
However, a notable drawback of RNNs lies in their lack
of specific treatment for the activation function, potentially
resulting in the continuous product of their partial derivatives
causing gradient disappearance or even gradient explo-
sion, particularly when the network has a high number of
layers [126].

LSTM tackles the gradient vanishing problem present
in classical RNNs by incorporating additional storage
states [127]. This innovative approach effectively controls
gradient vanishing using a gate function as an activation
function, selectively allowing relevant information to pass
through. This introduced forgetting gates to the original
LSTM architecture, simulating memory forgetting [127].
Recognized for its outstanding performance, LSTM has
become a classical architecture. LSTMs are utilized in
Fed-AIDS modeling studies [84], [85], [93], due to their
effectiveness in classifying and predicting based on time-
series data. AEs adopt an unsupervised approach. Their
encoding equation, h = f(Wx + b), reflects their ability
to compress data into a ‘‘normal’’ representation, and then
reconstruct it, flagging anomalies as distortions [128]. They
excel in identifying novel attacks without prior knowledge
of attack patterns and learning efficient representations of
network traffic [78], [87], [88], [113].

Subsequently, most common activation functions used
in by these models for Fed-AIDS on IoT devices include
activation function (SoftMax) [129], loss function (Cross-
entropy) [130], regularization functions [131]. In typical
setting, activation function used to convert a vector of scores
into a probability distribution over classes in Eq. 1, where z is
the vector of scores for each class, n is the number of classes,
and p is the resulting probability distribution.

pi = ezi
∑ (

ezj
)

∀i ∈ j = 1, 2, . . . , n (1)

In Cross-entropy loss it is used to measure the difference
between predicted and actual class probabilities [130] in
Eq. 2. In which y is a one-hot vector indicating the true class
label, p is the predicted probability distribution, and log is the
natural logarithm.

L = −

∑
(y ∗ log (p)) (2)

Regularization function used to prevent overfitting and
improve the generalization performance of models [131].
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L1 and L2 regularization are two common forms of regu-
larization. Eq. 3 describes lambda as hyperparameter that
controls the strength of regularization, w is the weight vector
donated as absolute value, meaning that it shrinks some
of the weights to zero, effectively selecting only the most
important features. Where in Eq. 4 w is the weight vector
denotes it is squaring, which penalizes large weights and
encourages the model to use smaller weights, effectively
reducing overfitting.

L1 = λ ∗

∑
|(w)| (3)

L2 = λ ∗

∑ (
w2

)
(4)

However, these functions vary depending on the specific
algorithm being used, but they are essential for learning
complex relationships between the input data and output
classes, measuring the difference between predicted and true
class labels, preventing overfitting, measuring the similarity
between input and training data, and predicting the class label
based on the input data and learned model.

E. AGGREGATION FUNCTIONS
Aggregation functions are used in Fed-AIDS to aggregate
the output from various distributed devices into a single
overall model. Also, they are made to enable the training
of a global model while also preserving the privacy of data
from individual devices [132]. Notably, Federated Averag-
ing (FedAvg) [77], [81], [84], [87], [90], [95], [112], [114],
Federated+ (Fed+) [55], and Federated Stochastic Gradient
Decent (FedSGD) [78], [79], [91] are the answer for RQ6,
specifically identified three aggregation functions that are
commonly employed in Fed-AIDS modeling on IoT devices.
Figure 7 depicts these aggregation functions as appeared in
the reviewed studies.

FIGURE 7. Most proposed aggregation functions in Fed-AIDS modeling.

In FedSGD, each device calculates the gradient of the
global model on its local data, and the server averages these
gradients to update the global model. This leads to frequent
communication. This method is computationally efficient,
but entails huge numbers of epochs of training to produce
good models [18]. Therefore, in FedAvg [18], each device k
computes the gradient of its local model parameters with

respect to its local data using Eq. 5.

gk = 1/
B ∗

i∑
B

∇θ l (yi, fk , (xi, θ)) ∀k ∈ i = 1, 2, 3, , n (5)

where B is the batch size, l is the loss function, yi and xi are
the label and feature vector of the i-th data point, fk is the
local model on device k , and θ is the model parameters. Then,
each device k sends its gradient to the central server. Where
the central server aggregates the gradients from all devices k
and computes the average gradient gw using Eq. 6.

gw = 1/
k ∗

k=1∑
k

gk (6)

The above instructions will be repeated for multiple rounds
until the model has converged. The key idea behind FedAvg
is to use the gradient information from each devices to update
the global model in a collaborative way, while ensuring that
the private data on each device remains private [18]. Fed+

builds upon FedAvg by adapting learning rates for each
device, further boosting convergence and handling data diver-
sity better. All three algorithms involveminimizing a lθ), with
respect to model parameters, θ , using iterative updates based
on accumulated weights. However, FedAvg is the popular
method with 17 adoptions in the proposed Fed-AIDS model-
ing compared to FedSGDwith three adoptions and Fed+with
one adoption. Compared to FedSGD and Fed+, FedAvg’s
balance of communication efficiency, convergence speed, and
relative simplicity is presented in Table 10. It works well
across various data sizes and learning tasks, making it a ver-
satile tool for developing Fed-AIDS models for IoT devices.

TABLE 10. Trade-up between aggregation function.

F. EVALUATION METRICS
Any ML model, including FL models, must undergo evalu-
ation before being considered successful. A model’s perfor-
mance can be measured [133] or compared to other models
and in which the areas for improvement can be found.
Additionally, an evaluation of the model’s reliability, which
is necessary for making well-informed decisions on any
Fed-AIDS for IoT devices [49]. In this research, we focus
on the metrics used to evaluate Fed-AIDS models for IoT
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devices in reviewed studies. Specifically, Figure 8 pro-
vides insights into the most frequently employed evaluation
metrics, addressing our RQ7 about their popularity in pub-
lished studies. Although most of the metrics contributed
detection/classification performance of the Fed-AIDS mod-
els, this include confusion matrix [80], [81], [112], [114],
Matthews Correlation Coefficient (MCC) [78], Area Under
Curve (AUC) [90], [134], Pearson Correlation Coefficient
(PCC) [55], and also combined of Accuracy, Precision
(Detection rate), Recall also known as True Positive Rate
(TPR) and F-score [79], [86], [93], [115]. Lastly, False
Alarm Rate (FAR) also known as False Positive Rate
(FPR) [51]. While only AvgTime contributed computational
performance [82], [91], [94].

FIGURE 8. Proposed evaluation metrics.

These validation metrics represent the amount of True
Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN) predictions (occurrences) built by the
classifier as presented in Table 11. While some refer to the
performance of the classifier through the AUC, the ROC
curve shows the TPR versus the FPR for various threshold
values [135]. However, both metrics are crucial for improv-
ing classifiers and computational performance, in terms of
Fed-AIDS modeling for securing IoT device.

IV. OPEN ISSUES AND FUTURE DIRECTIONS
This article explored Fed-AIDS modeling taxonomies in
the context of securing IoT device, covering utilized
tools/frameworks, most utilized datasets, non-IDD data han-
dling complexities, the utilized aggregations functions and
evaluation metrics. It emphasized conduction efficient Fed-
AIDS modeling. Now, the focus shifts to identifying areas
for further research in FL-AIDS modeling for IoT devices.
These research gaps were pinpointed through a systematic
analysis of existing taxonomies in Fed-AIDS modeling for
IoT devices.

1) Tools/Framework: Despite the effectiveness of
Fed-AIDS tools for implementing such of TFF,

IBMFL, or PySyft, it is observed that it requires a
deep understanding of the underlying concepts. As an
example, the learning curve can be steep, especially
for developers who are new to FL. Therefore, there is
need for the availability of comprehensive documen-
tation and resources for these specific tools in both
academic and industry fields. Although individual doc-
umentation for these tools was provided and instantly
updated accordingly. For example Flower has it is own
respiratory documentation [74], likewise IBMFL [75],
and PySyft [76]. Nevertheless, providing documenta-
tions of application of all these tools in application
of Fed-AIDS can bridge the gap between academic
research and practical industry solutions. This can help
beginners and professionals in the IoT cybersecurity
domain connect these technologies to enhance security
measures while respecting data privacy. Additionally,
this documentation could also tackle the issues thatmay
arise when integrating FL frameworks with existing
ML libraries. As this could be challenging issue when
trying to combine FL tools with different technology
such AIDS and IoT computing.

2) Utilized Datasets: Another interesting observation in
the mostly utilized datasets for Fed-AIDS modeling
for securing IoT device, it reveals certain limita-
tions. These obstacles include small dataset size,
imbalanced class distribution, and lack of diversity,
non-representative features and privacy concerns. For
example, N-BaIoT [101] could be a diverse dataset
with IoT network trace, but considering the training
instances and count of network traffic features could
be less for training IoT cybersecurity model. Moreover,
CICIDS2017 [99] could be effective in terms of feature
representatives but ineffective in terms of diverse to
IoT network trace. However, to overcome these lim-
itations, several measures could be tackled. Initially,
efforts could be made to gather larger and more diverse
datasets to ensure better coverage of real-world IoT
scenes. Secondly, steps could be taken to balance the
class distribution within the datasets, ensuring that
each class is balanced. Additionally, diversity could
be enhanced by incorporating a wider range of IoT
devices, network configurations, and attack scenarios.
It is also important to ensure that the collected data
is representative of the actual IoT network. However,
by implementing these measures, it is possible to over-
come the limitations and enhance the effectiveness of
Fed-AIDS model for IoT devices. Hence, we strongly
recommend the of Edge-IIoTset [104]. This dataset
addresses the above limitations of the existing datasets
and is correct for the vital requirements of IoT devices
in Fed-AIDS modeling.

3) Non-IDD Data Complexity: Data augmentation, dif-
ferential privacy and single model convergence are
valuable techniques in addressing non-IID data issues
in FL. However, they also have limitations, this include
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TABLE 11. Evaluation metrics by confusion matrix.

the effectiveness of data augmentation heavily relies on
the available augmentation strategies and the diversity
of data transformations [119], [136]. In cases where the
data is highly diverse, predefined augmentations may
not capture the full range of variations. Additionally,
data augmentation can significantly increase the com-
putational overhead, especially when dealing with a
large volume of data and numerous clients in FL [136].
This can lead to slower training and model conver-
gence. While some limitations of transfer learning
include lack of source data. In some FL scenarios, find-
ing a suitable source domain with ample labeled data
can be challenging. While transfer learning relies on a
well-labeled source dataset, and the absence of such
data can limit its applicability [137]. Aiming at this
problem, our future work in addressing non-IID data in

FL could explore the use of genetic algorithms. Genetic
algorithms are optimization techniques inspired by
the process of natural selection and evolution
[138], [139]. Through genetic operations, individuals
with higher fitness (better solutions) are favored, and
over multiple peers, this algorithm converges toward an
optimal or near-optimal solution for the given problem.
However, this could be applied in Fed-AIDS for IoT
devices, which can potentially address some of the
limitations of data augmentation and transfer learning
in the context of non-IDD challenges. Firstly, adapting
data augmentation to each client’s needs, genetic algo-
rithms can ensure that augmented data remains relevant
and meaningful, addressing the limitation related to
capturing diverse data transformations. Additionally,
by reducing unnecessary augmentation operations,
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genetic algorithms can mitigate the computational bur-
den associated with data augmentation, making FL
trainingmore efficient. To sum it up, genetic algorithms
can act as optimization tools to tailor data augmentation
processes to the specific requirements and challenges
of non-IDD of FL modeling. They can potentially
address the limitations by optimizing data augmenta-
tion strategies, reducing computational overhead and
enhancing privacy preservation in FL scenarios with
non-IID data.

4) Aggregation Functions: Existing aggregation func-
tions in Fed-AIDS modeling for IoT devices, such as
FedAvg [90], FedSGD [78], and Fed+ [55], warrant
exploration of more sophisticated alternatives such as
FedProx and Q-FedAvg. These advanced functions
address limitations inherent in FedAvg, FedSGD, and
Fed+ by alleviating assumptions about every IoT
device completing all epochs for the selected classi-
fier to achieve convergence, in which some devices
take longer than other does and each device has dif-
ferent network data. For this, future research should
delve into these nuanced methods, offering potential
enhancements in efficiency for aggregation mecha-
nisms within Fed-AIDS model for IoT devices. For
example, FedProx allows variable devices to variable
amount of work [140].

5) Evaluation Metrics: During employing Fed-AIDS on
IoT devices, challenges may also rise due to the lim-
ited computational resources and network connectivity
constraints for IoT devices. These challenges need to
be tackled. Meanwhile, only limited studies utilized
computational performance of AvgTime [91], [94].
However, to guarantee the accuracy of the evaluation
result, it is important to consider CPU utilization and
energy consumption. This is to the evaluate percent-
age of the CPU load taken by a certain Fed-AIDS
job and capacity vital for added energy to perform a
certain Fed-AIDS job. These could affect the model’s
performance and make sure that the evaluation process
preserves the integrity of the Fed-AIDS model of IoT
devices.

V. CONCLUSION
The increasing data output from IoT devices is vital for
industries such as healthcare, transportation, and smart cities.
However, widespread IoT adoption raises security concerns,
challenging centralized systems. Privacy violations, a sin-
gle point of failure, and difficulty in identifying intruders
underscore the need for enhanced security in IoT data evalu-
ation. Our research addresses these challenges by exploring
Federated Learning (FL), an ML technique enabling model
training without sharing data. This approach enhances detec-
tion accuracy and efficiency, surpassing domain limitations
in IoT device security. In contrast to previous studies that
often focused primarily on investigating security assaults
on IoT devices, our research systematically delves into the

Fed-AIDS modeling process for IoT devices. We cover tax-
onomies that encompass workflow, tools, training datasets,
technical complexities, classifier roles, aggregation tasks, and
model validation metrics. Data from published studies were
retrieved from the Scopus database, covering major publish-
ers such as IEEE, Elsevier, and others. This comprehensive
exploration not only emphasizes the significance of our
work but also provides a practical roadmap for researchers
and practitioners aiming to implement effective IoT device
security solutions. This has the potential to achieve optimal
or near-optimal accuracy for the Fed-AIDS model. Finally,
we strongly believe that this proposed review on Fed-AIDS
modeling for IoT devices can significantly enhance under-
standing of the field’s progression and identify potential
avenues for further studies.
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