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ABSTRACT Learning-based TOA-UWB localization methods have been developed rapidly in recent years
and achieve state-of-the-art localization results in complex scenes. However, they still suffer from two
drawbacks: 1) biased measurements with large noise are not suppressed effectively, and 2) geometric
information which is important for UWB localization is not considered. Thus, we propose two twofold
strategies in this paper to overcome these issues: 1) A novel deep attention-based network is proposed. In this
network, we introduce the transformer encoder to learn the weights of different ranging measurements,
and thus suppress the adverse impact of the biased measurements. Meanwhile, the anchor positions
including the geometric information are introduced into the network by an embedding module. 2) We
present a novel learning strategy to train the proposed network. This learning strategy both considers the
pre-collected ground-truth and the geometric constraints of UWB sensors. Through these two strategies,
large measurement noise is further suppressed, while the geometric information and constraints are also
developed for the proposed network. Therefore, the localization performance is improved. We build real-
world experiments in a narrow and complex indoor scene to demonstrate the advantages of our proposed
method compared to the state-of-the-art learning-based method.

INDEX TERMS Attention mechanism, geometric information, indoor localization, UWB sensors.

I. INTRODUCTION
Time of arrival (TOA) UWB localization system is widely
used for indoor environment [1], since it can provide
high-precision tag positions based on ranging measurements
and pre-calibrated anchor positions in an ideal indoor envi-
ronment [2]. However, in complex environments such as
some narrow or crowded scenes with many obstructions,
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it is challenging for TOA-UWB localization methods to
achieve accurate localization results. Because non-line-of-
sight (NLOS) or multipath situations in the complex scenes
will cause the reduction of ranging accuracy, and thus lead
to a significant decrease in TOA-UWB localization accu-
racy [3].

Recently, many great efforts are afforded to improve the
UWB localization performance in complex environments.
Some works present robust TOA-based localization meth-
ods [4], [5], [6], [7] to achieve desirable localization results
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with raw ranging measurements. Some other works propose
NLOS identification or ranging correction approaches [8],
[9], [10] to discriminate biased measurements with large
noise, or mitigate the ranging error for the localization, and
thus improve the localization accuracy.

In general, these methods can be divided into two types: 1)
geometric-based approaches [4], [5], [11]. These approaches
fully use the geometric information between the tag and
anchors to estimate the tag positions, and 2) data-driven
learning-based methods [6], [7], [12]. These methods design
end-to-end neural networks to estimate the tag positions
or distance information. They also need to present the
learning methods to train the proposed networks. Com-
pared to the former, the latter is more suitable for complex
environments, although it is usually required to collect
ground-truth for training process. Because, learning-based
methods can extract high-level representative spatial or tem-
poral features from the raw UWB measurements during
the training process, and compared to the geometric-based
approaches, these high-level features contribute to estimate
more accurate tag positions when the ranging errors are
large [12].
However, the existing learning-based localization meth-

ods also suffer from some limitations. On one hand,
in a complex indoor environment, the existing deep net-
works cannot handle the biased ranging measurements
with large noise effectively, leading to notable localiza-
tion errors in a complicated scene. On the other hand,
most of existing deep networks as well as their training
strategies only adopt the distance between estimated and
ground-truth positions as the cost function to train the
network, without taking into account the UWB geometric
information and constraints. These issues will affect the
UWB localization performance, especially in a complex
scene.

In this paper, we propose a deep attention-based UWB
localization network with a novel supervised training strat-
egy to handle these issues. To be specific, we employ a
transformer encoder module containing the self-attention
mechanism to learn measurement-specific weights, while
extract high-level features of measurements to effectively
suppress the influence of inaccurate measurement for local-
ization. Besides, anchor locations are used in the position
encoding process for introducing the geometric informa-
tion into the deep network. In addition, we jointly estimate
corrected ranging measurement and tag positions from the
designed deep network, and develop a geometric loss which
introduces the geometric constraint to the supervised learning
strategy via these two estimations. With the help of these
strategies, the localization performance in complex scenes is
improved.

The main contributions of this work are summarized as
follows:

1) The self-attention mechanism is developed for the
learning-based UWB localization to further restrain the neg-
ative influence of ranging measurement with large noise.

2) The geometric information and constraints are con-
sidered for the learning-based UWB localization to further
improve the localization performance in complex environ-
ments.

3) The real-world experiments in a complex indoor scene
are built to illustrate the advantages of our proposed method.

II. RELATED WORK
A. GEOMETRIC-BASED TOA-UWB LOCALIZATION
METHODS
In terms of geometric-based TOA-UWB localization
approaches, the tag positions are mainly computed based
on ranging measurements and pre-calibrated anchor posi-
tions. The analytical approach [13] establishes equations
based on each measured distance, and the distances between
each anchor position and estimated tag positions. Then,
the tag position can be computed though least square
approach. The accuracy of this approach is reliable in line-
of-sight (LOS) environment, while decreases significantly
in complex scenes caused by unreliable measurements.
To improve the localization accuracy in complex scenes,
the optimization-based method [4] is proposed following the
analytical approach. It builds an optimal function instead
of the equations considering the tag positions at multiple
times. Besides, a constraint based on the maximum veloc-
ity of tag is introduced into the optimal function. This
velocity constraint between continuous frames contributes
to suppress the localization drifts, and thus achieves better
localization results compared to the analytical approach.
In addition, Kalman filter (KF) is also developed for theUWB
localization method [5]. In these methods, the tag position
and velocity are set as the state variable, while the mea-
sured distances are used to build the measurement equation.
However, the process of KF will introduce nonlinear errors
due to high nonlinearity of the measurement equation even
using efficient variants of KF (e.g., extended KF [14]),
and thus it is worse than the optimization-based method.
Although these geometric-based approaches utilizing various
geometric information to improve localization results, their
performance is still undesirable in a complex environment
with large measurement noise.

B. DEEP LEARNING-BASED TOA-UWB LOCALIZATION
METHODS
In terms of the deep learning-based methods, the key of
these approaches is to extract representative features from
the ranging measurements. Some works [6], [15] utilize
the convolutional neural network (CNN) to extract spatial
features including the high-level representation of the mea-
surements, and then the localization results can be estimated
through the fully-connected layers based on these spatial
features. The experimental results of these works illustrate
that these extracted high-level features can boost the localiza-
tion accuracy, and the noise can also be suppressed partly in
the extraction process. In addition to spatial features, some
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other works also consider extracting the temporal features
of ranging measurements to help the UWB localization.
Different types of recurrent neural network (RNN) such as
long short-term memory (LSTM) [16] and gate recurrent
unit (GRU) [7] are adopted to extract the temporal features
from the UWB measurements. These works indicate that
the temporal relationship between continuous frames is also
important for localization. Thus, in our previous work [12],
we combine the CNN and RNN modules to learn both the
spatial and temporal features from the rangingmeasurements.
Experimental results suggest that the spatial-temporal fea-
tures can improve the UWB localization performance in a
NLOS scene. However, these works ignore to reduce the
weights of biased measurements with large noise which tends
to severely damage the localization accuracy. Thus, in this
paper, we introduce the transformer framework with attention
mechanism to overcome this issue. Besides, the training strat-
egy is also important for the deep learning-based methods.
Most of the existing training strategies [6], [7], [12], [15], [16]
use the distances between the estimated and ground-truth tag
positions as cost function, but do not consider the structure
of UWB sensors for localization. Hence, it is important to
introduce the geometric information into the deep learning-
based methods.

In addition, the deep learning-based methods are also
developed for the NLOS identification or ranging correc-
tion [8], [9], [10], [17], [18], [19], [20]. Either CNN [8],
LSTM [9] or transfer learning strategy [17] is introduced
to these models. However, most of these approaches uti-
lize channel impulse responses (CIR) waveforms or received
signal strength (RSS) [20] signals as input. However, these
measurements are not used by some TOA-based localization
methods and also unavailable for some UWB devices. There-
fore, these signals are not considered in this paper. In this
paper, we can recover high-accuracy distance information
with raw ranging measurement by the proposed deep network
and training strategy.

III. PROPOSED METHODS
A. SYSTEM OVERVIEW
Figure 1 illustrates the flowchart of our proposed deep
attention-based UWB localization network and the developed
training strategy accordingly. Firstly, we design an embed-
ding module to project raw ranging measurements into a
vector where the positional embedding is also contained
based on the anchor positions encoding the geometric infor-
mation. Then, the embedded measurements are fed into a
transformer encoder module to learn their high-level spatial
features. In this process, the weights of different measure-
ments are considered through the attention mechanism. Next,
the extracted spatial features are delivered into independent
deep gate recurrent unit (GRU) [21] modules to learn the tem-
poral features of the measurement sequence efficiently. After
that, we design two independent regression layers to estimate
the tag positions and distance information respectively based

FIGURE 1. Flowchart of the proposed deep attention-based UWB
localization network and the designed training strategy: transformer
encoder module is introduced to consider the weights of different
measurements in localization and extract high-level spatial features,
while deep GRU modules are utilized to extract the temporal features of
continuous measurements. Besides, positional encoding with anchor
positions is contained in the embedding process. Finally, in the training
process, three losses are designed and minimized jointly.

on the output of the deep GRU module. Finally, a supervised
learning strategy combing the pre-collected ground-truth and
the geometric constrains are designed to train the proposed
network. In the following parts, we will elaborate on the
architecture of the proposed network and the designed train-
ing strategy, respectively.

B. MODEL ARCHITECTURE
1) INPUT
The input of the proposed network is defined as Input =

(d1, d2, . . . ,dM ), where d i includes 10 continuous measured
distances between the tag and i-th anchor, while M is the
number of anchors. We utilize 10 continuous ranging mea-
surements, since they can contain enough useful information
for estimating positions and distances. In addition, the length
of the input sequence is set as 16, due to the utilization of deep
GRU module.

2) EMBEDDING
The process of the embedding module is shown in Figure 2.
For the input d i, it is mapped to D dimensions (FeaI i)
though a linear layer, while the position of i-th anchor
Ai is also mapped to D dimensions (FeaAi) by another
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FIGURE 2. The process of the embedding.

linear layer as follows:

FeaI i = FC1 (d i) i ∈ [1, 2, . . .M ] (1)

FeaAi = FC1 (Ai) i ∈ [1, 2, . . .M ] (2)

where FC1 (•) represents one fully-connected layer with
ReLU function.

Then, these two mapped vectors are added, yielding the
output of the embedding modules (Ei) as follows:

Ei = FeaI i + FeaAi i ∈ [1, 2, . . .M ] (3)

Through this process, the features of input signals are
extracted coarsely through the linear layer. Furthermore, the
geometric information contained in the anchor positions is
embedded into the input signals.

3) TRANSFORMER ENCODER
In this work, we utilize four transformer encoder layers [22]
to extract deep spatial features of the embedded measure-
ments as follows:

xT = TRFME4 (E1,E2, . . . ,EM ) (4)

where TRFME4 (•) represents four transformer encoder lay-
ers, ×xT ∈ RMD is the extracted spatial features of input
signals.

The architecture of one transformer encoder layer is shown
in Figure 3. The core of the transformer encoder is the
multi-head attention (green block in the figure). Through
this mechanism, the weights of different embedded mea-
surements are calculated based on the relationship between
different inputs, while the input signals are fused based on
these calculated weights [22]. Thus, the weights of different
UWB measurements can be considered by the transformer
encoder layer.

FIGURE 3. The architecture of a transformer encoder layer. The core of
this module is the multi-head attention process which assigns different
weights to different measurements.

Besides, the addition and normalization layer, feed forward
layer and residual connection strategy are utilized in the trans-
former encoder to handle the vanishing gradient and ensure
the generalization ability of the network.

4) DEEP GRU AND REGRESSION LAYERS
We build deep GRU modules to learn temporal features of
the measurements efficiently, since GRU obtains promising
accuracy with lower computational complexity compared to
the other RNN structures [21]. After that, we design the
regression layers to estimate the distances and tag positions,
respectively.

For regression of the tag positions, we first flatten xT as 1D
vector, and make use of a linear layer to handle it as follows:

xF,j = FC1
(
F

(
xT ,j

) )
, j ∈ [t − s+ 1, t − s+ 2, . . . , t]

(5)

where F (•) represents flatten process. s is the length of the
sequence of the deep GRU module, while t is the current
timestep.

Then, the tag positions are estimated by the deep GRU and
the regression layers as follows:

xp,t = GRU3
(
xF,t−s+1,xF,t−s+2, . . . ,xF,t

)
(6)

p̂t = D
(
FC1

(
xp,t

) )
(7)

where GRU3 (•) represents three GRU layers. D (•) rep-
resents one dense layer without active functions. p̂t is the
estimated tag positions at timestep t.

For regression of the distance information, we first divide
xT ∈ RMD as xT ,i ∈ R1D, where i ∈ [1, 2, ..M ], and each xT ,i
is delivered into a deep GRU module with regression layer to
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learn its own features for predicting the distance between the
tag and i-th anchor:

xd,i,t = GRU3
(
xT ,i,t−s+1,xT ,i,t−s+2, . . . ,xT ,i,t

)
(8)

d̂t,i = D
(
FC1

(
xd,i,t

) )
(9)

where xd,i,t is the extracted spatial-temporal features of rang-
ing measurement between the tag and i-th anchor at timestep
t. d̂t,i is the estimated distance information between the tag
and i-th anchor at timestep t.

Finally, we discuss the situations when the number of
measurements does not match the input size of the proposed
network. On one hand, in the situation that the number of
anchors in a scenario is different with the trained network,
the model architecture does not require any changes, but
the input size of the network needs to be changes as the
number of anchors in that scenario, and the whole network
needs to be retrained. In addition, if the anchor positions are
changed in a scenario, the proposed network also needs to
be retrained with the re-collected ground-truth. On the other
hand, in the situation where the signals of a few anchors are
lost sometimes, we impose zero padding on the input and do
not change the length and order of the input signals. For the
transformer encoder, the mask matrix is utilized to mask the
unavailable data. For the deep GRU modules, zero padding
is also imposed on the output of the transformer encoder to
ensure the fixed dimensions of xT , while we also mask these
padded zero vectors for the distance regression.

Through this designed network, the high-level spatial-
temporal features can be extracted, while the weights of
different rangingmeasurements can be calculated. As a result,
the large measurement noise can be suppressed, while the
biasedmeasurements with large noise can bemasked. In addi-
tion, the anchor positions containing geometric information
is also introduced to the network in the position embedding
process.

C. TRAINING STRATEGY
In this work, we employ the supervised learning strategy
combing geometric constraints of UWB sensors for model
training. To this end, we design three losses, namely posi-
tional loss, distance loss and geometric loss in our cost
function. The details of these losses will be provided in the
following parts.

In terms of the geometric loss Lg, it is designed to introduce
geometric constraints into the proposed network. Following
the geometric-based localization approaches [4], we build the
geometric constraint that the measured distances equal to the
distances between the tag positions and each anchor position.
Mathematically, the geometric loss is formulated as follows:

Lg =

M∑
i=1

∣∣∣d̂t,i − ∥∥p̂t − Ai
∥∥
2

∣∣∣ (10)

where Ai is known and fixed position of i-th anchor, while
p̂t is the estimated tag positions at timestep t produced from

FIGURE 4. The structure map of the experimental field. The black lines
indicate the walls, while the grey rectangles illustrate the furniture. The
black points represent the anchor positions. The blue line illustrates the
trajectory of sequence 3.

the proposed network. Meanwhile, d̂t,i denotes the estimated
distance between the tag and i-th anchor at timestep t , andM
is the number of anchors.

Besides, since the estimated tag location and distances are
simultaneously generated from our network, the ground-truth
positions as well as the ground-truth distances need to be pre-
collected, such that the positional loss Lp and distance loss Ld
are established as follows:

Lp =
∥∥pt − p̂t

∥∥
2 (11)

Ld =

M∑
i=1

∣∣∣dt,i − d̂t,i
∣∣∣ (12)

where pt and dt,i are the ground-truth position and distance
of frame t , respectively.
In this study, we minimize these three losses together,

leading to the complete cost function defined as follows:

L = γ1Lg + γ2Lp + γ3Ld (13)

where γ1, γ2 and γ3 are weight parameters of these three
losses.

Through this cost function, we can leverage the conven-
tional supervised learning strategy for training our network
with the pre-collected ground-truth positions and distances.
In addition, the geometric relationship between the estimated
tag location and distance information is characterized by
the geometric loss. Thus, the geometric constraint of the
TOA-UWB localization is introduced into the proposed net-
work, which significantly benefits the training accuracy and
the localization performance.

IV. EVALUATION
A. EXPERIMENTAL SETTINGS
In order to evaluate the performance of the proposed methods
in a complex indoor environment, we carry out real-world
experiments in a 10m × 9m narrow and complex apart-
ment scenes. Figure 4 illustrates the structure map of the
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FIGURE 5. Two images of the apartment environment.

experimental field, while Figure 5 shows two images of the
environment. It can be observed that this is a narrow indoor
scene with walls and different furniture. Besides, people
move in this environment sporadically during the experi-
ments. Thus, the signals between tag and anchors will be
blocked (NLOS situations), while the multipath effect will
also affect the accuracy of rangingmeasurements. In addition,
in the Figure 4, we also give the trajectory of sequence 3
(bule line) as an example, it shows that at any point on
this trajectory, there are always several anchors in NLOS
condition.

The UWB sensor involved in this experiment is the
LinckTrack-S which can measure the distances between a tag
and an anchor within 80m with a measurement frequency
at 100Hz. The UWB tag mounted on a mobile robot, and
we control the robot move randomly to collect experimental
data during the experiments. Besides, a 32-line LiDAR (RS-
Helios-5515) is also mounted on the robot which is used
to provide ground-truth positions with stable and cm-level
localization method LOAM [23]. In addition, for the ground-
truth distances, it can be calculated based on the ground-truth
positions and the pre-calibrated anchor positions.

In terms of the competing method, CNN-LSTM method
with pure distance information [12] is involved in our com-
parative studies, because it achieves state-of-the-art localiza-
tion results in the complex environments, while it also learns
the spatial and temporal features of the rangingmeasurements
similar to the proposed method. In addition, ablation studies
are also conducted to further explore individual modules in
our proposed method. We do not choose other competing

TABLE 1. Situation of each sequence in the experiments.

methods, since even the state-of-the art geometric-based
methods cannot achieve reliable localization results in this
environment, while the performance of other learning-based
methods is significant worse than the selected CNN-LSTM
method.

For performance measure, the commonly used absolute
trajectory error (ATE) [24] of the positions are used for the
metric to evaluate the localization accuracy.

In implementation, the proposed method is achieved with
Pytorch. The Adam algorithm [25] is used as the optimizer.
The weight-decay of the Adam is set as 0.0001, and the
learning rate is set as 0.0001. In addition, the batch size is set
as 1024, while the γ1, γ2 and γ3 are all empirically set as 1.0.
Besides, the whole network is trained on a NVIDIA GeForce
RTX 3060, and it is executed on NVIDIA Jetson Orin NANO
in real-time for testing.

B. RESULTS
In our experiments, we totally collect 10 sequences with
one for training and remaining for testing. The situations
of the training and testing sequences are given in Table 1.
It shows that the average measurement errors of most
sequences are larger than 0.6m suggesting substantial chal-
lenges in the experiments. In these situations, the classical
geometric-based approaches cannot achieve reliable local-
ization results. Regarding the learning-based methods, the
localization results of the CNN-LSTM method and our pro-
posed method are given in Table 2.
In Table 2, the ATE of each axis, the total ATE of every

sequence and the percentage of total ATE improvement are
all presented. It shows that our proposed method improves
performance by over 40% in most sequences compared to the
state-of-the-art CNN-LSTM method, although CNN-LSTM
method can also extract the high-level spatial-temporal fea-
tures from the input ranging measurements. To be specific,
the accuracy of z-axis achieved by the two methods are
comparable since the trajectories have little displacement on
z-axis. For the other two axes, our proposedmethod can effec-
tively improve the localization accuracy, and thus obtains
better localization results.

Besides, Figure 6 and Figure 7 illustrate the trajectory
error curves of the two methods of sequence 2 and sequence
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TABLE 2. ATE of testing sequences of CNN-LSTM method and our proposed method(m).

FIGURE 6. Trajectory error curves of (a) CNN-LSTM method and (b) our
proposed method of sequence 2.

4 in x-y-plane. In these figures, it shows that CNN-LSTM
method cannot achieve reliable localization results in most
trajectories caused by large measurement noise and lack of
geometric information, while our proposed method obtains
better accuracy in almost all trajectories. Figure 8 shows the
cumulative distribution functions (CDF) of localization errors

FIGURE 7. Trajectory error curves of (a) CNN-LSTM method and (b) our
proposed method of sequence 4.

of whole testing sequences. It also indicates that our proposed
method beats the CNN-LSTM method significantly.

We attribute this improvement to the proposed two strate-
gies: the introduction of self-attention mechanism to suppress
the measurement noise and mask the biased measurements,
along with the introduction of geometric information and
constraints to consider the structure of UWB sensors. In the
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FIGURE 8. The cumulative distribution functions (CDF) of localization
errors of sequence 7: our proposed method beats the CNN-LSTM method
significantly.

next subsection, we will discuss in details the advantages of
these strategies through the ablation studies.

In addition, our proposed method can correct the measured
distance which is unavailable for other learning-based TOA-
UWB localization method. In Table 3, we give the average
error of raw measurements and the corrected distance of our
method. It indicates that out proposed method can effec-
tively correct the ranging measurements, and the correction
accuracy is related to the localization accuracy. Higher local-
ization accuracy implies higher distance correction accuracy.

C. ABLATION STUDIES
1) THE ADVANTAGE OF ATTENTION MECHANISM
In this part, we build a competing experiment to suggest the
efficiency of transformer framework. To be specific, we first
remove the positional embedding process for the transformer
encoder in our proposed network as well as the geometric
loss in the cost function. Thus, it actually replaces the CNN
module in CNN-LSTMmethod with the transformer encoder
as our method.

We give the results of CNN-LSTM method and our pro-
posed method excluding the geometric loss and positional
embedding in Table 4. It shows that although there is no geo-
metric information in our proposed method, it still beats the
CNN-LSTM method significantly since the attention mech-
anism in the transformer encoder can encode the weights
of different ranging measurements for localization, and thus
suppress the measurement noise globally for further improv-
ing the localization performance. These localization results
indicate the advantage of attention mechanism for UWB
localization.

2) THE ADVANTAGE OF GEOMETRIC LOSS
In order to suggest the advantage of geometric loss, we com-
pare the localization performance of our proposed method
containing or discarding the geometric loss in the cost func-
tion. The localization results are given in Table 5.

TABLE 3. Average distance error(m).

In the table, our proposed method with geometric loss
obtains better results than that without geometric loss in x
and y axis, and thus improves the localization performance
overall. The geometric loss can provide geometric constraints
for the learning-based TOA-UWB localization approaches
which depend on the geometric relationship between the tag
and anchors, and thus estimate the tag positions more accu-
rately. This improvement is also revealed by the experimental
results.

3) THE ADVANTAGE OF GEOMETRIC LOSS
In order to suggest the advantage of geometric loss, we com-
pare the localization performance of our proposed method
containing or discarding the geometric loss in the cost func-
tion. The localization results are given in Table 5.

In the table, our proposed method with geometric loss
obtains better results than that without geometric loss in x
and y axis, and thus improves the localization performance
overall. The geometric loss can provide geometric constraints
for the learning-based TOA-UWB localization approaches
which depend on the geometric relationship between the tag
and anchors, and thus estimate the tag positions more accu-
rately. This improvement is also revealed by the experimental
results.

To sum up, we exhibit the advantages of attention mecha-
nism, geometric loss and positional embedding process in our
ablation studies. With the help of these designed strategies,
our proposed method can improve the UWB localization per-
formance significantly in a complex environment compared
to the existing state-of-the art method.

D. COMPUTATIONAL COMPLEXITY
Finally, we discuss the computational cost of the proposed
method. For the testing process, the whole network is run on
NVIDIA Jetson Orin NANO. The average time cost of the
whole testing sequences is about 0.004s/sample, while the
sampling frequency is 10Hz. Hence, it can be executed in
real-time for testing.

In addition, compare to the traditional methods, the deep
learning-based methods require another training process.
In terms of our proposedmethod, thewhole network is trained
on one NVIDIA GeForce RTX 3060. The average training
time is about 1.1s/epoch with 8883 training samples, and
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TABLE 4. ATE of testing sequences of CNN-LSTM method and our proposed method without the geometric loss and positional embedding (m).

TABLE 5. ATE of testing sequences of our proposed method with and without the geometric loss (m).

TABLE 6. ATE of testing sequences of our proposed method with and without the positional embedding(m).

we train a total of 2000 epochs in the experiment. Thus, the
whole training time is about 37minutes. Consider that for an
application environment, the training process only needs to be
executed once. This training cost can be accepted in practical
applications.

V. CONCLUSION
In this paper, we propose a self-supervised deep location and
ranging correction method improving the localization accu-
racy compared to state-of-the-art classical approaches with
desirable computational complexity. In this method, we fuse
the classical approach with the self-supervised learning-
based method through the estimation of the location and
ranging corrections with designed deep network. The greatest
advantage of our method is the self-supervised learning strat-
egy based on the topological structure of UWB sensors. This
strategy removes the requirement of ground-truth collection,
and thus our method can use the deep measurement features

without the ground-truth. Consequently, our approach facil-
itates real-world applications and can achieve a desirable
localization result. The advantages of the proposed method
are also suggested through the real-world experiments with
different UWB devices in different environments.

Although the proposed method improves the localization
performance in complex environments, it requires the process
of retraining in different scenes with different number of
anchors. Thus, in the future work, we consider to further
design more transferable model architecture which can adapt
to different number of anchors. In addition, we also consider
to propose the self-supervised training method to make the
training process does not require to collect the ground-truth,
and thus the retraining process will become more convenient.
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