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ABSTRACT This study presents a fully automated image informatics framework. The framework is
combined with a deep learning (DL) approach to automatically predict visual acuity outcomes for people
undergoing surgery for idiopathic full-thickness macular holes using 3D spectral-domain optical coherence
tomography (SD-OCT) images. To overcome the impact of high variation in real-world image quality on
the robustness of DL models, comprehensive imaging data pre-processing, quality assurance, and anomaly
detection procedures were utilised. We then implemented, trained, and tested nine state-of-the-art DL
predictivemodels through our designed loss function withmultiple 2D input channels on the imaging dataset.
Finally, we quantitatively compared the models using four evaluation metrics. Overall, the predictive model
achieved aMAE of 6.47 ETDRS letters score, demonstrating high predictability. This confirms that our fully
automated approach with input from seven central SD-OCT images from each patient can robustly predict
visual acuity measurements. Further research will focus on adapting 3D DL-based predictive models and
the uncertainty of 2D and 3D DL-based predictive models.

INDEX TERMS Image analysis, machine learning, optical coherence tomography, visual acuity measure-
ment.

I. INTRODUCTION
Idiopathic full-thickness macular holes (MHs) form sec-
ondary to age-related abnormalities of the vitreoretinal
interface with a prevalence of up to 3 in 1000 people over the
age of 55 [1]. They appear as a small dehiscence in the neu-
rosensory retina at the centre of the fovea, a highly specialised
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part of the human retina responsible for fine acuity and colour
vision [2]. Today’s technology allows ophthalmologists to
diagnose, classify and measure MHs using spectral-domain
(SD) optical coherence tomography (OCT) scans. OCT is
a non-invasive, high-resolution imaging technique that uses
infrared light to provide 3D imaging of the retina [3] (see
Fig. 1).
Macular holes can be effectively treated by closing the hole

using vitrectomy surgery. Predicting the visual outcome after
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FIGURE 1. A preoperative 2D slice of a 3D SD-OCT image of a patient’s eye with an idiopathic full-thickness macular hole and visual acuity (VA)
of 42 ETDRS letters (a), and the postoperative 2D slice of a 3D SD-OCT image after successful surgery with closure of the hole, restoration of the foveal
depression and a VA of 71 ETDRS letters (b).

surgery is important to guide the decision to operate and man-
age patients’ expectations. Several studies [4], [5], [6] have
shown that postoperative visual acuity (VA) is highly corre-
lated with preoperative VA, as well as a variety of measures of
macular hole size that can be measured on SD-OCT. Various
studies have attempted to precisely predict postoperative VA
usingmanual 2Dmeasurements ofMHs and preoperativeVA,
although their predictive ability has been limited [7]. Three-
dimensional automated image reconstruction has improved
this ability [8], [9], but there are no current standards for
shape, size, and resolution of OCT imaging data captured
by different OCT devices for this task [10]. There are also
many qualitative features and subtle alterations in retinal
anatomy, for example, associated with chronicity, which may
be predictive of acuity outcomes and that are difficult to
measure [11], [12]. Additionally, image artefacts related to
a patient’s eye movement and media opacity pose a further
challenge in developing image informatics methods [13].
Recently, some researchers have highlighted the low signal
strength of OCT devices which results in issues such as image
noises, blurriness and contrast reduction [14], [15]. Similarly,
another study expanded the analysis to include scan centring
and retinal region checks [16]. These challenges constitute
our primary motivation.

To overcome those challenges, most machine learning
(ML) and deep learning (DL) approaches have focused on
the automated classification of macular diseases, such as
age-related macular degeneration (AMD), diabetic macular
oedema (DME), and MHs from OCT images data [17], [18],
[19], [20], [21], [22]. More recently, some DL approaches
have improved the prediction of VA outcomes [23] using
OCT data [24], [25], [26]. In particular, convolutional neu-
ral network (CNN) models have achieved high performance
in OCT image analysis studies; however, there have only
been a limited number of studies investigating VA measure-
ments [23], [24], [27]. Considering the success of prominent
CNN-based networks in medicine [28], [29], [30], they used
a ResNet [31] in the [23], VGG [32] in the [33], and CBR-
Tiny models [34] in the [27] as a backbone. These studies
also presented that CNN-based networks excel in extract-
ing spatial features from OCT images. Consequently, the

implementation of CNN-based models for predicting VA
measurements has gained significant importance for the next
motivation. Subsequently, vision transformers (ViTs) [35]
have recently demonstrated great potential in assisting clini-
cians with clinical diagnosis [36], particularly in OCT image
analysis [37]. However, to the best of our knowledge, ViTs
have not yet been thoroughly applied for predicting VA mea-
surements. Since ViTs consider global context and dynamic
attention, it revealed the need for comparing standard CNN-
based state-of-art models (VGG, ResNet, Inception v3 and
DenseNet, EfficientNetV2) and ViTs in this study, acting as
another motivation.

This research presents a comprehensive image informatics
framework for predicting both the preoperative and postoper-
ative visual acuity measurements for patients with idiopathic
full-thickness macular holes using an SD-OCT image dataset
based on image preprocessing, image quality assessment,
image anomaly detection, and deep learning models-based
prediction.

The remainder of the article is organised as follows:
Section II describes related works and our contributions,
including regression models, classification models and pre-
dictive models of VA measurements based on image analysis
approaches. In Section III, the benchmark OCT imaging
dataset used in this study is introduced. Section IV sum-
marises image preprocessing, quality measurement, anomaly
detection, and the DL models-based visual acuity prediction
methodology and experimental design. Section V details the
study results, and SectionVI concludes the study findings and
provides recommendations for future research.

II. RELATED WORKS
Numerous image informatics approaches to assess macular
diseases using OCT imaging data have been proposed in the
published literature (see the summary in Table 1). As shown
in Table 1, there has been only limited research investigating
how to predict VA outcomes for specific retina diseases using
OCT imaging data. In particular, the published literature aim-
ing to predict postoperative vision for patients with idiopathic
full-thickness macular holes is particularly sparse [24], [26].
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TABLE 1. The summary of the image informatics approaches focused on assessing visual acuity using OCT imaging data.

The approaches that have been used to date are discussed in
the following selections.

A. IMAGE BASED CLASSIFICATION APPROACHES FOR
DIFFERENT RETINAL DISEASES
Zhang et al. [18] proposed a binary classification of OCT
image data based on kernel principal component analysis
(PCA) model ensembles to predict patients with AMD-
affected eyes from normal eyes. Also, a Bayesian network
classifier was introduced by [39] and then tested on the
same image dataset. Another study implemented the bag-
of-words (BoW) model by keeping the most salient points
corresponding to the top vertical gradient values calculated in
the OCT images [40]. However, this approach was limited by
relying on key points and predicting only two classes: DME
and normal eyes. Anantrasirichai et al. [19] proposed a sup-
port vector machine (SVM)-based approach to differentiate
between normal eyes and eyes with glaucoma. Similarly, [41]
used SVM to predict the presence of AMD and DME from
normal eyes using a small image data set with fewer outliers.
However, the obtained accuracy was extensively impacted by
retinal layer discontinuities caused by the disease pathology
and motion artefacts.

In addition, Lemaitre et al. [42] developed a local binary
pattern (LBP) classifier to identify AMD and DME from nor-
mal eyes. Liu et al. [43] proposed an approach using image
gradient information, LBP, and SVMwith a radial basis func-
tion (RBF) kernel as a classifier. The approach first classified
eyes as either normal or abnormal, and then was further sub-
classified into either DME, AMD, MH or normal eyes.

Motozawa et al. [20] proposed two typical CNN-based
models for classifying OCT data into AMD and normal, and
they were also able to differentiate between wet and dry
AMD. Likewise, Alqudah [21] showed that by using image

denoising and resizing and tuning a CNN model with an
ADAM optimiser, higher accuracy and lower time cost could
be achieved when classifying OCT images into five classes:
choroidal neovascularisation (CNV, a feature of wet AMD),
DME, dry AMD, drusen only (a feature of early AMD), and
normal.

Another OCT image classification approach using a deep
multi-scale CNN model was proposed by Rasti et al. [44].
The proposed model employed a prior decomposition and
new cost function to discriminate and fast-learn representa-
tive image features. The authors used the modified versions
of VGG, ResNet, and Inception models to detect normal,
AMD, and DME features. Li et al. [45] suggested a novel
DL model for predicting CNV, DME, drusen, and normal
eyes, called OCTD_Net and based on modified DenseNet
and ReLayNet models. Tsuji et al. [22] proposed a method
using a capsule neural network (CapsNet) model to classify
the same eye disorders by learning spatial information from
the OCT images.

These image informatics approaches have several limi-
tations, including (1) a limited ability to identify different
pathologies affecting the macula, such as MHs, (2) they
are typically time-consuming due to high computation costs,
whichmeans they are inappropriate for use in clinical practice
where issues may need to be resolved in real-time, and (3)
by only relying on a limited number of key points, other
essential ocular characteristics may not be noticed during the
classification tasks.

B. IMAGE BASED PREDICTION APPROACHES FOR VISUAL
ACUITY AFTER MACULAR HOLE SURGERY
1) CLASSICAL METHODS
Several authors have used regression to predict postopera-
tive VA using routinely collected clinical data. For example,
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FIGURE 2. Workflow of the proposed image informatics framework. The first stage corresponds to the input OCT image dataset and VA measurements
obtained by ophthalmologists, the second stage incorporates OCT data preparation (i.e. scaling, the centre of mass detection, and cropping), OCT image
quality analysis (i.e. noise score, blurriness score, contrast score, motion score, and brightness-darkness score) and anomaly detection. With the
obtained high-quality image dataset and labels, multiple state-of-the-art DL models are trained and optimized by our designed loss function to predict
VA measurements in the final stages.

Steel et al. [6], using logistic regression and the univari-
ate level using χ̃2 tests, achieved a model area under the
receiver operator curve of 71.72% for predicting a visual
acuity of 0.3 logMAR or better after surgery. Generalised
linear modelling has been used to predict actual acuity using
an automated multi-scale three-dimensional (3D) image
analyser of OCT scans for MHs [17]. The study shows
preoperative VA and MH height were important predictors
of postoperative VA, achieving an R-squared value of 0.45.
When preoperative vision was not included in the model
and only OCT parameters were included, the most predictive
model was 0.39. Interestingly, using only manual clinician-
measured values, R-squared was only 0.20.

Other research teams have also investigated the three-
dimensional parameters of MH using different methodolo-
gies, such as automatically calculating three dimensions
based on the sum of two-dimensional images [38]. The 3D
macular hole size parameters, such as MH volume, base area,
base diameter, and MH height, were significantly correlated
to postoperative VA (P value from 0.0003–0.011). [38].

2) DEEP LEARNING-BASED METHODS
Some recent studies were not only able to classify eye
disorders on OCT image datasets, but were also able to
predict associated VA measurements and recommend poten-
tial treatment requirements. In particular, the study by [46]
presented an end-to-end DenseNet-based model for rec-
ommending treatment options in patients with wet AMD,
where the model’s output range was low, intermediate
and high treatment requirement scores. In a further study,
Kawczynski et al. [23] proposed a ResNet-50 v2 model-
based approach that predicted the best-corrected VA (BCVA)
measurement for patients with wet AMD eyes following
treatment. BCVAmeasurement was obtained from the regres-
sion model, and considering the regression model results,
they classified higher than 69 letters and lower than 69 letters
into two classes.

The research presented in [26] assessed the ability to
predict VA in two groups of 35 people with surgically
treated MH using unsupervised DL models, including
Inception v3, VGG16, VGG19 and SqueezeNet. Similarly,
Lachance et al. [27] proposed a hybrid model classifying VA
as higher than 15 letters and lower than 15 letters. Another
study proposed amodel for predicting postoperative VA using
a typical CNN-based model [24] and four classes: class A is
higher than 85 letters, class B is between 75 and 80 letters,
class C is between 60 and 75 letters, and class D is lower than
50 letters. The prediction of postoperative VA using DL was
compared to 3 typical regression models using preoperative
clinical data. The DL model had a superior precision value
of 46% compared to approximately 40% for the regression
models.

These DL-based image informatics approaches have limi-
tations related to (1) image and label data preparation, (2) data
volume, (3) data quality, and (4) low-level model robustness
and generalisation when using a wide range of OCTmachines
at different hospitals. To address some of these limitations,
we recently presented amore comprehensive image informat-
ics framework utilising robust data preparation and anomaly
detection approaches combined with state-of-art DL models
on a closely allied OCT analysis problem of external limiting
membrane detection [11].
Contributions: This paper adds to the literature by:

• Introducing a new 3D SD-OCT imaging benchmark
dataset for 210 patients with idiopathic full-thickness
macular holes (10,339 2D slices).

• Proposing a comprehensive image informatics frame-
work to create a high-quality OCT image dataset used
for a robust deep learning-based predictive model of
visual acuity in patients following surgery with idio-
pathic full-thickness macular holes and presenting an
automated solution for non-standardised OCT datasets
(see Fig. 2). The method concludes the impact of the
following surgery by predicting visual acuity.
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FIGURE 3. A random 2D slice from one of our 3D OCT images used during
training and testing.

• Quantitatively comparing nine 2D state-of-the-art DL-
based predictive models of both preoperative and post-
operative visual acuity using four evaluation metrics by
optimizing the models with our designed loss function.
To account for the 3D nature of the eye captured in
3D OCT imaging data, multiple image slices were used
during the training phase.

III. MATERIALS
The proposed image informatics framework was designed,
implemented and evaluated on two sets of SD-OCT imag-
ing datasets, all captured using the Heidelberg Spectralis
(Heidelberg, Germany) using the same imaging protocol
at Sunderland Eye Infirmary, United Kingdom (UK) and
Rigshospitalet, Copenhagen, Denmark (see full OCT image
with fundus region Fig. 1 and without fundus region Fig. 3).
Three different Spectralis cameras were used in the UK centre
and one in Denmark. The images from the UKwere collected
as part of routine care between Jan 2017 and Jan 2021 under
UK guidelines, and their use did not require ethical approval.
The images from Denmark were obtained from a previously
published randomised controlled trial that obtained ethical
approval (protocol Number: H-4-2013-091, Rigshospitalet,
Copenhagen) and full informed consent was received from
all participants.

This study included patients with a confirmed idiopathic
full-thicknessmacular hole (onOCT)who had undergone vit-
rectomy and internal limiting membrane (ILM) peeling with
gas tamponade surgery, successfully achieved primary hole
closure (hole closure following a single surgery) evidenced
by standardised OCT imaging two weeks after surgery,
and had a best-corrected visual acuity recording at three
months (± two weeks) postoperatively. All patients were
pseudophakic postoperatively, which prevents the confound-
ing influence of cataracts on the visual acuity measurement.
Patients who were phakic before surgery underwent com-
bined phacovitrectomy if they were from the UK cohort, and
phacoemulsification and intra-ocular lens insertion surgery
one week before vitrectomy surgery if from the Denmark
group.

This study excluded all secondary holes, non-full thickness
holes, eyes with previous vitrectomy surgery and/or non-
primary closure, and eyes with other co-existing causes for
reduced vision, for example, AMD or amblyopia. This is

FIGURE 4. The distribution of OCT image sizes in X (a), Z (b), distribution
of preoperative (c) and postoperative (d) visual acuity measurements.
Image size in Y is 3.87 µm for all images.

because different medical treatments or operations might be
needed. However, the techniques could be applied to other
types of MH. For both image sets, the same standardised
imaging protocol was used, namely a high-density central
horizontal scanning protocol with 29–30 µm (microns) line
spacing in the central 15 by 5 degrees. With 27–34 µm
spacing between scans (Z -axis), there were typically 49 scans
per dataset. The captured OCT images, however, had variable
pixel widths, heights, and depths (X is from 178 to 497 px
(pixels), Y is from 321 to 776 px, and Z is from 49 to 96 px)
relating to different captured image resolutions. The pixel
resolutions of the OCT images were, therefore, between
5.04 and 12.66µm per pixel in-width, but the same resolution
of 3.87 µm per pixel in-height (see Fig. 4a and 4b).

Image dataset and clinical data on 210 eyes from
210 patients meeting the inclusion and exclusion criteria were
analysed: 67 from Denmark and 143 from the UK. The mean
age was 70 years old (range 48–84), 172 (82%) were female,
and 105 (50%) were right eyes. The mean minimum linear
diameter of the holes was 383µm, and the median duration of
symptoms was six months. All scans used 16 automatic real-
time settings, enabling multi-sampling and noise reduction
over 16 images.While capturing theOCT images, the patients
were asked to focus on a constant fixation object to minimise
eye motion as a general procedure.

Visual acuity was measured in all patients using Early
Treatment Diabetic Retinopathy Study (ETDRS) vision
charts, with testing at four metres [47]. These charts have a
group of five letters per row, with multiple rows with a reduc-
ing letter size of 0.1 logMAR per line. The VA measurement
is calculated by how many letters can be correctly read on the
chart. A score of 70 letters equates to 0.3 logMAR (or 20/40
Snellen visual acuity), whilst 35 letters equate to 1.0 logMAR
(or a Snellen acuity of 20/200). The VAs were recorded by
two experienced optometrists in a clinic unassociated with
the study and were best-corrected VAs after refraction using
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FIGURE 5. 2D mid-slices of six randomly selected 3D images, with their
calculated centres of mass (red crosses), and with their corresponding
image sizes in px and µm.

a standardised protocol. It is ranged from 5 to 83, outlined in
Fig. 4c and 4d. Our image pixel resolutions and VA measure-
ments have imbalanced distributions.

IV. METHODS
In this section, a comprehensive description of the imag-
ing data preprocessing steps, data quality assessment and
anomaly detection methods to create a high-quality standard-
ised 3D OCT image dataset for DL-based prediction of VA
were presented. This comprehensive approach significantly
improved our proposed model’s results.

A. IMAGING DATA PREPARATION
1) IMAGE PREPROCESSING
In 3D OCT images, due to ocular anatomy and acquisition
distortions, the MHs may be scaled, shifted, and oriented ran-
domly. Consequently, this causes high variability in the MH
location and resolution, as shown in Fig. 5. To deal with those
image acquisition issues, the following image preprocessing
steps were used:
• Scaling (uniform resolution): All acquired OCT images
(Fig. 5) were re-scaled across X, Y, and Z dimensions
using the following sizes (7.41 × 3.87 × 30.1 µm),
and the resulting images are shown in Fig. 6. It ensured
consistency in scale values for all OCT images.

• Intensity Weighted Centre of Mass: The MHs were
located in a range of different positions in the 3D OCT

FIGURE 6. Results of image preprocessing steps applied to images from
Fig. 5. Final image size: (452 × 204 × 49 px −7.41 × 3.87 × 30.1 µm).

image slices, as presented in Fig. 5. To centre the images
around the positions of the MHs, the pixel intensity
weighted centres of mass calculated for each dimension
as a focal point of the image were used, as shown in
Fig. 6. It was used to ensure consistency in image acqui-
sition position for all OCT images. The determining
centres of mass were also considered when selecting the
parameter for the data augmentation stage during the
training of the DL model.

• Cropping: The scaled OCT images were then centred
around intensity-weighted centres of mass (red cross)
and cropped across the X, Y, and Z dimensions to the 3D
size 452× 204× 49 px, as shown in Fig. 6). It ensured
consistency in sizes for all OCT images.

2) IMAGE QUALITY ASSESSMENT
The OCT images collected as part of routine clinical care
inevitably differed in image quality related to patient move-
ments, operator controls, and the OCT camera used. These
resulted in several image imperfections, including speckle
noise, contrast changes, and motion artefacts, which were
measured using various image quality measurement methods.
As these methods mostly have no inherent upper limit, all
features were scaled separately to a fixed range from 0 to 1.
High scores mainly denote a heightened presence of the
measured imperfection. To enable a high-quality dataset to be
selected and to optimise the DL model, these methods served
as a guide to detect and remove abnormal images. Image
quality was measured using the following evaluation metrics.

• Noise score: Noise can be a significant problem in OCT
images. Many researchers have proposed wavelet trans-
formations to assess the lower, average, and upper bound
of noise in these images [48], [49]. A wavelet-based
estimator of the Gaussian noise standard deviation was
performed, which revealed significant noise variances,
see Fig. 7.
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FIGURE 7. Spectral-domain optical coherence tomography images
demonstrating a small and large noise score.

FIGURE 8. Spectral-domain optical coherence tomography images
demonstrating blurriness and sharpness.

• Blurriness score: Another important issue was the blur
and sharpness of the OCT images. Recent studies have
suggested the use of a Laplacian operator with Gaus-
sian filters in measuring the blurriness and sharpness of
images [50], [51], [52]. The Gaussian filter is defined as
in Equation 1.

G(x, y) =
1

√
2πσ 2

e−
(x2+y2)

2σ2 , (1)

where x and y are coordinates of an image I (x, y). σ is
the Gaussian distribution standard deviation. The Gaus-
sian scale-space representation L of an image I (x, y) is
defined as in the Equation 3.

L(x, y) = I (x, y) ∗ G(x, y) (2)

where ∗ is the convolution operator. Then, a Laplacian
operator, which is expressed as the divergence of the
gradient (∇I ), and calculated for two dimensions as a
sum of the second partial derivatives in the Cartesian
coordinates:

∇
2
=

∂2I
∂x2
+

∂2I
∂y2

, (3)

This is convolved with the image, resulting in rapid
intensity changes. The variance in image intensity is then
measured, where if low it is labelled as blurry, otherwise
it is measured as sharp (see Fig. 8).

• Contrast score: The differences in the chromaticity and
brightness of any pixel and any other pixels within the
same scene represent image contrast [53]. Therefore, the
gradients of each image pixel were measured, includ-
ing their standard deviation, with marked differences in
black and white luminance.

• Motion score: Due to the movement of the eye during
OCT scanning, consideration has to be given to motion

FIGURE 9. An example of optical flow velocity vector magnitudes
between two neighbouring 2D slices in a spectral-domain optical
coherence tomography image with ((a) - grey colour) small and ((b) -
red/blue colour) large motion.

Algorithm 1 2D Image Anomaly Candidates and Anomaly
Scores Calculation
Require: {I } //Set of 3D images
Ensure: {a}, {d} //Sets of anomaly candidates and anomaly

scores for all 2D image slices of 3D images
p← |{I }| //Number of 3D images
for i← 1 to p do
sx,y,z← |I i| //Image size for x, y, z
for z← 1 to sz do

{f iz } ← quality(I iz) //2D image quality scores
end for

end for
{f iz } ← normalise({f iz })
{aiz}, {d

i
z} ← anomaly({f iz })

artefacts. Many researchers have proposed the Horn-
Schunck optical flow motion estimation method [54],
[55], [56]. This method implements first-order deriva-
tives, allowing the velocity in the flow between sequen-
tial images to be measured with high accuracy and
resolution. The observed motion and perceived distor-
tions in the smooth flow of information on the Z-axis of
every 3D OCT image were measured, as seen in Fig. 9.
An RGB colour map was used for motion visualisation,
with grey representing lowmotion and red or blue repre-
senting high motion between any two neighbouring 2D
slices in a 3D image.

• Brightness-Darkness score: The brightness and darkness
of images are associated with perceived luminance.
Therefore, a luminance measurement was calcu-
lated [57]. Darkness is perceived if the luminance level
is low, whereas brightness is perceived if the luminance
is high.

3) ANOMALY DETECTION
To define a high-quality image dataset for training the DL-
based VA predictive models, an anomaly detection method
was used to eliminate low-quality images. This led to an
improvement in our proposed model’s results. According
to [11] and [58], although several anomaly detection methods
have been developed, unsupervised anomaly detection meth-
ods are preferred. This is because they have the most flexible
setup and do not require any labels or prior knowledge about

VOLUME 12, 2024 32917



B. Kucukgoz et al.: DL Using Preoperative OCT Images to Predict VA Following Surgery

FIGURE 10. A graph depicting the 3D OCT image anomaly detection
results: black and red points represent normal and abnormal images,
respectively. I1, I2, I3, and I4 demonstrate randomly selected 3D images
to be presented in Fig. 11.R1.4.

the dataset [59]. Methods used for unsupervised anomaly
detection include nearest-neighbour, clustering, statistical,
subspace, and classifier-based methods [58].

This study used the nearest-neighbour method based on
the local outlier factor (LOF) method. The LOF method
computes the local density deviation of the entire dataset,
showing how much a data point’s local density differs from
its neighbours. If the data has a significantly lower density
compared to its neighbours, it has a high-density deviation,
suggesting it may be abnormal. Here, the elbow method was
applied to iteratively determine the optimal number of neigh-
bours in the dataset, which was found to be 10. As discussed,
quality assessmentmeasurementswere employed for each 2D
image slice in every 3D image. Then, the quality scores were
used as input to detect abnormal and normal images by the
LOF method.

Algorithm 1 shows how the LOF-based approach deter-
mines normal and abnormal image candidates using anomaly
prediction scores d and stored in a. Where fz corresponds
to the image quality assessment measurement for each 2D
image slice Iz in a 3D image {I i}. {a} corresponds to 2D
image-based anomaly candidates and {d} corresponds to
3D image-based anomaly scores calculated across the 3D
image dataset {I }.

The distribution of normalised anomaly scores among 3D
images was visualised in Fig. 10, where the red points repre-
sent the abnormal OCT image, and the black points represent
normal OCT images. To confirm the accuracy of the proposed
anomaly detection procedure, 2D slices of the selected 3D
image samples in Fig. 10, from the best to the worst (I1, I2,
I3, and I4), are displayed in Fig. 11 - where, red/blue colours
represent a high anomaly score, and a grey colour represents
a low anomaly score.

FIGURE 11. The best to worst 2D slices from 3D spectral domain optical
coherence tomography images indicated as I1, I2, I3, and I4 in Fig. 10.

B. DEEP LEARNING MODELS
Deep learning models, as an established but still contin-
uously advancing technology, have significantly improved
disease screening through medical imaging [27], [29], [60].
Numerous deep neural networks have been developed to
classify, segment and predict various diseases since they have
achieved comparable performance to human experts [28],
[36]. To provide a comprehensive overview, nine well-known
and state-of-the-art 2D DL-based predictive models were
implemented, trained and tested in this study. The input to
typical 2D convolutions is C * H * W, where C is the number
of input channels, H is the height, and W is the width.
The kernels move in two dimensions. In this study, the first
convolutional layers were changed to feed the following DL-
based predictive models with the input channels of single (1)
and multiple OCT image slices (3, 5, 7, 9, 11, 13, 17, 19, and
21) since it led to better results:

1) VISUAL GEOMETRY GROUP (VGG)
The VGG model [32], consisting of 5 groups of convolution
layers and 1 group of a fully connected layer, provided the
feature extraction process in the OCT images. During train-
ing, the input OCT image is propagated through convolution
layers using 3 × 3 kernel-sized filters and a stride of 2.
Although excessive depth can be computationally expensive
and time-consuming, the most relevant salient features are
extracted, including edges, corners, and interest points. In this
study, this model was selected for its relatively small filter
size compared with other models. VGG-based models with
11 and 19 layers were used.

2) RESIDUAL NEURAL NETWORK (RESNET)
The ResNet is composed mainly of 5 groups of residual
blocks and one fully connected layer [31]. These residual
blocks were used to combine the information from the OCT
images across multiple time points of the initiation phase.
These residual blocks also link each other with skip connec-
tions. With this cross-layer connectivity, the convergence of
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deep networks is sped up. Thus, it prevents the problem of
a diminishing gradient and provides a robust model against
over-fitting in this study. The model used a 7×7 kernel-sized
filter and a stride of 2 in the first convolution layer. ResNet-
based models with 18, 34, and 50 layers were considered.

3) INCEPTION V3
To suppress the high computational complexity problems
encountered in VGG, ResNet and other mentioned models,
the Inception v3 model with different kernel sizes, a max-
pooling layer, and a stride, called Inception blocks, has been
proposed by [61]. Due to this, it is remarkably useful for pro-
cessing data in multiple resolutions and multilevel features,
which makes this model suitable for OCT images. The model
also overcomes high computation times by factorising the
convolution (3× 3) into asymmetric convolutions (3× 1 and
1× 3) [61].

4) DENSELY CONNECTED CONVOLUTIONAL NETWORKS
(DENSENET)
DenseNet consists of sets of convolutional layers and direct
connections from any convolutional layer to all subsequent
layers [62]. Each layer receives a piece of collective infor-
mation from all preceding layers with kernel sizes 1× 1 and
3 × 3 in a dense and uses its feature maps as input. Then,
1 × 1 convolutional layer followed by 2 × 2 average pool-
ing as the transition layers between sequential dense blocks.
Thus, our OCT image dataset has not been exposed to a
vanishing-gradient problem by showing a strengthened fea-
ture propagation during training.

5) EFFICIENTNETV2
EfficientNetV2 has recently been further introduced with
training faster and relatively smaller parameters, a new ver-
sion of the well-known EfficientNet [63], [64]. Different
from EfficientNet, EfficientNetV2 uses FusedMBConv in the
earlier stages of the network, which replaces the depthwise
convolutions (3 × 3) and expansion convolutions (1 × 1) in
MBConv with single regular convolutions (3× 3) [63], [64].
EfficientNetV2 also comes in different sizes. The large-sized
(EfficientNetV2-L) model was selected as our OCT images’
size is relatively large.

6) VISION TRANSFORMERS (VITS)
Vision Transformers (ViTs) have revolutionized computer
vision using a transformer architecture [35]. They first split
images into fixed-size patches. Each patch is linearly embed-
ded into high-dimensional vectors. Then, to retain spatial
information, positional embeddings are added to the patch
embeddings. The embedded patch vectors, along with posi-
tional embeddings, are processed through a stack of Trans-
former encoder layers. Each layer includes self-attention
mechanisms, allowing the model to capture relationships
between different patches. The output of the Transformer
encoder is typically a sequence of vectors. A classification

TABLE 2. OCT imaging data used and splitting.

head, often a linear layer, is added to obtain the final output
for tasks. These steps allowed ViTs to discern global contex-
tual information on OCT images. ViT-Base with an image
patch size of 16 among several variations (ViT-B/16) was
selected.

C. EXPERIMENTAL SETUP
This section introduces the DL models’ training and evalu-
ation details, including the k-fold cross-validation, the DL
framework, data augmentation methods, parameter selec-
tions, and the evaluation criteria used.

1) TRAINING
Following image preprocessing, image quality assessment
and anomaly detection procedures, twenty images were
excluded from the initial OCT image dataset (see Table 2)
(fifteen images - image quality assessment and anomaly
detection, five images - image preprocessing). The final 3D
OCT images used for the training were of the size of 452 ×
204×49 px. The dataset was split uniformly into training and
test sets using random five-fold cross-validation with a ratio
of 80% and 20%. Specifically, each folded cross-validation
consisted of 152 and 38 for training and testing, respectively.

Furthermore, DL models were trained using the same
image size, with the use of single and multiple OCT image
slices (1, 3, 5, 7, 9, 11, 13, 17, 19, and 21) at the first
convolutional layer, centred around the mid-slice defined by
the 3D intensity weighted centre of mass. To train the nine
DL models used, we utilised Python 3.8.10, CUDA 11.4,
cuDNN 8, PyTorch 1.9.0+cu102 running on a 64-bit Ubuntu
operating system using a 3.4 GHz Intel Core-i9 with 32 GB
of RAM and NVIDIA GTX 1080 Ti GPUwith a frame buffer
of 11 GB GDDR5X.

2) DATA AUGMENTATION
To enlarge the variety and amount of data artificially, a range
of image data augmentation techniques were employed, help-
ing overcome over-fitting issues while maintaining the data
properties that existed initially in the data. The data augmen-
tation techniques used were:

• Rotation: To estimate the eye orientation during the
scanning procedure and to define the data augmentation
range for the rotation, the orientation distribution across
the image dataset was measured and presented it in
Fig. 12. The dominant orientation is around±0 degrees,
with the rotation augmentation range between −22 and
15 degrees.
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FIGURE 12. Eye orientation distribution in the OCT imaging dataset
(a) and two sample images corresponding to the eye orientations,
−22.46◦ (b) and 15.33◦ (c), respectively.

• Vertical and Horizontal Translation: Based on the cal-
culated intensity weighed centres of mass for all OCT
images (see Fig. 6), a range of vertical and horizontal
translation augmentations were defined, ±5px for the
vertical translation (up-down) and ±8px the horizontal
translation (right-left) respectively.

• Horizontal Flip: Reversing all rows and columns of an
OCT image’s pixels allowed a mirror image OCT to
be obtained, representing a fellow eye (right for left
and left for right) and allowing the model to learn this
unpredictable variability.

• Gaussian Blur: The calculated noise scores in
Section IV-A2 were used to guide a Gaussian blur data
augmentation technique.

3) LOSS FUNCTION
The mean absolute error (MAE), the mean squared error
(MSE), and the Huber loss (HL) functions were separately
used. These functions are commonly used by the optimiser
to minimise training errors. While MAE presents the average
of the absolute differences between the actual and predicted
visual acuity, scored as ETDRS letters,MSE loss is calculated
as the average of the squared differences. HL was utilised
as a combination of the MAE and the MSE, meaning that
HL represents a quadratic behaviour for minor errors and
a linear behaviour for significant errors. Moreover, HL and
MAE are more robust to data with outliers. Minor error
values calculated by these loss functions reflect a better
model. In addition, to further improve the performance of
DL models, the HL function was also modified, considering
image quality assessment to guide the optimization. There-
fore, while the optimizer considers the predictions at the first
epochs, the model at the late epoch focuses on the model’s

robustness. The term of δ in the HL function was updated
during model training based on the anomaly scores measured
in Section IV-A3 and Algorithm 1 ({d}). A smaller δ made the
loss function more sensitive to small errors, while a larger δ

made it more robust to anomalies.

Lδ =


1
2
(y− ŷ)2 if

∣∣(y− ŷ)∣∣ < δ

δ((y− ŷ)−
1
2
δ) otherwise

(4)

where δ = {d} is the adjusted parameter of the HL function,
which could provide more robustness to anomalies.

4) PARAMETER SELECTION
The stated loss functions were optimised via the ADAM
algorithm with a fixed number of epochs (nepoch = 1000),
resulting in sufficient learning within fewer epochs in our
experiments. The learning rate was set to 1×10−5 withweight
decay (w = 1×10−5) and momentums (β1 = 0.5, β2 = 0.9),
and an automatic learning schedule were added. The DL
models were trained by dividing the dataset into 38 batches.
Lastly, the parameters of each DLmodel were saved when the
model’s performance started to decrease since this reduction
is a strong indication of over-fitting.

D. EVALUATION METRICS
To evaluate the performance of the models to predict both pre
and postoperative visual acuity, this study used the following
metrics: R-squared, root-mean-square error (RMSE), mean
absolute error (MAE), and the Pearson correlation coeffi-
cient. The R-squared value ranges from 0 to 1, with a higher
value indicating a better fit between the predicted and actual
values. RMSE and MAE values show better performance
when they are closer to zero. Pearson correlation coefficients
range between −1 and +1. A value of −1.0 shows a perfect
negative correlation, whilst + 1.0 shows a perfect positive
correlation. A zero correlation shows no relationship between
the predicted and actual values. These four metrics were used
to allow a comprehensive comparison with previous studies
in the literature.

V. EXPERIMENTAL DESIGN AND TEST RESULTS
This study presents results for both preoperative and post-
operative visual acuity. Preoperative visual acuity is known
before surgery, but we were interested in assessing the
model’s performances for both measurements. To ensure the
preoperative VA models were trained using the same data set
as the postoperative VA models, data augmentation methods
and model parameters for both tasks were kept the same.
However, five-fold cross-validation set-up were not kept the
same, where each fold contained 152 and 38 OCT images
as training and testing data sets, as the preoperative and
postoperative VA measurements had different distributions.
The modified HL function performed better than the other
mentioned loss functions; therefore, this study represented
the results of optimizing the modified HL function.
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TABLE 3. The mean absolute error values, based on preoperative VA measurements, were obtained for nine state-of-the-art DL predictive models using a
different number of OCT image slices through our designed loss function (the best results are highlighted in bold). All evaluation metric values are given
as the means and standard deviations obtained using five-fold cross-validation.

TABLE 4. Quantitative comparison of nine state-of-the-art DL predictive
models with seven OCT image slices, using four different evaluation
metrics through our designed loss function, as the means and standard
deviations obtained with five-fold cross-validation, based on
preoperative VA measurements (the best results are highlighted in bold).

A. RESULTS BASED ON PREOPERATIVE VA
Table 3 shows the quantitative comparison between our
trained DL models using a different number of OCT image
slices, using MAE as the evaluation metric. All evaluation
metric values are the means obtained using five-fold cross-
validation. Statistically significant results are highlighted in
bold. The obtained results clearly show that the majority of
tested DL predictive models performed best with seven OCT
image slices.

Table 4 illustrates the performance of nine DL models
using the seven central OCT image slices, with all four
evaluation metrics given as means obtained using five-fold
cross-validation. The experimental results demonstrated that
ResNet-18 was the most predictive in all scores, achieving

TABLE 5. Quantitative comparison of nine state-of-the-art DL’s best
predictive models on a uniform test dataset with seven OCT image slices,
using four different evaluation metrics through our designed loss
function, based on preoperative VA measurements (the best results are
highlighted in bold).

0.47 for R-squared, 7.34 for RMSE, 0.65 for the Pearson
correlation coefficient, and 5.96 for MAE.

Table 5 shows the performance of the nine DL’s best
predictive models on the test dataset using seven input OCT
image slices, with all four evaluation metrics: R-squared,
RMSE, Pearson correlation coefficient, andMAE. The exper-
imental results demonstrated that ResNet-18 was again the
most effective method, achieving 0.59 for R-squared, 6.67 for
RMSE, 0.73 for the Pearson correlation coefficient, and
5.25 for MAE.

B. RESULTS BASED ON POSTOPERATIVE VA
Table 6 shows the quantitative comparison between our
trained DL models using a different number of OCT
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TABLE 6. The mean absolute error values, based on postoperative VA measurements, were obtained for nine state-of-the-art DL predictive models using
a different number of OCT image slices through our designed loss function (the best results are highlighted in bold). All evaluation metric values are the
means and standard deviations obtained using the five-fold cross-validation.

TABLE 7. Quantitative comparison of nine DL predictive models using
seven OCT image slices, showing four different evaluation metrics
through our designed loss function (with means obtained by five-fold
cross-validation), as the means and standard deviations obtained with
five-fold cross-validation, based on postoperative VA measurements (the
best results are highlighted in bold).

image slices, with MAE as the evaluation metric (means
obtained using five-fold cross-validation). Statistically sig-
nificant results are highlighted in bold. The obtained results
clearly show that the majority of tested DL predictive models
performed best with the central seven OCT image slices.

Table 7 illustrates the performance of the nine DL models
using seven OCT image slices, using all four outcome met-
rics: R-squared, RMSE, Pearson correlation coefficient, and
MAE. The experimental results demonstrated that ResNet-50
was the most effective and superior in most evaluation scores,
achieving 0.46 for R-squared, 9.01 for RMSE, 0.69 for the
Pearson correlation coefficient, and 6.84 for MAE.

Table 8 shows the performance of the nine DL models on
a uniform test dataset using seven input OCT image slices

TABLE 8. Quantitative comparison of nine state-of-the-art DL’s best
predictive models on a uniform test dataset with seven OCT image slices,
using four different evaluation metrics through our designed loss
function, based on postoperative VA measurements (the best results are
highlighted in bold).

with all four evaluation metrics. The experimental results
demonstrated that ResNet-50 was again the most effective
and superior in most evaluation scores, achieving 0.52 for
R-squared, 9.23 for RMSE, 0.71 for the Pearson correlation
coefficient, and 6.47 for MAE.

In Fig. 13 and 14, we show descriptive results for the rela-
tionship between ground truth and predicted VA values and
corresponding confidence intervals to show how close our
best-trained model was able to predict VA values on the test
dataset. Overall, the results confirm that our proposed fully
automated image informatics framework can robustly predict
both preoperative and postoperative visual acuity measure-
ments for patients with idiopathic full-thickness macular
holes using a high-quality SD-OCT image dataset.
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FIGURE 13. The scatter plot visualises the relationship between the
ground truth and predicted postoperative VA measurements obtained by
the ResNet-50 model on the test dataset (the highlighted result in
Table 8). The red dotted line depicts the gold standard.

FIGURE 14. The 95% confidence interval between the ground truth and
predicted postoperative VA values is shown with the red dotted lines
(-8.02, 6.46) obtained by the ResNet-50 model on the test dataset (the
highlighted result in Table 8). The solid red line depicts the gold standard.

VI. DISCUSSION AND CONCLUSION
Wepresent a full image informatics approach to predict visual
acuity outcomes in people undergoing surgery to treat MHs
using preoperative SD-OCT images and deep learning-based
predictive models.

To overcome the impact of high variations in real-world
image quality on the robustness of the deep learning model,
an extensive imaging data assessment and quality assurance
procedure was implemented. Data preparation steps, includ-
ing scaling, centre of mass detection, and cropping, were used
to unify the imaging dataset’s scale, size and centration. Fur-
ther, data quality assessment measurements, including noise,
blurriness, contrast, motion, and brightness-darkness scores,
were calculated to identify and exclude abnormalities in the
imaging dataset.

The resultant high-quality imaging dataset was then used to
train nine state-of-the-art 2D deep learning-based predictive
models for both pre and postoperative VA using multiple
channels (2D+), followed by a quantitative performance
comparison with our designed loss function.

All tested models were able to predict preoperative visual
acuity with less than an 8.78 MAE letter score, with the best
predictive model achieving a 5.96 MAE score with 0.47 for
R-squared, 7.34 for RMSE, 0.65 for the Pearson correlation
coefficient. Similarly, all tested models were able to predict
postoperative visual acuity with less than an 8.95 letter MAE
score, with the best predictive model achieving a 6.84 MAE
score with 0.46 for R-squared, 9.01 for RMSE, 0.69 for the
Pearson correlation coefficient.

The CNN-based backbone networks mostly demonstrated
high predictive performance, as evidenced by their compet-
itive results in predicting preoperative and postoperative VA
measurements. The reason might be that they leverage their
inherent ability to analyse hierarchical features for complex
structure analysis on OCT images [65]. Another might be
that they likely recognize patterns regardless of the location
of relevant structures in the input OCT image [66]. On the
contrary, a certain standard has not been achieved regarding
robustness when the number of input channels is altered.

In addition, the ViTs model did not perform as effec-
tively as the CNN-based state-of-the-art models. This is likely
because the ViT-based models improve training efficiency on
large-scale datasets [35]. However, our dataset is relatively
small. Furthermore, the ViTs come with expensive overhead,
causing large parameter sizes [35], [67]. Hence, it is a com-
putationally expensive and time-consuming process. On the
contrary, the ViT models presented more robust performance.
This is also because the ViT-based models may incorporate
attention mechanisms to focus on the most relevant part of
images and disregard irrelevant noise [36]. However, the
introduction of redundant information and insufficient spar-
sity can impede the improvement of robustness in ViT-based
models, leading to performance degradation [68].
As a result, ResNet architectures show slightly better

results among nine state-of-the-art DL models. One of the
reasons might be that it has residual blocks, leading to
fewer vanishing problems. Additionally, ResNet-50 obtained
the best results, which may be due to a deeper architec-
ture and having a bottleneck. Overall, the prediction of
preoperative visual acuity had better performance than post-
operative VA in most of the metrics. As other studies have
shown, however, preoperative VA is strongly correlated with
postoperative VA.

Although other studies have reported similar results for
the important and informative prediction of postoperative
VA [17], [23], [24], our study provides more robust results,
as we validated our results using an independent data set.
Indeed, our best model achieved the highest metrics in all
evaluation scores, achieving 0.52 for R-squared, 9.23 for
RMSE, 0.71 for the Pearson correlation coefficient, and
6.47 for MAE, as shown in Table 1. These compare
very favourably to previous traditional regression modelling
methodologies. Furthermore, while the predictive model was
trained on a limited dataset acquired by only one type of OCT
imaging system, albeit in two hospitals and four different
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devices, the proposed 2D DL-based predictive approach con-
tains a comprehensive image informatics framework with our
designed loss function that can be applied across a breadth of
many 3D medical image datasets.

To overcome those limitations, our future research work
will focus on adapting full 3D deep learning-based predictive
models, the uncertainty of 2D and 3D DL-based predictive
models, and a substantive scale-up of the OCT imaging data
size and types.
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