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ABSTRACT Robotic exoskeletons provide a viable means for enabling individuals with limited or no
walking ability to traverse various surfaces with maximal external support to the patient’s body. However,
to achieve effective performance, it is crucial to consider anatomical differences in body size and shape
among users. In this paper, we propose a framework to infer adapted user-specific policies using a small
dataset from past experiments performed with twelve users wearing a lower-limb self-balancing exoskeleton.
Our framework utilizes Gaussian Process Regression (GPR) to learn a mapping between user characteristics
and control policy parameters. We also propose to use hindsight data relabeling to improve the performance
of the controller. We experimentally test the output of the GPR model on new users and demonstrate its
effectiveness in predicting user-specific walking parameters that lead to high performance. We also compare
the performance of this control policy with an expert-tuned policy and show that our framework can reach
comparable results without the need to perform expensive and unsafe tuning of the controller for new users.

INDEX TERMS Exoskeletons and prosthetics, machine learning for robot control, bipedal locomotion.

I. INTRODUCTION
Patients with neurological impairments often experience
decreased movement and mobility, leading them to adopt a
largely inactive lifestyle with extended periods of sitting [1].
Providing walking support for such patients is a fundamental
component of their mobility that requires the lower limbs
to be activated in order to step and support body mass [2].
Walking induces an increment in the physical workload,
thus imposing a heightened demand on the cardiorespira-
tory system to provide adequate oxygen delivery to the
working musculature [3]. Robotic exoskeletons provide
a viable means for enabling individuals with limited or
no walking ability to traverse the ground with maximal
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external support [4]. Extended sessions of walking with the
assistance of a robotic exoskeleton hold promise for induc-
ing moderate-intensity physical exercise, thus presenting a
feasible means of augmenting cardiovascular fitness among
individuals with spinal cord injury (SCI) [5].

Improving the robustness and stability (not falling down) of
the lower-limb exoskeleton robot used for walking assistance
is crucial to enhance patient safety. One way to achieve
this is to provide the patient with crutches or other balance
assistance devices to prevent the risk of falling during
walking [6]. While some exoskeletons like ReWalk [7],
Ekso [8], and Indego [9] rely on crutches for stability, there
are only a few self-balancing exoskeletons available, such
as the robot used in this study named XoMotion (Human
in Motion Robotics Inc., Vancouver, Canada), as well as
Atalante (Wandercraft, France) [10]. It is hence crucial to
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FIGURE 1. Human subject wearing the XoMotion Beta 2 exoskeleton
used in this work (Human in Motion Robotics Inc., Vancouver, BC).

devise safe frameworks for controlling these self-balancing
robots, especially due to the essential need for interaction
with the patient [11].

To ensure the performance of an exoskeleton walking
controller for different individuals with diverse physical
characteristics, it is important to adapt the policy parameters
accordingly [12]. While trajectory optimization (TO) [13],
[14] and model predictive control (MPC) [15], [16] have
demonstrated promising results in generating stable gaits
for bipedal robots, when it comes to the control of self-
balancing exoskeletons, we require an automatic method to
adjust the parameters of these controllers for new users with
different weights and heights. One approach is to employ
robust control approaches [17], [18] to find control policies
that are robust to the variations, but in practice, this cannot
yield desirable performance when the user characteristics
change considerably.

To design a user-specific control policy for the lower-
limb exoskeleton, it would be ideal to directly learn the key
parameters of the individual’s walking behavior during physi-
cal robot interactions. These essential parameters encompass
various aspects, such as step length, step time, double and
single support phases duration,MPC cost weights, swing foot
trajectory, feet contact handling, stabilizer gains, and other
relevant factors that contribute to the generation of walking
patterns. By learning and adapting these crucial parameters
through interactionwith the physical robot, we can effectively
tailor the control policy to suit each user’s unique gait
characteristics and ensure optimized performance. In a prior
study [19], we developed a control strategy that can be
applied to various users utilizing the exoskeleton, and it
was achieved using a sample-efficient approach that required
fewer than 30 iterations. However, this method would require
conducting new experiments for each new user, which is not

only expensive but also unsafe since the learning process
involves inevitable failures that could potentially result in
unsafe conditions. Ideally, we would like to use the data
of the past experimental results for a set of users and infer
the adapted user-dependent policy parameters. This way,
we could bypass the procedure of tuning the controller for
each new user.

As our problem is constrained by the number of users
(and hence samples), deep learning [20] cannot be seen as
a viable option, as a large number of samples is required
for training the models. An alternative in such a case is
Gaussian process regression (GPR) [21], [22]. GPR is a
non-parametric Bayesian regression technique that models
the target function as a Gaussian process (GP) [23]. One of
the key advantages of GPR is its flexibility, as it can model
any arbitrary function without imposing any assumptions on
its form [24]. GPR is also able to handle noisy data, as it
can capture the uncertainty associated with measurement
errors, and has been successfully applied in various fields,
such as robotics, finance, and environmental modeling [25].
GPR is selected for its ability to capture complex and
non-linearmappings inherent in the relationship between user
characteristics and control policy parameters. Unlike simpler
regression methods, GPR offers a probabilistic framework
that provides uncertainty estimates, crucial for safe and
robust control. The choice was motivated by the intricate
nature of the mapping, where user specifications involve
multiple dimensions and intricate dependencies that GPR can
model effectively [23], [26]. Various studies have leveraged
the capabilities of GPR to enhance the performance and
adaptability of assistive robots, showcasing its versatility
in modeling complex relationships and improving control
strategies [27], [28], [29].

In this paper, we propose to use GPR to learn a mapping
between the user characteristics and parameters of the
walking controller, using a small dataset extracted from
a series of experiments performed with various (but a
limited number of) users wearing a lower-limb self-balancing
exoskeleton.

The main contributions of this work are as:
• We learn user-specific policy parameters for lower-
limb self-balancing exoskeletons based on a small
dataset of experiments performed with a few users. This
offers a flexible and effective method for personalizing
exoskeletons for individual users, without a need to
perform new experiments for new users.

• We propose to use data relabeling in order to improve
the performance of the controller in tracking desired
commands. To the best of our knowledge, this is the first
work that shows such an improvement.

• We present experimental validation of the framework on
a new user. We also compare the performance of this
controller with a tuned controller based on Bayesian
Optimization (BO) [19] and show that our proposed
approach in this work can achieve comparable perfor-
mance without a need to perform new experiments.
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FIGURE 2. The block diagram of the control pipeline; the MPC block generates both the CoM and swing-foot trajectories based on the
footstep locations derived from the GPR model. The controller block contains the inverse kinematics and stabilizer modules. The state
estimator provides CoM and DCM estimations along with the base pose. The stabilizer module uses admittance control to track DCM
trajectories via force measurement. The limbs mass estimator block utilizes the user’s weight and height to estimate the distribution
of mass across limbs, encompassing the torso, upper leg, and lower leg. Additionally, the mapping between the user characteristics
and the user-specific parameters i.e. control policy parameters and the footsteps are also illustrated. The real system utilized in this
research is comprised of the real robot and the human subject wearing it.

II. MATERIALS AND METHODS
A. STRUCTURE OF THE CONTROL PIPELINE
A block diagram of the control pipeline is shown in Fig. 2.
We use a linear MPC to generate center of mass (CoM) and
swing-foot trajectories given the footstep locations, similar to
our previous work [19]. We assume piece-wise linear jerk of
the CoM

...
c = [

...
x ,

...
y ]T over time intervals for the horizon

NT , whereN is the number of time steps into the future and T
refers to the time step duration considered for discretization.
The following optimization problem (which is transcribed to
quadratic programming or QP) is solved at each control cycle
to generate CoM trajectories consistent with the constraints
on the Center of Pressure (CoP):

min....
c i

N+k−1∑
i=k

α∥
...
c i∥ + β∥ċi − ċrefi ∥

2
+ γ ∥zi − zrefi ∥

2 (1a)

s.t. zi ∈ support polygon , ∀i = 1, . . . ,N . (1b)

ξ f = zf = zref , (1c)

in which z represents the CoP, and the superscript ref stands
for the reference trajectories and α, β, and γ are positive
scalars. The footsteps are pre-defined, and then the reference
CoP trajectory zref is defined by connecting lines between
either center of the footsteps, or the projection of the ankle
joint on the ground. Moreover, ξ = [ξx , ξy]T is the 2D
divergent component of motion (DCM) (ξ = c +

ċ
ω
), and

Eq. (1c) makes sure that the robot is capturable (i.e., the robot
can be stabilized without a need to take a step) at the end of
the horizon [30].

The controller block diagram in Fig. 2 includes the inverse
kinematics (IK) and the stabilizer module. Since our robot
is position-controlled, we employ task-based IK using QP to

trade off the tracking of the desired CoM and foot trajectories,
while constraining the CoP to remain inside the support
polygon of the feet [31].

First-order admittance control is applied to the ankle joints
to regulate the responsiveness of the CoP modulation as [31]:[

θ̇cr
θ̇cp

]
= Acop(pd × f m − τm) (2)

Acop =

[
Acop,y 0 0
0 Acop,x 0

]
(3)

where (θcr , θ
c
p ) are the commanded roll and pitch angles of

the foot in contact with the ground surface, pd = [pdx p
d
y 0]

indicates the desired CoP position and the measured contact
wrench is denoted by (f m, τm). Acop,x and Acop,y stand for
CoP admittance gains in the x and y directions, respectively.
During the double-support phase, CoP must be transferred
from one foot to the other. This is where foot force difference
control (FFDC), originally introduced by Kajita et al. [32],
comes into play. The concept of FFDC allows for precise
control of the ground reaction forces acting on each foot,
ensuring a smooth and stable transfer of the CoP. The
control law incorporates both CoP position and vertical forces
to regulate the foot force difference. Implementing FFDC
involves using (vLz, vRz) to represent the velocities of the left
and right foot in their sole frames as [31]:

vcLz = vdLz − 0.5 Adfz(1f dz − 1f mz ) + 0.5 vvdc (4)

vcRz = vdRz + 0.5 Adfz(1f dz − 1f mz ) + 0.5 vvdc (5)

where Adfz is the FFDC admittance gain, 1fz = fLz − fRz,
and vvdc denotes the velocity term added to compensate the
vertical drift.
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TABLE 1. Mapping between the user characteristics and the control
policy parameters.

A kinematic-based approach is employed to estimate the
base position and velocity for state estimation. We refer the
readers to [19], [31], and [33] for more details.

B. LEARNING USER-SPECIFIC CONTROL PARAMETERS
For training the GPR, we have used data from the previous
experiments where the controller is carefully tuned either by
the expert or BO [19], [34]. To avoid repeating this procedure
for every new user, here we use GPR to learn the mapping
between user characteristics and controller parameters, using
previous successful experimental data. The inputs used in the
model are the user’s weight and height of the CoM and the
command walking velocity. The outputs of the model are five
parameters that we have identified as having the maximum
impact on the performance of our controller for different
users. These parameters significantly influence the stability
and shape of the motion, and their careful selection ensures
effective and safe walking behavior tailored to individual
users. These parameters are:

• The CoP admittance gain in the x direction (Acop,x): This
parameter affects the CoP response to the DCM tracking
error and is introduced in Eq. (2) and (3). A higher
value of Acop,x results in a faster pitch of the foot in
response to sagittal CoP deviations. The use of Acop,x
allows for greater adaptability and responsiveness of the
exoskeleton to a variety of walking conditions, thereby
improving the overall performance of the system.

• The foot force difference control admittance gain
(Adfz): This parameter controls the distribution of forces
between the left and right foot of the exoskeleton during
the double support phase as shown in Eq. (4) and (5).

• The swing foot trajectory adjustment in the z-direction
at the foot landing moment (adjz): This parameter
adjusts the swing foot trajectory to ensure that the foot
lands at the desired location at the end of the swing
phase. This value needs to be adapted for each user,
as the weight of the user affects the deformations in the
robot structure.

• The step time (Tc): This parameter indicates the duration
of taking one step, which is the sum of the duration of
the double support phase and the single support phase.
A longer step time means that the exoskeleton should
take a longer step given a specific walking velocity.

• The step time ratio (ρ): This parameter indicates the
relative duration of the double support phase and the
step time Tc and is a critical parameter for maintaining
a stable gait.

The mapping between the user characteristics and the
control policy parameters are explained in Table 1 and is also
shown in Fig. 2.

C. GAUSSIAN PROCESS REGRESSION
In Gaussian Process Regression (GPR), the target function
f (x) is modeled with a mean function m(x) and covariance
function k(x, x′). The mapping between input x and output
y is learned using a small dataset (X , y). GPR employs
Bayes’ rule to infer the posterior distribution over f (x). The
likelihood of data given f assumes Gaussian distribution with
mean f (x) and variance σ 2

n , representing noise. The prior
distribution over f is determined by the choice of kernel
function, capturing covariance between input points.

For our study, we selected the Radial Basis Function
(RBF) and Dot Product kernels. The RBF kernel governs
smoothness with a length scale parameter l, and the Dot
Product kernel, representing linearity, includes a scale factor
σ0. The combined kernel is k = c1krbf + c2k

p
dot , where the

constants c1 and c2, and the power p are set accordingly.
This kernel choice is tailored for our problem, capturing both
smooth and linear relationships in the data. The RBF kernel
allows flexibility, while the Dot Product kernel efficiently
models linear trends. Our approach leverages these kernels to
enhance the adaptability and performance of the GPR model
for user-specific control policies in lower-limb exoskeletons.

D. DATA RELABELING
Data relabeling is a technique used in machine learning
to reassign labels to the training data to improve the
performance of a learning model. It involves modifying the
labels of the data instances in a dataset to better match
the true label, or to match the output of a more accurate
model. This technique can be particularly useful in robotics
applications where the performance of the system is affected
by the accuracy of the training data. Especially, when the
desired behavior can be represented by a goal, it has been
shown to improve policy learning in both reinforcement [35]
and iterative supervised learning [36] settings.

In our study, the goal of the controller is to minimize the
tracking error of the commanded walking velocity. In our
experiments, we collected a dataset with different users
and walking speeds, where each experiment corresponds
to a certain set of walking parameters including the step
length and step time. However, the Beta 2 exoskeleton
did not accurately follow the desired walking velocity due
to the deformations in its mechanical structure and other
sources of imperfection. While we compensated for the
vertical direction of the swing foot at the moment of landing
(adjz), there were still discrepancies in the sagittal direction
compared to the nominal step length, resulting in smaller
steps. To address this problem, we employed a data relabeling
technique inwhichwe estimated the distance between the feet
at the moment of swing foot landing through a kinematic-
based approach [37], estimating the realized step length. For
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FIGURE 3. Snapshots of a test user walking with the XoMotion Beta
2 exoskeleton, using predicted walking parameters from GPR (the
sequence is from left to right taking two steps).

this estimation, we used inertial measurement unit (IMU)
sensors located at the robot’s base (pelvis) and its feet, as well
as the joint angles. A reasonable assumption was to consider
that the deformations take place at the hip joints. Using this
estimation, we relabeled the values corresponding to the step
location and timing of the gait. We show in Section II-E3 that
this relabeling procedure can improve performance in terms
of velocity tracking.

E. EXPERIMENTAL SETUP AND PROTOCOL
The XoMotion Beta 2 exoskeleton can accommodate users
of varying heights and weights with adjustable link sizes
for thighs and shanks. Weighing approximately 74 kg, the
robot has 6 degrees of freedom in each leg - 3 at the hip
joint, 1 at the knee joint, and 2 at the ankle joint - providing
a full range of motion. The robot is capable of traversing
flat and sloped ground, ascending and descending stairs, and
walking in different directions by turning and sidestepping
while maintaining balance.

To collect data for training GPR, we performed a set of
experiments where diverse individuals walked at different
velocities. These experiments were approved by the Research
Ethics Board of Simon Fraser University (#30001570).
We employ conventional anthropometric measurement tech-
niques to acquire diverse individuals’ physical attributes,
encompassing measurements of limb lengths. Furthermore,
we assess the distribution of mass across various limbs,
a critical factor for incorporation into model-based control
methodologies [38], [39].

We used a similar approach to our previous work [19] that
employed dummy weights with similar inertia distributions
to a range of users, which allowed us to tune the controllers
on the robot without any safety issue and generate data
that closely resembles the behavior of actual human users.
Also, the length of the robot’s links is modified to account
for users of varying heights and weights. The XoMotion
Beta 2 exoskeleton is designed to accommodate users with
heights ranging from 155 to 190 cm and weights between
50 and 100 kg. These ranges encompass around 99 percent
of the population’s height and approximately 80 percent
of the population’s weight, based on NHANES1 data [40].

1National Health and Nutrition Examination Survey.

TABLE 2. Characteristics of the users whose data were used for training
GPR.

In Table 2, the total weight and the height of the center of
mass are presented, representing the combinedmeasurements
of the robot and users wearing the exoskeleton. For each
user, we performed walking in the forward direction at
velocities ranging from 0.1 km/h to 1.0 km/h in increments of
0.1 km/h, resulting in ten distinct velocities per participant.
In the following, we present our results in three different
scenarios. In the first scenario, we evaluate the performance
of the GPR model on a new user. In the second scenario,
we compare the result of the GPR with a controller that is
tuned by BO [19]. Finally, the third scenario demonstrates
the effect of data relabeling on improving reference velocity
tracking.

1) SCENARIO 1: TEST A NEW USER
In this scenario, we tested the predictions of the GPR
model by implementing the learned control policy on a new
user. The total weight of the robot and the new user for
testing the method was 142 kg, and the corresponding CoM
was 86.5 cm.

2) SCENARIO 2: COMPARISON WITH EXPERT TUNING
We conducted a comparative analysis between the GPR
model andBayesianOptimization (BO) in a specific scenario,
evaluating their performance without specifying a particular
walking velocity. In our previous work [19], BO was
employed and regarded as an expert tuning method for
reference in the comparison.

3) SCENARIO 3: DATA RELABELING RESULTS
In this scenario, we evaluate the effectiveness of the data
relabeling process presented in Section II-D. To do that,
we trained the GPR model with and without relabeling and
then used it for two different walking velocities.

III. RESULTS AND DISCUSSIONS
As mentioned earlier, the first scenario assesses the efficacy
of the GPR model through experiments conducted with
a new user. These experiments encompass walking at
various velocities within the range tested during the training
phase, from 0.1 to 1.0 km/h. Notably, all experiments

36878 VOLUME 12, 2024



A. Shahrokhshahi et al.: Learning User-Specific Control Policies for Lower-Limb Exoskeletons

FIGURE 4. The reference velocity tracking by the new user based on the
prediction of the GPR model. The results are shown for the test user
walking with 0.5, 0.7, and 1.0 km/h from top to bottom.

FIGURE 5. Comparison of the prediction of the GPR model (top) and the
results of the expert tuning (bottom) for reference velocity tracking. The
results are shown for the test user walking at 0.3 km/h.

utilizing the predicted GPR parameters exhibited stability,
as demonstrated in Figure 3, which presents snapshot photos
from one such experiment. Additionally, Figure 4 depicts the
reference velocity tracking for the new user walking at 0.5,
0.7, and 1.0 km/h. The figure illustrates the robot’s stable
walking performance while accurately tracking different
velocities.

The second experimental scenario involves a comparison
between the GPR model’s output and the results obtained
through expert tuning. As shown in Fig. 5, the GPR prediction
leads to larger CoM fluctuations in the sagittal direction,
however, the average desired velocity is still tracked decently.
The actual average velocity during the steady-state part of
the motion is about 0.297 km/h for the expert tuning (BO)
case and about 0.288 km/h for the GPR prediction. The main

FIGURE 6. The reference velocity tracking by the new user based on the
prediction of the GPR model. The results are shown for the cases before
and after relabeling for walking with 0.6 km/h (up) and 0.8 km/h (down).

reason for much larger fluctuations for the GPR case is that
it selected a larger single support phase period which results
in walking which needs to be statically stable. Certainly, the
GPR model’s performance for a new user may not match
the efficiency of expert tuning, especially for a small dataset.
Nevertheless, the results indicate that we can still achieve a
satisfactory outcome.

In the third scenario, we utilized the output of the data
relabeling method to enhance the tracking of reference
velocity. Figure 6 shows the reference velocity tracking,
before and after relabeling the data, for walkingwith 0.6 km/h
and 0.8 km/h. The results show that the actual average
walking velocity was improved from around 0.55 to 0.6 km/h,
and from around 0.72 to 0.8 km/h, for each of these cases
perfectly matching the desired walking velocity.

IV. CONCLUSION AND FUTURE WORK
In this paper, we proposed a framework for automatically
inferring the adapted gait parameters of an exoskeleton
walking controller, using a small dataset of previous experi-
ments for different users. As the real-world dataset is small
and not highly diverse, we proposed to resort to using
Gaussian Process Regression (GPR) which is known to be
sample-efficient. We also proposed a relabeling procedure
of the collected data to improve the performance of the
learned model. After applying data relabeling, we observed
a notable improvement of around 10% in the accuracy of
reference velocity tracking. Through a set of experimental
tests, we showed the merit of our framework in finding
adapted control parameters for new users without a need
to perform re-tuning of the controller for them. While the
output of the GPR model exhibits some increase in overshoot
during reference velocity tracking compared to expert tuning,
it is important to note that the resulting motions remain
remarkably robust and human-like. In the future, we plan
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to test our algorithm on a larger number of new users for
further validation. Also, it would be interesting to extend the
framework such that we continually improve the performance
of the model as more and more data from new users becomes
available. Finally, we are also interested in taking into account
safety considerations when learning the parameters of the
controller for new users in the presence of disturbances and
model uncertainties.
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