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ABSTRACT Accurate, reliable, and fast intelligent detection of leather surface defects has become an
important subject in industrial inspection, which aims at improving production efficiency and increasing
automation levels. This work focuses on the rapid defect recognition and localization of leather surface
defects for industrious applications, which is based on the state-of-the-art real-time detection model YOLO.
Three experimental Schemes with different challenges were designed to find the optimal YOLO-based
leather surface defect detection scheme. Typical tanned leather surface defect images from the factory
were collected, which are comprised of eight types of defects, namely rotten surface, hole, scratch, crease,
healed injury, bacterial injury, growth line, and pinhole, which exhibit variations in shapes, sizes, and colors,
reflecting the various characteristics found in tanned leather defects. A comprehensive and in-depth review
of the YOLO series of models is presented, including YOLOv1 to YOLOvVS. The systematic and extensive
experiments were conducted,which indicate that the YOLO models can simultaneously detect multiple types
of defects present in each leather image. The multi-defect detection task achieved a maximum of 52.3%
mean average precision (mAP), 58.2% precision, and 68.7% recall. For single-class detection tasks, the
highest performance reached 85.1% mAP, 90.9% precision, and 81.8% recall. These works provide feasible
intelligent solutions for surface defects in the leather industry, laying a solid foundation for the design and
development of new solutions for leather defect detection.

INDEX TERMS Leather, defect detection, YOLO, deep learning.

I. INTRODUCTION tleneck in leather product manufacturing. Global economic

Under the driving of intelligent manufacturing, automa-
tion, and intelligent technologies are rapidly being applied
in industrial product inspection. In the leather and leather
product manufacturing process, traditional surface defect
inspection and grading still heavily rely on manual inspec-
tion by personnel, requiring extensive judgmental experience
and capabilities. Manual inspection struggles to maintain the
stability and consistency of leather surface defect detection
[1], and is highly inefficient. This has become a potential bot-
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pressures and social development are compelling the reform
of these inefficient production processes. Enterprises urgently
need to enhance automation and intelligence levels in leather
surface quality inspection to address challenges from all
directions. Therefore, intelligent inspection of leather surface
defects has become a significant topic in industrial inspection.

Leather surface defect detection is a typical object detec-
tion task, involving the localization of defects and identifica-
tion of their respective categories. In the past two decades,
intelligent machine vision systems have been the core of
industrial inspection and monitoring, and have been widely
used in product surface defect detection. Many machine
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vision-based technologies have been developed and applied
to leather surface defect detection. These methods can be
mainly divided into three categories: methods based on clas-
sical image processing techniques, machine learning methods
using handcrafted features or shallow learning techniques,
and methods based on deep learning [2]. Although since the
1990s, both domestic and international scholars, as well as
automatic detection equipment suppliers, have been paying
attention to the automatic detection of leather surface defects
based on machine vision, many enterprises still rely on
traditional manual defect inspection and grading. Some com-
panies have achieved semi-automation with partial human
involvement, but a truly fully automated defect detection
system for leather surface defects has not been realized in
practical applications. The presented achievements are often
confined to self-defined and collected leather defect data,
leading to insufficient generalization. There have been rela-
tively few studies that have deeply researched this field. Very
few studies consider the real-time requirements of leather
surface defect detection. To address the challenges in the field
of leather surface defect detection, it is necessary to conduct
further in-depth research.

In practical applications, leather surface defect detec-
tion often requires simultaneous localization and recognition
tasks. Most existing work either focuses on identifying
the types of surface defects in leather or only segmenting
leather defects.This work aims to particularly explore defect
detection technology that combines defect recognition and
localization on leather surfaces. The YOLO series models,
as the state-of-the-art one-stage end-to-end object detection
algorithms, have been widely used in the field of real-time
object detection. However only a few literature reported they
are applied to leather surface defect detection, and there is
a lack of in-depth systematic comparison and evaluation for
this field. Considering the outstanding performance of YOLO
models in real-time object detection, this work focuses on
evaluating the performance of the YOLO series model [3],
[4], [5], [6], [7], [8], [9], [10], including YOLOV5-YOLOVS,
in leather surface defect detection, aiming to answer the
following several questions:

(1) How is the performance of the YOLO series models in
the field of leather surface defect detection from the first ver-
sion V1 to the latest version V8 currently released? Do they
meet the real-time requirements for leather surface defect
detection?

(2) What are the challenges in the field of leather surface
defect detection?

Il. RELATED WORK

Since the 1990s, traditional image processing methods such
as edge detection [11], threshold segmentation [12], [13],
leather texture analysis techniques [14], wavelet transform
[15], and image saliency analysis [16] have been applied
to leather surface defect detection and have shown some
effectiveness in reported datasets. However, these algorithms
often require multiple thresholds for various defects and

VOLUME 12, 2024

are highly sensitive to lighting conditions and background
colors. When faced with a new problem, these thresholds
need to be adjusted, or these algorithms may need to be
redesigned. Furthermore, the testing datasets are relatively
small and lack diversity in defects, and they do not consider
the dynamic changes in leather defects. As a result, it is
challenging to ensure the generalization performance of these
algorithms [2].

A large number of machine learning methods have also
been used for leather surface defect type recognition, with a
focus on identifying the types of defects [15], [17], [18], [19],
[20], [21]. However, most of these approaches were tested
on custom small local datasets, lacking comparable bench-
marks and comprehensive evaluations. Their work mainly
focused on defect presence or recognition of a few defect
types, without considering the other crucial task of defect
localization in object detection. They also did not address the
issue of dynamic changes in leather defects, leading to limited
generalization capabilities of their models. The stability and
effectiveness of their methods need to be evaluated on various
types of defects in real-world leather samples in an industrial
environment, indicating limitations in practical applications.
In our early research [2], [40], various image processing
methods based on edge detection and threshold segmentation,
as well as traditional machine learning approaches, were
developed for leather surface defect detection. However, the
overall performance of these methods was not satisfactory.
While the traditional machine learning methods achieved
approximately 80% defect recognition accuracy in simple
application scenarios, their accuracy rapidly declined when
dealing with more complex scenarios.

Aslam et al. [22] believes that deep learning holds great
promise in developing new solutions for leather surface defect
inspection. Some researchers have also developed corre-
sponding solutions [23], [24], [25], [26]. Although Liong’s
team conducted an in-depth exploration, their work was
also limited to a small local dataset. Despite the use of
GAN(Generative Adversarial Network)-generated data, the
overall dataset size was still relatively small, and the variety
of defects was quite limited. In our early research, 26 deep
learning models were evaluated for leather surface defect
type recognition, including ResNet [27], GoogleNet [28],
DenseNet [29], AlexNet [30], VGG [31], SqueezeNet [32],
and Shufflenet [33], for leather surface defect recognition.
The results demonstrated that deep learning models have
promising potential in the field of leather surface defect
detection and can replace some manual labor in industrial
applications. The above work demonstrates that deep learning
models have great potential in the field of leather surface
defect detection. However, several challenges still exist:

(1) Limited data: Leather defect datasets are relatively
small and may not cover all types of defects with varying
morphologies. It is difficult to obtain large-scale datasets,
similar to ImageNet, for training.

(2) Research on the dual priority of localization and recog-
nition tasks is still rare: Leather defect detection is a target
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detection task that involves both localization and recognition.
Efficiently achieving good performance in both sub-tasks is
essential. Current achievements focus on different applica-
tions, often emphasizing either localization or recognition,
but not both with equal priority.

(3) Leather defects exhibit multiple spatial scales and
aspect ratios: Leather defects occur at various spatial scales,
and even defects of the same type can exhibit significant
variations in size and shape. The aspect ratios of bounding
boxes used for localization can also differ substantially.

(4) Class imbalance: The number of samples for different
defect classes may vary significantly, leading to class imbal-
ance issues.

(5) Real-time detection requirements: Practical applica-
tions often require real-time detection of leather surface
defects to respond promptly to production needs.

(6) This work is committed to addressing the afore-
mentioned challenges of dual priority of localization and
recognition tasks, as well as the requirement for real-time
detection by researching on the application of the YOLO
model for leather surface defect detection.

lll. YOLO MODELS
A. OVERVIEW OF MIODELS
Real-time object detection has become a crucial compo-
nent in various applications, playing a significant role in
fields such as autonomous driving vehicles, robotics, video
surveillance, and augmented reality. Among numerous object
detection algorithms, the YOLO [3] framework stands out for
its exceptional balance between detection speed and accuracy,
enabling fast and reliable identification of objects in images.
Despite the continuous emergence of approaches like trans-
form [34] and its variants that have made waves in the object
detection task, the industrial sector still widely supports the
application of the YOLO model, as it considers the trade-off
between model training cost, detection speed, and accuracy.
In terms of detection performance, the most significant
feature of the YOLO series models and their subsequent
versions is that they have fewer false positive predictions in
the background, leading to higher recall rates. This feature
makes the YOLO model particularly suitable for industrial
use. Especially for leather production companies, accurate
defect detection is crucial, and the impact of false nega-
tives is greater than that of false positives. In addition, the
YOLO model can better learn the abstract representation of
the target. They utilize information from the entire image
for prediction, rather than region based methods. Therefore,
compared with the R-CNN model [35], this model implic-
itly encodes contextual information of different categories
and shapes, thereby improving the detection performance of
abstract objects such as artworks. Since its inception, the
YOLO family has undergone several iterations, the release
timeline for YOLO series models is shown in Figure 1.
The following sections provide a detailed description of the
YOLO model by different teams.
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The detailed evolution process is shown in Table 1.
The backbone network has evolved from darknetl9 to the
improved CSPDarkNet53. The neck network has evolved
from none to incorporating the FNP (Feature Pyramid Net-
work) [36], and then to the SPP (Spatial Pyramid Pooling)
+PAN (Pyramid Attention Network). The detection head has
evolved from the initial fully connected to fully convolution
coupled detection head, and then to the advanced decoupled
detection head. The activation function has evolved from
Leaky ReLU to SiLU. Many of the ideas in these network
structures represent high-value models at the time in the field
of artificial intelligence.

Besides network architecture, the loss function is also
a significant area of research in the field of object detec-
tion. The loss function in the YOLO series models consists
of three components: confidence error loss, bounding box
regression loss, and classification error loss. Each component
contributes to the specific task’s loss, and the ideas behind
these loss functions were also at the forefront of technology
at the time [37]. The specific evolution process of these loss
functions (Binary Cross Entropy (BCE ), Mean Squared Error
(MSE), Virtual Adversarial Training Loss (VFL), and Dis-
tribution Focal Loss (DFL) is illustrated in Table 2. Indeed,
the innovations in the subsequent versions of YOLO extend
beyond network architecture and loss functions.

Since the publication of YOLOV1 in 2016, its unique and
effective innovations have attracted numerous researchers to
continuously optimize and improve its foundational struc-
ture, giving rise to the YOLO series of models. Moreover,
this trend of development is still ongoing. Many outstanding
optimization ideas within the YOLO family are still con-
sidered state-of-the-art and widely applicable. These include
various data augmentation methods, training techniques, and
more. A variety of innovative approaches in the YOLO
series complement each other, continuously improving detec-
tion performance, reducing training and inference costs, and
accelerating inference speed.

B. YOLOv5~v8

In the evolution process of the YOLO model, YOLOVS
model is a milestone achievement. Its high-quality and effi-
cient code implementation standardizes the development of
YOLO-based model. Subsequent versions of the YOLO
model have made performance improvements from different
perspectives. Therefore, in this work, we mainly focus on the
application development of the YOLOv5~v8 family in the
field of leather surface defect detection. Figure 2~5 present
their network architecture diagram.

YOLOV5: The most significant highlight of YOLOv5
model is the implementation of model pruning. There are five
different scaled versions of YOLOv5: YOLOvS5n, YOLOVSs,
YOLOvV5m, YOLOvV5I, and YOLOv5x. The implementation
of the YOLOVS largely continues the YOLOv4. However,
some optimizations have been made in the details. Substantial
feature extraction on the image in the first convolutional layer
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FIGURE 1. Release timeline for YOLO series models.
TABLE 1. The evolution process of the network structure of YOLO series models.
network structure
Model Label Allocati
ode backbone Nick Head abe ocation
I
YOLOv1 mproved -1 Fully Connected IOU threshold matching
GoogleNet
YOLOV2 darknet-19 - Conv, IOU threshold matching
anchor boxes
Conv,
h
YOLOVvV3 darknet-53 FPN anchor l?oxes, . IOU threshold matching
scale detection logic,
Multi-label classification
Conv,
YOLOv4 CSPDarkNet53 SPP, anchor b'oxes, . Class-agnostic Regression
PAN scale detection logic,
Multi-label classification
Conv,
Spp anchor boxes,
YOLOV5 CSPDarkNet53 ’ scale detection logic, GIoU threshold matching
PAN . e
Multi-label classification,
Auto Learning Bounding Box
Conv,
anchor boxes,
scale detection logic,
ELA PPSCP
YOLOv7 N, . SPPSC Multi-label classification, coarse-to-fine lead guided
MPConv, improved PAN . .
Auto Learning Bounding Box,
RepVGG style,
auxiliary Head
YOLOV6 EfficientRep Rep-PAN decoupled detection head, Task Alignment Learning
anchor free
improved : decoupled detection head, . .
YOLOVvVS8 CSPDarkNet53 PAN-FPN anchor free Task Aligned Assigner
The symbol "-" indicates that this structure is not present in this version.

is performed. The original SPP layer has been replaced with
the SPPF (spatial pyramid pooling fast) layer, which serves
the same purpose of handling features at different scales
but with reduced computational cost. Moreover, the model
incorporates the adaptive anchor box method. It analyzes the
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target boxes in the training set using clustering algorithms to
determine the statistical characteristics of target boxes with
different scales and ratios. Based on the clustering results,
anchor boxes that adapt to the target features are automati-
cally generated. These prior anchor boxes are better suited
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TABLE 2. Evolution process of loss function in models of various versions in YOLO series.

loss function

Model
Confidence error loss box regression loss classification error loss
YOLOv1 BCE MSE BCE
YOLOv2 BCE MSE BCE
YOLOvV3 BCE MSE BCE
YOLOv4 BCE CloU BCE
YOLOv5 BCE CIoU BCE
YOLOV7 BCE CloU BCE
YOLOv6 - SIoU/GIoU VFL
YOLOV8 - DFL + CIOU BCE
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FIGURE 2. The network architecture of YOLOV5.

for the network’s learning process. Furthermore, the model
adopts a domain-positive sample allocation strategy to bal-
ance the class imbalance by adjusting the weights of positive
samples.

YOLOV6: In September 2022, the team at Meituan Inc.,
led by Li et al., introduced the YOLOv6 model. This
new model not only includes improvements in the network
architecture but also incorporates many practical indus-
trial enhancements. The authors incorporated state-of-the-art
network designs, training strategies, testing techniques, quan-
tization, and optimization methods available at that time.
Additionally, they integrated their team’s practical experience
and unique insights from working with YOLO models.

The YOLOv6 model incorporates an efficient network
called EfficientRep as its backbone, which is designed based
on the RepVGG style structure. The RepVGG style structure
outperforms in hardware computational capability, memory
bandwidth, compilation optimization features, and network
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representation capability. The backbone network of the model
is not a fixed structure but depends on the model’s complexity.
For small models, RepBlock is used to construct compu-
tational blocks, while for larger models, a more efficient
CSPStackRep block is used. These blocks heavily utilize
stacks of 3 x 3 convolutional layers, making full use of
hardware computational capacity. The neck network of the
model utilizes an improved PAN structure called RepPAN,
which replaces the CSP modules in the PAN structure of the
YOLOVS model with Rep modules. The detection head of
YOLOV6 is an efficient decoupled head with a mixed-channel
strategy, inspired by the decoupled head in the YOLOX
model. The author named it the Efficient Decoupled Head.
Unlike the coupled detection head of YOLOVS, the decoupled
head of YOLOX separates the classification and regression
branches and adds two additional 3 x 3 convolutional layers
to improve accuracy. However, this brought additional com-
putational costs. To address this issue, the authors designed
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a more efficient decoupled head structure using the Hybrid
Channels strategy, which maintains accuracy while reducing
latency.

In the YOLOV6 model, there is an improvement in the label
assignment strategy, where they adopt Task Alignment Learn-
ing (TAL) [38] as the default label assignment approach.
TAL introduces a unified metric for both classification score
and prediction box quality, replacing IoU (Intersection over
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Union), to assign object labels. This new metric helps address
the problem of misalignment between the tasks of classifica-
tion and bounding box regression to some extent. By using
TAL, the model can better align the two tasks and improve
the overall performance of object detection.

YOLOV7: In July 2022, Wang et al. released YOLOvV7
model. Similar to YOLOv4, YOLOvV7 introduced architec-
tural changes and a series of “‘bag of freebies’ techniques,
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enabling the model to achieve detection speeds and accuracy
within the specific range of SFPS to 160FPS, surpassing all
known detectors at that time.

YOLOv7 model introduced a novel network architec-
ture called Extended Efficient Layer Aggregation Network
(E-ELAN) as its backbone. E-ELAN is based on ELAN [39],
which is a strategy that controls the shortest and longest gra-
dient paths to enable more effective learning and convergence
in deep models. E-ELAN is specifically designed for models
with infinitely stacked computational blocks, significantly
improving the learning and convergence performance of deep
models while preserving the original gradient paths to avoid
model degradation. E-ELAN achieves this by employing the
“expand, shuffle, and merge cardinality”’ methods to com-
bine features from different groups without disrupting the
original gradient paths, thereby continuously enhancing the
network’s learning capabilities.

In the neck network, the YOLOv7 model incorporates the
SPPCSP module and optimized PAN module. The SPPCSP
module is an extension of the SPP module, where a con-
catenation operation is added to fuse the output of the SPP
module with the feature map before the SPP operation. This
further enriches the feature information. On the other hand,
the optimized PAN module builds upon the PAN module and
adopts the E-ELAN idea, leveraging strategies like expand,
shuffle, and merge cardinality to enhance the network’s
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learning capabilities without disrupting the original gradient
paths. Significant improvements to the detection head of
YOLOvV7, the RepVGG style network structure was intro-
duced. It’s worth noting that the training model and inference
model do not share the same network architecture. During
the training process, multiple branches are used to enhance
the network’s learning capabilities. In contrast, during the
inference process, structural reparameterization is employed
to accelerate the inference speed without sacrificing
performance.

YOLOVS: In January 2023, YOLOv8 model code was
released. The overall code style and network structure of the
model also have some similarities with YOLOVS. The back-
bone network has been modified from CSPDarkNet53 by
replacing YOLOvVS5’s C3 structure with a more gradient-rich
C2f structure. Additionally, different scale models have been
adjusted with varying channel numbers, showing a carefully
tuned model architecture to enhance detection performance.
The neck network in YOLOVS utilizes the PAN-FPN struc-
ture, which is inspired by the PANet’s backbone network.
The detection head of the model adopts the decoupling head
structure of the YOLOv6 model, as well as the anchor-
free idea. Additionally, the model adopts the Task Aligned
Assigner as the label assignment strategy. For training, the
model refers to YOLOX by disabling Mosiac augmentation
in the last 10 epochs.
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(a) Cow skin

FIGURE 6. Whole-skin images.

By integrating these cutting-edge ideas and modules,
YOLOVS further improves the detection performance of the
YOLO series. On the publicly available COCO dataset, the
model achieves unprecedented heights in both detection accu-
racy and speed, making YOLOv8 become a state-of-the-art
model.

IV. EXPERIMENTAL DESIGN

A. DATA COLLECTION AND ANALYSIS

1) ULTRA-HIGH-DEFINITION WHOLE-SKIN IMAGING

There are three main characteristics of leather surface defect
imaging [40]: (1) large imaging area: a whole skin area of
up to 2mx3m; (2) small defect size: the defect area can be
as small as 150umx 150um, the maximum average diameter
of the thin spot is approximately 0.98 mm, and the minimum
average circular spot diameter is approximately 1.20 mm, and
(3) the leather surface is a textured surface and the defects are
usually hidden behind the irregular textured background of
the leather surface. Therefore, the image acquisition of leather
defects requires a large camera view and high resolution.
A high-resolution imaging system of the same literature [64]
is used to capture full-skin images and collect a large amount
of leather surface defect images from factories. The imaging
system consisted of a leather fixed platform, an ultra-high-
definition CCD camera (resolution of 8688 x 5792 pixels),
a light source, and an image processing workstation. To dis-
tinguish leather from the background, the color of the leather
fixing platform was fixed to blue after counting the color of
the leather. Figure 6 shows the original whole-skin image
samples.

2) DATA ANNOTATION AND OBSERVATION
All data came from a leather production enterprise in Guang-
dong Province, China. The collected leather defect images are
common in actual production. Combining Aslam et al.’s [22]
definition of leather surface defects, after annotation by expe-
rienced engineers in the factory, 2855 images of leather
surface defects with a size of 2268 x 4432 pixels were
obtained, including the following eight defects: cavity, pin-
hole, scratch, rotten surface, growth line, healing wound,
crease, and bacterial wound. The open-source annotation tool
called ““labelme” was used for annotating defects.

To observe the defect color, shape, and size of the collected
datasets and more intuitively express the diversity of datasets,
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(b) Sheep skin

qualitative and quantitative analyses were conducted on the
datasets. The visualized statistics of the dataset are shown in
Figure 7, depicting the distribution of data in the training set.
Growth lines, healed injuries, and bacterial injuries are the
most common types of surface defects in leather, as they have
a higher number of instances in the dataset. The size of the
bounding boxes is primarily concentrated in medium-sized
ones around the image center, with larger boxes around the
edges. Various sizes of boxes coexist, indicating that the
dataset possesses a certain degree of sample balance, effec-
tively capturing the position uncertainty and size variability
of surface defects in leather as semantic features. As shown
in Figure 7, the defect data in datasets remain diverse in
size, position, shape, texture, and color. Compared to previous
research, the collected data is not limited to a single type of
animal skin but includes both sheepskin and cowhide, and the
whole-hide imaging without any stitching operation ensures
stability and consistency.

B. EXPERIMENTAL SCHEMES

This work aims at explore a suitable leather surface defect
detection scheme based on the YOLO model. For this
purpose, three experimental schemes were designed. Corre-
sponding to these schemes, three datasets were constructed,
whose details are shown in Table 3.

Scheme I: Multi-Class Defect Detection Experiment With
Input of Large-Size Images: Here data set is made up
of 1250 leather surface images with distinct defects like
Figure 8, each sized 4032 x 2268 pixels, which is named
Dataset I. The number and categories of leather surface
defects in each image are random but ensured to have at least
one defect object per image. This dataset includes eight types
of defects, namely cavity, pinhole, scratch, rotten surface,
growth line, healing wound, crease, and bacterial wound.
In the top left corner of the figure, it shows a bar chart
representing the number of instances for each defect in the
data set. Some examples and annotations are presented in
Figure 9.

Scheme I1: Multi-Class Defect Detection Experiment With
Input of Medium-Size Images: Considering the high res-
olution of the image data in Dataset I, which brings a
significant computational burden and limits the model’s
performance, we performed another round of cropping
and obtained 10,000 leather surface defect images with a
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FIGURE 7. The data set statistics visualization.

TABLE 3. Details of datasets I ~ IIl.

Growth Healed Bacterial Rotten
Hole

Dataset Scratch Crease Pinhole Background image size Total

line injury injury  surface
° 217 111 126 218 134 109 102 149 84 4032x2268 1250
1I 353 457 1753 1113 603 1037 530 740 3414 1008x1134 10000

I The images used in each subset are the same as in Dataset II, with the only difference being that each subset focuses
exclusively on a single type of defect, while other types of defects are set as "background".

Growth line Heale nju

Hole Scratch Pinhole Rotten surface

FIGURE 8. Examples of eight types of leather surface defects.

resolution of 1008 x 1134, forming Dataset II. The distribu- in the images, but this dataset also includes images without
tion of instances in the dataset is shown in Table 3. Similar defects, referred to as ““background” images. Some examples
to Dataset I, the defective objects are randomly distributed and annotations are presented in Figure 10.
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FIGURE 9. The figures display some visualizations of annotated samples from Dataset I.

hole

crease
growth line
scratch

healed injury
bacterial injury

pinhole

rotten surface

FIGURE 10. The figures display some representative visualizations of annotated samples from Dataset Il. The
characteristic of this dataset is that the appearance of defects in each image is flexible, which includes images
without defects (e.g., the sample in the bottom left corner), images with multiple defects, and images with various

types of defects.

Scheme III: Single-Class Defect Detection Experiment
With The Input of Medium-Size Images: Both Scheme I
and Scheme II detect multiple defects simultaneously, which
poses great challenges. In practical applications, only one
type of defect is often detected at a time. Considering the
practical needs for defect detection of individual types in
industrial applications, Dataset II was further divided into
separate subsets, forming a total of 8 sub-datasets: Rotten
surface defect, Crease defect, Growth line defect, Scratch
defect, Hole defect, Healing injury defect, Pinhole defect, and
Bacterial injury defect subset. We collectively refer to these
subsets as Dataset III. The images used in each subset are the
same as in Dataset II, with the only difference being that each

VOLUME 12, 2024

subset focuses exclusively on a single type of defect, while
other types of defects are set as “‘background”.

C. EXPERIMENTAL CONFIGURATION

The experimental hardware adopted is the Inspur Yingxin
server NF5280M6 with the GPU graphics card NVIDIA A40
having 46GB of memory. The software environment was
Ubuntu 18.04 LTS operating system. All the evaluated deep
learning models were derived from PyTorch (version 1.13.0).
A total of 25 YOLO models were evaluated experimentally.
Furthermore, for each version of the YOLO model, specific
training parameters as Table 4 were configured for the fol-
lowing experiments. Considering the significant impact of
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missing defects compared to false alarms in industrial produc-
tion, the following detection metrics were selectively adopted
for evaluation:

Precision: It refers to the proportion of true positive sam-
ples among the detected positive samples. Precision = TP
/ (TP + FP), where TP represents the number of true posi-
tive samples and FP represents the number of false positive
samples.

Recall: It represents the proportion of correctly detected
positive samples among all the actual positive samples.
In other words, it measures how many of the existing targets
are detected. Recall = TP / (TP 4 FN), where TP represents
the number of true positive samples and FN represents the
number of false negative samples.

mAP: It is the average of the Average Precision (AP) for
all classes, calculated at an IoU threshold of 0.5. mAP is
commonly used to assess the performance of object detection
algorithms. AP is computed as the area under the Precision-
Recall curve.

FPS (frames per second): This value indicates how many
images the model can process per second with a batch size
of 1. A higher value indicates a faster detection speed of the
model.

V. EXPERIMENTAL EVALUATION

A. PERFORMANCE EVALUATION FOR EXPERIMENTAL
SCHEME I

This scheme mainly examines the performance of detect-
ing multiple defects simultaneously under high-resolution
input. Dataset I is characterized by a large resolution
(4032 x 2268) and a relatively small original dataset size
(1250 images). Based on Dataset I, the defect recognition
performance of a total of 10 models, including all versions of
YOLOVS n/s/m/l/x and YOLOv8n/s/m/l/x were evaluated on
high-resolution leather surface defect images. Each version
of the model varies in terms of the number of layers and
parameters.

The results of multi-defect detection are shown in
Figure 11, with the highest recall rate achieved by the
YOLOVS] model at 49.6%, and the highest precision and
mAP achieved by the YOLOvV8 model in its x and s ver-
sions, 55.2% and 47.8%, respectively. In Table 5, the defect
detection performance of all versions of the YOLOVS and
YOLOvVS8 models was presented, revealing a significant dis-
crepancy in how these models detect defects. While some
defects such as hole can achieve mAP of over 80%, others
pose more challenges, with mAP below 20%. Figure 12
displays some detection results, indicating that the models
are capable of simultaneously detecting multiple defects on
leather surface images with accurate localization and classifi-
cation. Visualizations of the Confusion Matrix for YOLOvS5I
and YOLOv8x were selected and displayed in Figure 13.

From the detection result, it can be observed that the
“hole” defect is the easiest to detect, with a maximum accu-
racy of 80%. The next most manageable defects are “crease,”
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FIGURE 11. A comparison for multi-defect detection tasks on Scheme |
for YOLOV5n to YOLOv8X.

“growth line,” and “bacterial injury,” all with accuracy
above 50%. On the other hand, the most challenging defects
are “‘scratch” and ‘“‘pinhole.” The former only achieves
16% detection accuracy, with 80% of instances misclassified
as background, and the latter achieves only 20% detection
accuracy, with 79% of instances being missed. Similarly dif-
ficult to detect are the ‘“‘rotten surface” and ‘‘healed injury”
defects, with misclassification rates above 50%. The experi-
mental results indicate that the constructed Scheme I poses
certain challenges, with higher rates of missed detections
observed for small-sized defects. The overall convergence is
smooth, and there is no issue of underfitting due to too few
samples.

B. PERFORMANCE EVALUATION FOR EXPERIMENTAL
SCHEME 1l
Can the lower detection accuracy of Scheme I be attributed
to the large image resolution in Dataset I? Is it possible that
this will limit the performance of the YOLO models? To
verify this hypothesis, Experimental Scheme II is constructed
and further experimental verification is conducted. A more
detailed evaluation of the YOLO v5-v8 models on Scheme 11,
which has a smaller resolution, was conducted based on
Dataset II. In this data set, defects are relatively larger in
size, making them more prominent and easier for the model
to detect. This smaller resolution reduces the computational
burden on the model, allowing for a larger batch size during
training, which enhances the model’s batch-processing capa-
bilities. Additionally, compared to Dataset I, Dataset II has
a significantly increased overall sample size, providing the
model with a larger and more diverse set of training data.
The specific experimental results are shown in Figure 14,
Table 6. Figure 14 presents Precision, Recall and mAP of
all models in this evaluation. Table 6 provides a detailed
listing of all experimental data in Schemell. Among these
YOLOVS models, YOLOvSI achieved the highest preci-
sion at 57.2%, while YOLOv5x obtained the highest recall
and mAP50 at 50.6% and 51.3%, respectively. Among the
YOLOV6 series of models, the YOLOV6I version performed
the best on Dataset II, with precision, recall, and mAP50
reaching 53.7%, 68.7%, and 49.9%, respectively. YOLOV7
series models did not perform well in this round of evaluation,
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TABLE 4. Some of the training parameters that were uniformly set during model training.

Model Parameter Value Parameter Explanation
epoch 300 number of training epochs
Ir0 0.01 Initial learning rate
Irf 0.2 Final learning rate ratio
momentum 0.937 Momentum for optimization
weight_decay 0.0005 Weight decay for regularization
warmup_epochs 3 Number of warm-up epochs
warmup_momentum 0.8 Momentum value during warm-up
warmup_bias_Ir 0.1 Bias learning rate during warm-up
hsv_h 0.015 Hue parameter for HSV color augmentation
hsv_s 0.7 Saturation parameter for HSV color augmentation
hsv_v 0.4 Value parameter for HSV color augmentation
translate 0.2 Range of translation for affine transformation augmentation
scale 0.9 Range of scaling for affine transformation augmentation
fliplr 0.5 Probability of left-right flipping augmentation
mosaic 1 Probability of Mosaic data augmentation
mixup 0.15 Probability of MixUp data augmentation

TABLE 5. The performance for all versions of YOLOv5 and YOLOv8 models.

Model Metrics all scratch  fold gr(?wth I.le.alled hole b.ac'terlal rotten pinhole
line injury injury surface
YOLOvV5n map 0.44 0.37 0.222 0.731 0.567 0.77 0.433 0.187 0.241
recall 0.444 0.466 0.222 0.721 0.476 0.76 0.339 0.247 0.323
YOLOV5s map 0423 0265  0.147 0.737 0532  0.795 0.487 0.189 0.232
recall 0456 0448  0.209 0.744 0405  0.801 0.475 0.233 0.333
YOLOvV5m map 0.468 0.405 0.17 0.733 0.628 0.838 0.458 0.234 0.277
recall 0467 0495  0.174 0.721 0.524 0.82 0.407 0.205 0.392
YOLOVSI map 0.466 0.443 0.129 0.727 0.693 0.864 0.359 0.228 0.288
recall 0.496 0.586 0.198 0.744 0.662 0.86 0.322 0.219 0.376
YOLOv5x map 0.47 0.481 0.169 0.718 0.59 0.841 0.411 0.224 0.327
recall 0.494 0.586 0.224 0.791 0.476 0.88 0.362 0.233 0.376
YOLOv8n map 0.466 0.455 0.174 0.773 0.683 0.809 0.418 0.193 0.211
recall 0.461 0.466 0.198 0.726 0.645 0.82 0.475 0.137 0.226
YOLOvVS8s map 0.478 0.438 0.158 0.75 0.638 0.816 0.541 0.216 0.233
recall 0487 0517  0.279 0.744 0.381 0.84 0.576 0.205 0.306
YOLOv8m map 0.448 0.433 0.112 0.707 0.576 0.833 0.402 0.266 0.252
recall 0.445 0.501 0.264 0.674 0.5 0.779 0.22 0.26 0.364
YOLOVSI map 0.463 0.48 0.119 0.736 0.587  0.839 0.395 0.221 0.326
recall 0.441 0.414 0.186 0.674 0.643 0.84 0.276 0.178 0.316
YOLOVSx map 0.477 0.463 0.203 0.684 0.687 0.823 0.458 0.198 0.297
recall 0477  0.638  0.186 0.648 0.619 0.8 0.407 0.151 0.366

with the lowest detection precision of only 50.2%. Other
metrics, including recall and mAP50, reach 54.6% and 50.7%
respectively. This discrepancy is related to the different ver-
sions of YOLOV7. The final evaluation included the YOLOvV8
series, which represents the most recent version of YOLO.
In this evaluation, the YOLOVS series models demonstrated
the best detection precision and mAP50 among the entire
series. Specifically, the YOLOv8m model achieved a preci-
sion of 58.2%, while the YOLOv8x model reached a mAP50
of 52.3%.
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Compared to Scheme 1, all evaluation indicators have
improved. It is evident that the improvement in the dataset
has led to a notable performance boost for the YOLO mod-
els. For the same model, the mAP has increased by more
than 4.5%, and the detection precision has improved by over
3%. Certain challenging defect types in Dataset I, such as
scratches and pinhole defects, achieved satisfactory detec-
tion results in this evaluation experiment. By comparing the
confusion matrices in Figure 15 and Figure 13, an overall
improvement in the detection performance on Dataset II was
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FIGURE 12. Visualization of the YOLOv8x model for detection on Scheme I.
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observed. As shown in Table 6, It is noticeable that the detec- overall rate of missed detections for all defects has decreased.

tion accuracy for most defect types has increased, and the Furthermore, some defect types have shown a significant
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TABLE 6. Detailed experimental results based on scheme II.

growth

healed bacterial rotten

Model Metrics all scratch  fold . . . hole . . pinhole
line injury injury surface

YOLOVSn map 0.44 0.212 0.316 0.543 0.424 0.646 0.394 0.415 0.676
recall 0.479 0.236 0.349 0.545 0.47 0.627 0.414 0.456 0.694
YOLOVSs map 0.47 0.179 0.377 0.553 0.456 0.681 0.393 0.435 0.683
recall 0.486 0.244 0.405 0.525 0.488 0.671 0.414 0.483 0.661
map 0.482 0.256 0.414 0.565 0.475 0.679 0.37 0.433 0.667

YOLOvV5m
recall 0.484 0.301 0.451 0.552 0.453 0.653 0.365 0.459 0.638
YOLOVSI map 0.508 0.283 0.4 0.592 0.501 0.724 0.396 0.496 0.672
recall 0.502 0.276 0.477 0.584 0.552 0.67 0.38 0.46 0.648
YOLOV5x map 0.513 0.289 0.403 0.594 0.507 0.731 0.392 0.508 0.685
recall 0.506 0.27 0.49 0.605 0.5 0.657 0.393 0.488 0.645
YOLOV6n map 0.435 0.197 0.486 0.496 0.379 0.655 0.401 0.409 0.688
recall 0.664 0.398 0.417 0.685 0.577 0.731 0.633 0.659 0.799
YOLOV6s map 0.463 0.182 0.35 0.524 0.501 0.615 0.4 0.39 0.625
recall 0.656 0.417 0.663 0.783 0.655 0.802 0.553 0.692 0.831
map 0.492 0.27 0.439 0.576 0.375 0.691 0.432 0.478 0.69

YOLOv6m
recall 0.687 0.537 0.611 0.732 0.634 0.881 0.502 0.667 0.82
YOLOV6I map 0.499 0.336 0.397 0.588 0.49 0.729 0.406 0.477 0.694
recall 0.687 0.421 0.658 0.723 0.699 0.842 0.51 0.619 0.835
YOLOV? map 0.337 0.143 0.377 0.376 0.214 0.597 0.259 0.218 0.516
recall 0.402 0.244 0.582 0.448 0.36 0.596 0.432 0.227 0.324
YOLOV7x map 0.404 0.199 0.384 0.514 0.292 0.597 0.296 0.313 0.641
recall 0.452 0.325 0.431 0.571 0.436 0.526 0.388 0.27 0.669
map 0.459 0.249 0.43 0.566 0.441 0.678 0.322 0.336 0.654
YOLOV7w6 recall 0.473 0.309 0.542 0.522 0.497 0.629 0.402 0.297 0.588
YOLOV7e6 map 0.501 0.234 0.452 0.584 0.531 0.712 0.431 0.419 0.648
recall 0.535 0.301 0.588 0.609 0.589 0.676 0.537 0.372 0.608
map 0.507 0.259 0.448 0.579 0.509 0.731 0.4 0.452 0.675
YOLOv7ebe recall 0546 0316 0536 0613 0608 0737 0512 0.366 0.678
map 0.463 0.227 0.469 0.528 0.474 0.672 0.362 0.328 0.64
YOLOv7d6 recall 0.469 0.301 0.536 0.491 0.52 0.631 0.427 0.237 0.612
YOLOVSN map 0.493 0.223 0.423 0.568 0.495 0.68 0.389 0.462 0.707
recall 0.529 0.28 0.584 0.586 0.51 0.681 0.416 0.517 0.657
YOLOVSs map 0.472 0.217 0.386 0.555 0.46 0.71 0.316 0.43 0.701
recall 0.474 0.236 0.484 0.526 0.463 0.648 0.337 0.465 0.637
map 0.498 0.301 0.424 0.582 0.492 0.666 0.372 0.441 0.709

YOLOvVSm
recall 0.482 0.285 0.484 0.516 0.445 0.606 0.391 0.458 0.669
YOLOVSI map 0.513 0.263 0.447 0.603 0.509 0.707 0.399 0.453 0.721
recall 0.521 0.293 0.497 0.609 0.541 0.706 0.411 0.442 0.669
YOLOVSx map 0.523 0.246 0.496 0.601 0.521 0.71 0.401 0.475 0.731
recall 0.521 0.333 0.529 0.59 0.522 0.685 0.404 0.424 0.681

improvement in their detection results. This indicates that
smaller-resolution images of leather surface defects are more
helpful for the model’s training process. Notably, the recall
metric of YOLOv6I was the best among all evaluated YOLO
series models, indicating its ability to better identify real
objects and minimize false negatives. This success signifies
that the model’s improvements for industrial applications
were highly effective.
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In item of the detection speed (frames per second, or fps),
all models were further evaluated. Larger models generally
provide a certain degree of improvement in detection accu-
racy but at the cost of increased training complexity, which
can lead to a decrease in detection speed. Among them,
the YOLOv8n model achieves the fastest detection speed at
101fps. The evaluation results indicate that the YOLO series
models are competent for real-time detection tasks in the
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FIGURE 15. Confusion matrix for YOLOv5I and YOLOv8x models on Dataset II.

leather inspection domain, providing valuable assistance to
human inspection processes.

To sum up, compared with Scheme 1, Scheme 2 is signif-
icantly improved. However, the overall performance of the
model series did not turn out to be as outstanding as expected.

C. PERFORMANCE EVALUATION FOR EXPERIMENTAL
SCHEME IlI

Scheme I and II both aim to simultaneously detect eight
types of leather surface defects. Numerous experiments have
shown that the YOLO series models are effective in detecting
multiple leather surface defects simultaneously, but there is
still considerable room for performance improvement, as the
challenges are quite high. In industrial applications, if reliable
intelligent detection can be achieved for a specific type of
defect, it can greatly reduce costs for the industry.

Therefore, Scheme III was designed specifically for sin-
gle defect detection on leather surfaces. When detecting a
particular type of defect, all other defects are considered as
background, allowing us to assess the YOLO model’s ability
for single defect detection.

Due to the large number of models, in this round of eval-
uation, the best-performing model (YOLOv5x, YOLOV6I,
YOLOv7x, and YOLOV8xX) of each series of YOLOvV5-v8
in terms of overall performance is selected to showcase the
results. Figure 16 presents a comparison of the YOLOvVS5x,
YOLOv6], YOLOV7x, and YOLOVS8x of this round of experi-
ments. Table 7 provides a detailed display of the experimental
results of the best-performing models in each series. The
experiments show that among the leather surface defect cate-
gories, “‘scratch,” “hole,” ‘“Healing injury,” ‘““growth line,”
and “pinhole” are the categories with higher detection scores,
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achieving scores of over 65% for all three metrics. Particu-
larly, the YOLOv8x model achieves a remarkable detection
accuracy of 90.9% and an mAP of 85% on the “pinhole”
defect dataset. The YOLOv7x model demonstrates excellent
performance on the “hole’” defect dataset, achieving a detec-
tion accuracy of 89.8% and an mAP of 85.1%. ““scratch”™ are
challenging defect type on both datasets, but the YOLOv7x
model achieves a single defect detection accuracy of 78.9%
and an mAP of 60.7%. On the other hand, the “crease’ and
“bacterial injury” defects pose significant challenges in this
dataset, with most models achieving mAP50 and recall scores
in the range of 40% to 60%. Notably, the YOLOv8x model
only achieved a recall rate of 27.7% and an mAP of 29.7% on
the “Crease” defect detection.

D. DISCUSSION

This work aims to explore the optimal scheme of leather
surface defect detection based on the YOLO model, and then
to lay the foundation for in-depth research and engineering
applications. Therefore, three schemes were designed from
different angles. Three rounds of evaluation on datasets I to I1I
were performed for not only the detection performance of
each model on individual defect types but also on multi-class
defect detection.

Figure 17 shows the performance of different models in
the three schemes in the form of a bar chart (with mAP as
the indicator). YOLOv5 and YOLOvVS8 did not perform well
enough in Scheme 1, the gap between mAP of different defect
types was large, and the total mAP was too low. As can
be seen from Figure 17, the detection performance of the
model in Scheme 2 is more stable for different defects. The
defect types with good performance in Scheme 1 still have
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TABLE 7. Detailed experimental results based on scheme Il

Model Metrics scratch fold gr(')wth 1.1e'aled hole b.ac'terlal rotten pinhole
line injury injury surface
YOLOV5x map 0.512 0.585 0.727 0.652 0.833 0.468 0.77 0.828
recall 0.552 0.655 0.706 0.65 0.758 0.459 0.705 0.745
YOLOV6l map 0.358 0.479 0.735 0.632 0.807 0.452 0.752 0.665
recall 0.529 0.535 0.71 0.6 0.655 0.515 0.686 0.818
YOLOv7x map 0.607 0.535 0.622 0.676 0.851 0.494 0.742 0.834
recall 0.483 0.581 0.602 0.69 0.752 0.548 0.792 0.722
YOLOVSx map 0.504 0.279 0.745 0.669 0.743 0.49 0.759 0.85
recall 0.513 0.277 0.619 0.591 0.682 0.514 0.679 0.704
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FIGURE 16. Comparison of the best performing models in each series of YOLOv5-v8 on Scheme III.

similar detection accuracy in the detection of Scheme 2,
while the defect types with poor performance in Scheme 1
have a significant improvement in the detection accuracy.
Scheme 3 shows a stable and excellent single defect detection
performance, which has great application potential. It can
be observed that, as the dataset changes, most of the defect
types exhibit an increasing trend in detection performance.
Particularly, there are significant improvements in the detec-
tion performance for ““pinhole” and ‘“‘healed injury” defects,
with a substantial decrease in the missed detection rate and
a significant increase in the detection accuracy. However,

VOLUME 12, 2024

the detection performance for ‘““bacterial injury’’ and *‘hole”
defects shows a decline, with better performance on Dataset |
compared to the other datasets.

The experimental findings signify the substantial enhance-
ment provided by more refined datasets to the models. These
models are capable of achieving an average improvement of
5% mAP on images with lower resolutions. YOLOv8 exhibits
commendable overall performance.

Furthermore, from the experimental data, it can be seen that
the proficiency and enormous potential of the YOLO model
in single defect detection tasks are commendable. Certain
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FIGURE 17. The graph compares the accuracy and miss detection rate among three different schemes.

specific confidences can attain around 90% mAP, whereas
multi-defect detection tasks present significant challenges
and extensive research opportunities.

Additionally, The performance of the Faster R-CNN model
was also evaluated on Dataset II, which is employed to com-
pare with the YOLO series. It only achieved an AP of 32%,
which is much lower compared to the detection effectiveness
of the YOLO series. Moreover, the Faster R-CNN model
exhibited slower detection speed and higher training cost.
This can be attributed to its weaker capabilities in abstract
object detection compared to the YOLO series models.

By comprehensively comparing the above experimental
results, the feasibility of employing the YOLO series mod-
els for intelligent defect detection on leather surfaces were
assessed, leading to the following conclusions:

(1) The YOLO series of real-time detection models demon-
strate excellent responsiveness and high accuracy in detecting
leather surface defects. In single defect detection tasks,
the categories of rotten, hole, healing, growth, and pinhole
exhibit higher detection scores, with all three indicators
achieving scores of 65% or higher. Particularly, the pinhole
defect achieved a detection accuracy of 90.9% and an mAP
of 85%.

(2)Defects such as wrinkles and fungal injuries present
significant challenges, and their detection performance still
requires improvement.

(3) The YOLO series models can simultaneously detect
multiple types and multiple instances of defects in a single
leather image, with the highest achieving an mAP of 52.3%.
There is ample room for performance improvement and sig-
nificant challenges in this regard.

(4) The YOLOvV5 model is more environmentally friendly,
and easier to deploy and train, but its performance is not
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particularly outstanding. The YOLOv6 model’s improve-
ments in industrial scenarios make it more suitable for
industrial use, with a much higher recall rate compared to
other models. YOLOv7 excels in single defect detection
tasks, while YOLOvVS8 demonstrates stronger overall perfor-
mance in multi-defect detection tasks.

(5) A large number of small and dense defect targets are
not easy to be detected by YOLO model, which is the main
challenge restricting the detection performance.

(6) In response to the above challenges, some improve-
ments to the YOLO model have been developed. By adding
lightweight attention mechanism to the neck network struc-
ture of YOLOVS, the feature extraction ability of the
YOLOVS model are enhanced, which do not generate too
much additional training cost. The novel neck network
structure shows a better feature fusion ability. In addition,
a detection head with auxiliary positioning also have been
proposed, which can improve the positioning accuracy of
the detection box. The focus of this work is to evaluate the
specific performance of YOLO series models on the intel-
ligent detection task of leather surface defects. Due to the
limitations of the paper layout, these improvements will be
elaborated on in detail in our another paper.

VI. CONCLUSION

This work presented a systematic and in-depth experimental
evaluation of the YOLO series model for the recognition and
localization of surface defects on leather, which was based
on three schemes designed from different angles. A thorough
review of the state-of-the-art real-time object detection algo-
rithms, particularly the YOLO series models, was conducted.
Through experimental validation, the feasibility of employing
the YOLO series models for intelligent defect detection on
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leather surfaces was assessed. A large number of experimen-
tal evaluations showed YOLO models can significantly assist
in the leather trimming process, reducing manual labor and
enhancing efficiency. The multi-defect synchronous detec-
tion performance shows some positive significance, but there
is a lot of room for performance improvement, requiring
further improvement of the YOLO model or the development
of new models. In contrast to multi-defect detection tasks,
single-defect detection tasks have achieved a high detection
accuracy, which appears relatively simpler and more feasible
within industrial production environments. These works laid
a solid foundation for the design and development of new
solutions for leather defect detection. Some improvements
to the existing YOLO family of models have been made so
that their performance can meet the requirements of prac-
tical applications in the relevant fields. Future efforts will
construct a more comprehensive dataset and evaluation sys-
tem, including tasks such as generating leather surface defect
images using adversarial networks and contrastive learning
techniques, to further enrich the dataset.
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