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ABSTRACT The time-dependent green vehicle routing problem with time windows is a further deepening
of the research on vehicle routing problems with time windows. Its simultaneous consideration of vehicle
transportation time, carbon emissions, and customer satisfaction under time-dependent variables makes it
more challenging to solve than traditional vehicle routing problems. This work proposes a multi-objective
optimization algorithm that combines the learnable crossover strategy and the adaptive search strategy based
on reinforcement learning to overcome the local optima, poor convergence, and reduced variety of solutions
that plague the multi-objective optimization algorithms when solving this problem. The proposed approach
solves the problem in two stages: In the first stage, a hybrid initialization strategy is used to generate initial
solutions with high quality and diversity, and crossover strategies are used to further explore the solution
space and improve convergence by learning the characteristics of pareto solutions. In the second stage, the
adaptive search is designed and used for learning and searching in the later stage of the algorithm. The
experimental results show better solution quality obtained by the proposed approach, and the effectiveness
and superiority of the proposed approach over existing methods in terms of solution convergence and
diversity are demonstrated through experimental comparisons.

INDEX TERMS Multi-objective optimization, DQN, GVRPTW, time-dependent, customer satisfaction.

I. INTRODUCTION
Vehicle routing problems (VRP) belong to the typical NP-
hard problems [1]. It has attracted extensive research since its
formulation, and it is one of the most studied combinatorial
optimization problems, with great practical implications for
the logistics and transportation industries. The vehicle routing
problem within a green context with the aim of optimizing
economic, environmental, and social advantages has recently
become a hot study area due to the strengthening of the green
concept in the transportation industries.

Theoretically, the multi-objective optimization VRP is
an extension of the ordinary VRP. Conflicting yet con-
current optimization objectives are typically present in a
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multi-objective optimization problem that represents real sce-
narios. Among the multiple optimization objectives of VRP,
optimizing the transportation time spent by vehicles to and
from customers is the key to the VRP optimization prob-
lem, which is also one of the key optimization targets of
the multi-objective VRP optimization problem. Most stud-
ies simplified the transportation time between customers
and set it as a constant [2], [3], [4], thereby ignoring the
impact of time-dependent factors, especially the traffic con-
dition, on the delivery time. In addition, the quality of the
goods with strict requirements on the efficiency of delivery
will be directly affected by the traffic congestion. Malan-
draki and DASKIN [5] provided the first definition of the
time-dependent vehicle routing problem (TDVRP) and dis-
cussed the associated solution to this problem by proposing
a velocity segmentation function. Considering that the travel
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time in the TDVRP model will interfere with the principle of
‘‘first-in, first-out’’ (FIFO), Ichoua et al. [6] took the effect of
time-dependent speed on the delivery time into consideration
in their related research and used the speed step function to
obtain a segmented linear travel time function to satisfy the
principle of FIFO, which makes the TDVRP more practical
for applications. Figliozzi [7] added the consideration of
changing urban traffic conditions to make the time-dependent
vehicle routing problem more realistic. However, most exist-
ing studies related to GVRPTWassume that the vehicle speed
is a constant value, which ignores the effect of vehicle speed
on delivery time. Therefore, in this paper, the GVRPTW
model is constructed based on the time-dependent travel
speed model.

Traffic conditions cause variations in both delivery time
and vehicle carbon emissions. However, travel distance is not
the only factor that influences emissions. Sawik et al. [8]
analyzed the factors that impact environmental costs, total
distance, carbon emissions, and fuel consumption on GVRP.
The results showed that the energy consumption and carbon
emissions of a vehicle are not simply positively correlated
with the travel time but also affected by factors such as the
load of vehicles, speeds, and road gradients [9]. Therefore,
the travel time does not accurately reflect the level of vehicle
carbon emissions, and when carbon emissions are one of the
optimization objectives, the travel time cannot be used as the
only criterion for assessing vehicle carbon emissions. In the
modern logistics industry with outstanding service character-
istics, customer satisfaction must also be taken into account,
in addition to carbon emissions and vehicle transportation
time. Related studies [10], [11], [12] show that customer
satisfaction will be affected by the delivery time. Customers
who require delivery service do not generally expect vehi-
cles to arrive as soon as possible or as quickly as possible;
rather, they are more likely to expect vehicles to arrive
within the time windows they have specified. Therefore,
time-dependent factors and factors affecting vehicle carbon
emissions need to be taken into account in practical applica-
tions. The research [13], [14], [15], [16] that is pertinent to
the aforementioned constraints, however, is insufficient and
only covers the single-objective TDVRPTW.

Essentially, the multi-objective optimization of VRP is a
specific application of multi-objective optimization theory
in transportation science. As the number of optimization
objectives increases, the problem becomes more complex
and challenging. Mojtaba Ghasemi et al. [17], [18], [19]
have employed nature-inspired algorithms to address chal-
lenges across various scales, achieving notable success in
optimization outcomes. These algorithms have demonstrated
particular efficacy in tackling large-scale problems, yield-
ing impressive results. Furthermore, achieving simultaneous
improvements in both convergence and diversity within
the solution set of a multi-objective optimization problem
presents a significant challenge [20], [21], [22]. How to
obtain the relatively optimal ‘‘equilibrium solution’’ between

the objectives is the focus of such problems. Currently,
multi-objective optimization algorithms based on dominance
relations have been mostly used to solve continuous as
well as discrete multi-objective optimization problems [23],
[24]. Compared with the traditional weighting and opti-
mization methods, dominance relation-based multi-objective
optimization algorithms can balance the conflicts among
multiple optimization objectives and avoid weight allocation
among optimization objectives. Dominance relation-based
optimization algorithms use dominance relations to deter-
mine whether to retain the current solution [25], [26], [27].
In this way, the manager has more options to choose from and
will be better able to make a reasonable decision according
to the actual situation. However, the drawback is that, during
the optimization process, multi-objective optimization algo-
rithms are prone to settling on local optima. In this regard,
the use of the crossover strategy and local search method
improves the problem to a certain extent and enhances the
global optimization ability of multi-objective optimization
algorithms [28], [29], [30], but most existing crossover strate-
gies are only a simple reorganization of the encoding of
solutions and do not refer to the ‘‘coding structure’’ of the
superior solution, making the crossover operation more ran-
dom.Moreover, the equal probability selection of local search
strategy ignores the search knowledge generated during the
search process [31], [32], [33], which leads to the problem
that the algorithm generates ‘‘blind’’ search and is prone to
fall into the problem of local optimal solutions. As a result,
it is necessary to refer to the encoding of superior solutions
and to utilize empirical knowledge so that the selection of
the local search strategy is knowledge-based rather than com-
pletely equiprobable and random. RL [34], [35] is a type of
machine learning that trains an agent to optimize actions by
learning from accumulating experiences. With this feature,
RL meets expectations. Q-learning [36] is a prominent rein-
forcement learning algorithm that gets the optimal policy by
updating the state and action. However, Q-learning is not
suitable for the scenario that has a large state-action space.
Therefore, we intend to apply DQN to address such problems.

Based on the above research analysis, the following work
is done in this study: A time-dependent multi-objective
GVRP optimization problem (TD-GVRPTW) is proposed,
taking into account both the practical requirements and
the deficiencies of the existing related research. A multi-
objective optimization model that simultaneously considers
three optimization objectives is constructed. The DQN-based
two-stage multi-objective optimization algorithm DQMOEA
is proposed to solve themodel. Initially, a hybrid initialization
approach is employed to preliminarily solve datasets charac-
terized by diversity, yielding high-quality and varied initial
solution sets. Two pareto front-based crossover strategies are
designed to learn the location information of customers in
the pareto optimal solution, which can improve the conver-
gence performance in the later stage of the algorithm. The
DQN-based adaptive search uses a tuple including routing
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sequence, time information, requests about customers, and
the vehicle’s load to represent the current state space. One
of the five heuristics is selected to execute the corresponding
actions. Finally, the effectiveness of the model and algorithm
established in this paper is verified by extensive experiments
on the generated benchmark instances.

A. CONTRIBUTION OF THIS WORK
Based on the current relevant research, the existing lit-
erature has not adequately addressed the multi-objective
optimization problem of green vehicle scheduling under time-
dependent constraints. To fulfill this gap, this paper makes the
following contributions:

1) A time-dependent multi-objective optimization VRP
(TD-GVRPTW) is proposed. A multi-objective opti-
mization model that simultaneously considers three
optimization objectives: transportation time, carbon
emissions, and customer satisfaction, is constructed.

2) We propose an efficient multi-objective optimization
algorithm that solves the constructed model in two
stages.
In the first stage, we use a hybrid initialization strategy
that exploits the diversity characteristics of the datasets
to provide high-quality and diversified initial solutions.
We also design pareto front-based crossover strategies
that learn the location information of customers in the
pareto optimal solutions, which can enhance the con-
vergence performance of the algorithm.
In the second stage, we use a novel representation of
the vehicle dispatching state for the TD-GVRPTW.
We develop a deep reinforcement learning method that
takes state tuples as input for the reinforcement learn-
ing model, improves and searches the initial solutions
obtained in the first stage, and finally achieves optimal
or near-optimal solutions.
With the proposed optimization algorithm, the follow-
ing practical advantages are considered:

• By using the hybrid initialization method, the
initial solution can enhance both the efficiency
and the quality of the subsequent solution in the
second stage.

• The proposed state representation in this paper
enables the model inputs to be flexibly adapted
based on the optimization objective.

• The algorithm can achieve solutions with high
convergence and diversity performance for
multi-objective optimization problems.

II. PROBLEM DESCRIPTION AND MODEL DEVELOPMENT
A. MODEL PARAMETERS
In this paper, the TD-GVRPTW is defined as a completely
directed graph G = (C ′,E). C ′

= C ∪ {c0} denotes nodes
in the directed graph G. E = {e(i, j)|i, j ∈ C, i ̸= j} denotes
all directed edges in graph G. Assume that the depot has
a number of delivery vehicles. Each vehicle will leave the

TABLE 1. The notation and meaning of variables.

depot during the specified working hours, loaded with goods
weighing no more than Q, and provide distribution services
to a limited number of customers. Each vehicle must return
to the depot immediately after completing the delivery task.
Without loss of generality, this paper considers the customer’s
service time window as a soft time window, and the following
assumptions and constraints need to be satisfied:
Assumption 1: The range of customer satisfaction is [1, 0].

It is allowed that the vehicle arrive at the customer’s location
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FIGURE 1. Time zones spanned from customer i to j.

before eei or after lli, but in this case, the customer satisfaction
is 0. When the vehicle arrives at the customer’s location in
[ei, li], the customer satisfaction is 1.
Assumption 2: All vehicles are of the same type and are

available in numbers to meet the delivery tasks.
Assumption 3: The route e(i, j) between any customer ci

and customer ci has a corresponding path inclination wij.
Constraint 1: The vehicle must complete the delivery task

for the current distribution route and return to the depot within
the specified time.

Constraint 2: The total demand (
∑n

i=1 qi) of all customers
on the current distribution route does not exceed the maxi-
mum load of each vehicle.

Constraint 3: Each customer can and will only be served
once.

Subject to the above constraints and assumptions, we aim
to determine the distribution routes of all vehicles and, at the
same time, minimize the vehicle transportation time f1, vehi-
cle carbon emission f2, and maximize the value of customer
satisfaction f3.

B. FORMULATION OF TIME-DEPENDENT TRAVEL TIME
Ichoua et al. [6] assumed that the vehicle traveling speed
can be considered a fixed value for a short period of time.
According to this assumption, the working day can be divided
into several time zones: T =

{
z1, z2, zr , . . . , zp

}
, zr =

[ttr−1, ttr ]. Define the velocity-time function as a stepwise
function: v = s (zr ). As shown in Fig. 1, for a directed edge
e(i, j) with a distance of dij, there is a probability that the time
required for a vehicle to pass through edge e(i, j) will span
multiple time zones.

Assume that the vehicle k departs from customer i to
customer j in time zone zr = [ttr−1, ttr ], and denote this
departure moment as tkrij . Then, the traveling speed szr and
the maximum traveling time lskrij = ttr − tkrij of vehicle k in
this time zone can be obtained.

FIGURE 2. The travel time for route e(i,j).

Based on the research of Ichoua et al. [6], the vehicle
transportation time function can be modeled as a segmented
linear function. It is assumed that the transportation time
through the edge e(i, j) spans a maximum of two time
zones. As shown in Fig. 2, divide the time zone r into
two parts: T 2r−1

ij =

[
w2r−1
ij ,w2r

ij

]
,T 2r

ij =

[
w2r
ij ,w

2r−1
ij

]
.

w1
ij,w

2
ij,w

3
ij, . . . ,w

2r
ij ,w

2r+1
ij are function breaks.

When the departure time of the vehicle is within T 2r−1
ij , the

vehicle passes through only one time zone for the route e(i, j).
In contrast, when the vehicle’s departure time is within T 2r

ij ,
the vehicle will cross two time zones, and the corresponding
transportation time will change and will no longer be a fixed
value. The slope θ2rij of the function and the corresponding
intercept η2rij in the time zone zr are calculated as follows:

θ2rij =
τ (w2r+1

ij ) − τ (w2r
ij )

w2r+1
ij − w2r

ij

(1)

η2rij =
w2r+1
ij τ (w2r

ij ) − w2r
ij τ (w

2r+1
ij )

w2r+1
ij − w2r

ij

(2)

Thus, given an arbitrary vehicle departure time tkrij in the
time zone zr , the transportation time of a vehicle can be
calculated using the following equation:

τ (tkrij ) = θ rij t
kr
ij + ηrij (3)

Let xkrij = 1 denote that vehicle k departs from customer i
to customer j in the time zone zr . Conversely, xkrij = 0. Then
the time required for vehicle k to pass through the edge e(i, j)
can be calculated by the following equation:

tij =

∑
k∈V

p∑
r=1

τ (tkrij )x
kr
ij (4)

Finally, travel time for all vehicles can be calculated using
the following formula:

f1 = min
∑
i∈C ′

∑
j∈C ′,j̸=i

(tij + stj) (5)
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The following pseudocode can be used to calculate the
travel time of a vehicle from customer i to customer j.

input: tkrij , dijF
r
k = lskrij · szr

J rij = dij − ekrij , J
r

ij
≥ 0

1: if F rk ≥ dij:
2: J rij = 0; ekrij = dij; tij =

dij
szr

3: else
4: J rij = dij − F rk ; e

kr
ij = F rk ; tij+ = lskrij

5: ζ =1
6: While True:
7: F r+ζk = sz(r+ζ )τ (t

kr
ij )

8: If F r+ζk ≤ J r+ζ−1:
9: J r+ζ = J rij − F r+ζk ; ek,r+ζij = F r+ζk ; tij+ = τ ; ζ+ = 1
10: Else:

11: J r+ζ = 0; ek,r+ζij = J r+ζ−1
ij ; tij+ =

J r+ζ−1
ij
sz(r+ζ )

12: Break
13: End if
14: End while
15: End if
output: travel time tij

C. CARBON EMISSION MODEL
Vehicles powered by fossil fuels such as petroleum will gen-
erate carbon emissions, and the vehicle’s carbon emissions
are affected by factors such as vehicle load, travel time, and
vehicle speed. According to Hoen et al. [37], the carbon
emission of a vehicle from customer i to customer j can be
calculated by the following equation:

ECij = FE · FCij (6)

where FE is the carbon emissions per unit of oil consumed
by the vehicle, based on the European carbon emission cal-
culation standard, this paper sets FE as 2621 g/L. Referring to
Bektas and Laporte [38], combined with the research content
of this paper, the following formula is used to calculate the
fuel consumption FCij when the vehicle travels the distance
dij, and the factors affecting the vehicle’s carbon emissions
are considered comprehensively.

FCij

=


(aij(w+ lij) + ψs2zr )dij,

tkrij ∈ zr , tkrij + τ (tkrij ) ∈ zr
(aij(w+lij)+ψs2zr )e

kr
ij +(aij(w+lij)+ψs2zr+1

)(dij−ekrij )

tkrij ∈ zr , tkrij + τ (tkrij ) /∈ zr
(7)

aij = a+ g sinwij + gCr coswij, β = 0.5CdAρ (8)

where w denotes the empty vehicle mass, lij denotes the load
of the vehicle when traveling on route e(i, j). aij denotes
the parameter related to route e(i, j), which is determined by
factors such as road gradient, rolling resistance, etc., and ψ

FIGURE 3. Customer satisfaction function.

denotes the parameter related to the vehicle type. Where a
denotes the accelerations (m/s2) of the vehicle, the velocity
difference between two consecutive time zones (szr+1 − szr )
is defined as accelerations in this paper. g denotes the grav-
itational acceleration constant, Cr denotes the road rolling
resistance coefficient, Cd denotes the traction coefficient, A
denotes the frontal surface area (m2) of the vehicle, and ρ
denotes the air density (kg/m3). According to the research
of Bektas and Laporte [38], the traction coefficient Cd of a
general loaded vehicle is taken to be 0.7, windward area A
is 5m2, the air density ρ is taken as 1.204 kg/m3, and the
rolling resistance coefficient for a typical concrete road is
0.012. Bringing the above parameters into the equation yields
the value of β as 2.107 and the value of aij as szr+1 − szr +

9.81 × (sinwij + 0.012 coswij). The carbon emissions of all
vehicles are calculated as follows:

f2 =

∑
i∈C ′

∑
j∈C ′\{i}

∑
k∈V

∑
r∈{1,...,p}

xkrij · ekrij · ECij (9)

D. CUSTOMER SATISFACTION
Customer satisfaction is an important metric for assessing
distribution effectiveness in actual logistics systems. This
research models customer satisfaction as a segmented func-
tion using the rating approach in order to measure the
customer satisfaction more accurately. As shown in Fig. 3,
the service time windows allowed for each customer are
divided into two cases: Ideal time windows [ei, li]; feasible
time windows [eei, lli]. Categorize customer satisfaction into
five levels: le ∈ {0, 0.25, 0.5, 0.75, 1}.
If the vehicle arrives within the customer’s ideal time win-

dow, customer’s satisfaction is 1. Otherwise, the customer’s
satisfaction varies gradually with the delivery time. Customer
satisfaction cs(akrj ) is calculated as follow:

cs(akrj ) =



0, akrj < eei||akrj > lli
1, ei ≤ akrj ≤ li

1 −
1
4

· ζ, ei − le · ζ < akrj < ei − le · (ζ − 1)

1 −
1
4

· ζ, li − le · ζ < akrj < li − le · (ζ − 1)

(10)
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FIGURE 4. The overall process of algorithm.

where le =
ei−eei

3 , ζ ∈ {1, 2, 3}. Maximizing overall cus-
tomer satisfaction f3 means minimizing 1

f3
. The calculation is

shown in Equations 11 and 12:

akrj = τ

(∑j−1

j=1
τ

(
tkrj−1,j

)
+ stj

)
(11)

1
f3

= min
1∑

k∈V
∑

i∈C
∑

j∈C ′

∑
r∈{1,...,p} csi

(
akrj

) (12)

III. ALGORITHM DESCRIPTION
In this section, we propose a two-stage optimization
algorithm that includes the diversity solution initialization

phase and the DQN-based adaptive search to solve the above
three-objective optimization model. The overall framework is
shown in Fig. 4.

A. INITIALIZATION OF SOLUTIONS
Each initial solution is represented by a two-dimensional
vector with length n. The first dimension vector represents
the order in which the vehicle serves n customers. The second
dimension vector represents the vehicle corresponding to
each served customer. Fig. 5 shows the encoding of a feasible
solution containing 11 customers and 3 delivery vehicles,
generating a total of 3 distribution routes.
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FIGURE 5. Encoding of initial solutions.

In combinatorial optimization problems, high quality and
diversity of initial solutions can result in more satisfying
optimization results [39]. In reality, the geographic location
between customers will show different characteristics, and
the sequence of vehicle delivery to customers is closely
related to the final delivery time. In addition, customers will
also have different requirements for delivery time. In order
to generate initial solutions that match the characteristics
of the customer’s location distribution as well as diversity,
this paper uses a hybrid initialization strategy to initialize
the population solutions, which include the random genera-
tion method, the k-nearest neighbor heuristic (K-NNH), the
improved push forward insertion heuristic (IPFIH), and the
ideal time window selection heuristic (ITH), respectively.
Each initialization method generates one-fourth of the total
number of population solutions.

1) GENERATE INITIAL SOLUTIONS USING RANDOMIZED
GENERATION METHODS
The random generation method is more suitable for the case
where customer locations are scattered and random. First,
a delivery route is initialized, and customers to be delivered
are randomly added to the current path until constraints 1∼3
are no longer fully satisfied. Then another delivery vehicle
is activated to continue to complete the delivery tasks of the
remaining customers until all the delivery tasks are com-
pleted.

2) K-NNH (K-NEAREST NEIGHBOR HEURISTIC)
INITIALIZATION
Considering the type of clustering customers, a k-nearest
neighbor heuristic is used to initialize partial solutions. First,
a delivery route is initialized, assuming that customer i is the
current customer served by the vehicle. The next customer to
be served is one of the k-closest customers to customer i. The
rest of the customers will be continually added to the current
distribution route until the delivery needs of all customers are
met. Otherwise, generate another distribution route.

3) ITH INITIALIZATION
There may be cases in which the customer has more stringent
requirements for the service time windows, for which the ITH
initialization part is used to solve the problem.

The pseudocode of ITH.

Input: the number of customers (N ), service time windows
1: Sort all customers by ideal service time windows and
obtained the sorted sequence S.
2: for i = 1 to N do:
3: Select the customers S(i) based on the order of
non-incremental ideal time windows
4: if constraint 1 and constraint 2 are satisfied do:
5: Insert this customer into the current route and update

the current load and transit time for the current vehicle.
6: else:

Mark that the current vehicle’s delivery task is
completed

7: Initializing a new vehicle and new route
8: end if
9: end for
10: Output the initial solutions.

4) IPFIH INITIALIZATION METHOD
The push forward insertion heuristic [40] (PFIH) was pro-
posed by Solomon and is an effective construction heuristic
for the VRPTW problem. In this paper, we use a new ini-
tialization method (IPFIH) based on PFIH for selecting the
initial customer and K-NNH to select the next customers to
be served in the current distribution route. Initial customers
are selected according to the following equations:

hi = −ωd0i + ξ lli + σ · (
|pi|
360

) (13)

hj = −ωdji + ξ llj + σ · (
|pj − p1|
360

) (14)

where d0i denotes the distance between customer i and the
depot, pi denotes the polar coordinates of customer i with
respect to the depot. The larger the value of h, the greater the
probability that customer i will be the initial node.

B. CROSSOVER STRATEGIES
Multi-objective optimization algorithms are prone to low
search efficiency and high volatility of the optimal solutions
obtained. A large part of the reasons that cause the local
optima is that the search strategy carries a large degree of ran-
domness, and the new generating solutions do not reference
the quality solutions that have already been generated. The
pareto-optimal solution is the optimal equilibrium solution
obtained throughmulti-objective optimization. Therefore, the
Pareto optimal solutions contain the encoding features that
can be learned for reference. In this section, we use cycle
crossover and subtour exchange crossover and propose two
crossover strategies based on Pareto front: similar customer
order crossover (PSCX) and customer pair order crossover
(PCPX) to balance global search and solution quality. The
operational details are as follows:

PSCX: First, the temporary route is constructed based on
the customers with the highest frequency of occurrence at
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FIGURE 6. The cycle crossover operation.

FIGURE 7. The subtour exchange crossover.

FIGURE 8. The operation process of PSCX.

each location in the pareto solution. Then two parent solutions
P1 and P2 are randomly selected from the non-pareto solu-
tions, and the customer position on each route of the parent
solution is compared with the customers on the temporary
route. If the customer and their positions are the same, this
customer is placed in the same position as its offspring solu-
tion, and the vacancy in the offspring solution is filled by the
different customers of another parent solution. The specific
operation is shown in Fig. 8.

PCPX: As shown in Fig. 9, for each customer i, select the
neighboring ‘‘customer pairs’’ [i, j] that appear for the first
time in each Pareto optimal solution to construct the reference
set. Two parent solutions, P1 and P2, are then randomly
selected and comparedwith the constructed reference set. The
‘‘customer pairs’’ with the same comparison result are placed
in the corresponding positions of their offspring solutions.
Similarly, the remaining blank node of the offspring solution
is filled by different customer nodes in the other parent solu-
tion.

The pseudocode for creating the temporary route and ref-
erence set:

C. DQN-BASED ADAPTIVE SEARCH
This subsection attempts to find a way to overcome the
shortcomings of the algorithm’s blind search by learning

FIGURE 9. The operation process of PCPX.

local search actions and states through reinforcement learning
methods. DQN is a deep reinforcement learning method that
uses a function approximator to approximate Q functions.
Compared to Q-learning, which uses a Q-table to record state-
action pairs and then computes the Q-value for all state-action
pairs, DQN is more feasible for solving problems with large
combinatorial spaces.

1) STATE SPACE DESCRIPTION
DQN training of agents involves multiple episodes; every
episode has multiple time steps. In an episode, the agent takes
an action at each time step. At each time step t , the state of
the VRP environment is described by a tuple st = {sl, sr , sc}.
The specific representations and definitions are as follows:

sl = {nci , n
c
pj, n

c
bj, n

c
k ; ∀p ∈ C ′, b ∈ C, k ∈ K } (15)

where nci denotes the coordinates of the depot, n
c
pi denotes the

coordinates of the predecessor node of the served customer
node j, and ncbi denotes the coordinates of the successor node
of the served customer node j. nck denotes the coordinates of
the first customer served by the vehicle k in the current dis-
tribution route. The description provides information about
the current route delivery sequence and the location of each
customer.

sr = {ϖj, bj, oj; j ∈ C} (16)

whereϖj = (llj − eej)− tij, the smaller value ofϖj indicates
that the service demand of customer j is more urgent, and the
measure of urgency can prioritize the customers with a more
urgent demand for delivery. bj = llj−akrj , where bj represents
the difference between the latest delivery time specified by
customer j and the actual delivery time of vehicle k . A larger
bj implies a higher feasibility of adjusting customer j to other
locations. oj = akrj − tkrij + stj, where oj denotes the time
required for vehicle k to complete the distribution task of
customer j, which is the sum of the transportation time from
customer i to customer j and the unloading time of vehicle k .
sr describes the time-related information about customers.

sc = {δk , χk , µk ; ∀k ∈ K } (17)

δk represents the time overhead for vehicle k to complete
all tasks of the current distribution route. µk represents the
remaining available time.µk = (depotend−depotstart )−δk >
0, Where depotstart is the start time of the distribution activity
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Input: Pareto solutions (PS)
Find the longest delivery route R from pareto solutions and
set the temporary route’s length to |R|

Initialize two zero matrix of size |C|·|R|→ M, N
1:For i= 1 to K do:
2:For j= 1 to |PS| do: #| PS|: the number of pareto solutions
3: for each delivery route, the following is carried out.
4: Switch (PS[j].route[k]): # route[k]: the kth customer
5: case C1:M [1][K ] + =1;
6: case C2:M [2][K ] + =1;
7: case C3:M [3][K ] + =1;

. . .
8: case Cn: M[n][K ] + =1; #n denotes the number of
customers
9: end switch
10:end for
11:end for
12:output the matrix’s greatest element’s index for each
column. (Form the temporary route)

1:For i = 1 to | PS| do:
2: For j = 1 to |C| do:
3: If index(Cj)+1 > index(Cj) and index(Cj)+1 <=

len(curent_routeϵPS i) do:
4: N[j][index(Cj)+1] = True
5: Else
6: Continue
7: End if
8: End for
9:End for
10:Output the changed matrix
11:Selecting the first customer with True value from each row
to construct reference set.

of the depot, depotend is the end time of the distribution
activity. Obviously, (depotend−depotstart ) is the time allowed
for the distribution activity of the depot.
χk denotes the cumulative time violation of vehicle k in the

distribution process, which is calculated as follow:

χk =

∑
j∈J k

max(akrj − llj, 0) (18)

where J k denotes the set of delivery tasks for vehicle k .
if akrj < llj, the time violation of vehicle k is 0. sr and sc

represent the time-related information about customers and
the depot, which can help agents make decisions.

Based on the tuple’s description, the agent is able to
have a more complete understanding of the information
related to the current distribution route, and it can utilize the
time-related information to perform the actions guided by the
heuristics.

2) ACTION DEFINITION
The combinatorial nature of this VRP means that a large
number of different actions can be taken to construct and

improve the order of the distribution routes. However, it is
impractical to enumerate all possible actions during the
training of the agent. Combining the algorithm training
requirements and practical feasibility, this paper abstracts the
actions into five heuristics, namely inter 2-opt, inter or-opt,
external exchange, external 2-opt, external move. At each
time step, the agent explores the development of a new rout-
ing scheme using the ε-greedy strategy. At the beginning of
training, when ε is set to 1, the agent adopts a completely ran-
dom action pattern, and then as the training iterates, the agent
gradually increases the probability of utilizing the learned
actions. The value of ε gradually decreases according to a cer-
tain decay rate: εt+1 = εt (1− decay_rate). The agent selects
one of the actions to change the existing routing sequence,
and the feasibility of the action execution has to satisfy the
constraints 1∼3. The operation contents and procedures for
the five types of actions are shown below:

a: INTER 2-OPT
in-route exchange. Select the route with the maximum
remaining available time (µk ). Select the customer with the
largest bj in this route and perform the 2-opt operation on cus-
tomer j and the customer after it, checking the routing cost and
customer satisfaction after the exchange. If the routing cost is
less than the original cost and customer satisfaction is greater
than or equal to the original value, then this transformation
is taken; otherwise, discard this move. As shown in Fig. 10
(a), the reference state for executing this action is the value of
µk ; a larger µk means that this route has a higher adjustment
value, and the route with the largest µk is selected for this
action.

b: INTER OR-OPT
in-route exchange. Select the route with the maximum
remaining available time (µk ). As shown in Fig. 10(b), select
m (0< m < the number of customers of this route) neighbor-
ing customers in this route. This operation is an extension of
Inter 2-opt for routes with a large number of nodes. The new
route is obtained by inserting neighboring customers from the
original position into different positions. Calculating whether
the customer satisfaction is better than the original customer
satisfaction. If no move yields better customer satisfaction,
maintain the original route. The reference state for executing
this action is the largest remaining available time (µk ) and the
smallestϖj.

c: EXTERNAL EXCHANGE
inter-route exchange. exchange the locations of customers on
two different distribution routes. Select the customer with
the largest bj in each of the two routes and exchange their
positions. Perform Inter 2-opt after exchange. The exchange
behavior is not considering feasibility. This is done in order
to help the search escape local optima. As shown in Fig. 10
(c), customers from two different routes are exchanged to
obtain two new routes. Selected customers are required to

33408 VOLUME 12, 2024



B. Yue et al.: Deep Reinforcement Learning-Based Adaptive Search

FIGURE 10. Local search operations.

meet the maximum service time windows remaining (bj) on
their respective routes.

d: EXTERNAL 2-OPT
inter-route exchange. As shown in Fig. 10 (d), Similar to
Inter 2-opt, but aims to adjust two edges between different
routes. Select two different paths that have the maximum
value of χk and the minimum value of χk , and then perform
this action. For the exchanged routes, perform inter 2-opt.
If the exchanged routes have a lower routing cost, accept this
exchange. Otherwise, keep the original route.

e: EXTERNAL MOVE
inter-route move. As shown in Fig. 10 (e), select the first route
with the smallest µk , and select the customer with the largest
oj. Select the second route with the largestµk .Move customer
j from the first route to the end of the second route. For the
changed second route, perform Inter 2-opt on the customer j
forward. If this exchange obtains a lower routing cost, keep
it. Otherwise, keep the original route.

D. REWARD FUNCTION
Given a state st , the agent selects an action at and performs
it, and subsequently, the agent receives a reward rt for per-
forming the action at . Combined with the multi-objective
optimization problem studied in this paper, multiple objec-
tives are considered simultaneously with the same priority.
A new reward calculation method is used, which takes
into account the relative changes between the optimization
objectives of the parent and child generations. The specific
calculation method is as follows:

r =

n∑
i=1

pi − oi
pi

(19)

where pi and oi denote the ith objective function value for the
original and new solutions, respectively. The larger the value
of r , the more effective the selected action is.

E. COMPUTATION COMPLEXITY ANALYSIS
In this section, the time complexity of the proposed algorithm
in this paper is analyzed. From the structure of the algorithm,

it becomes evident that the computational burden predom-
inantly arises from the search mechanism employed in the
latter stage. Consequently, a focused analysis of the time com-
plexity of the algorithm’s second stage is deemed adequate.

To analyze the time complexity of this algorithm, it is
essential to first determine the dimension of the elements
within the state tuple st = {sl, sr , sc}. Where sl includes the
following:

1) The coordinates of the depot.
2) The coordinates of the predecessor node of the served

customer node j.
3) The coordinates of the successor node of the served

customer node j.
4) The coordinates of the first customer served by the

vehicle k in the current distribution route.
Thus, the dimension of sl is 2 × (|C| + |C| + |K |). Given

that the quantity of warehouses is singular, the coordinate
dimension of the warehouse is deemed invariant and, conse-
quently, is not considered in the analysis. The multiplication
of the preceding equation by a factor of 2 is necessitated by
the presence of both horizontal and vertical coordinates for
each node along the distribution route.

Where sr includes the following:
1) Slack time of each customer’s request.
2) The gap between the latest delivery time and the actual

delivery time.
3) The time required for vehicle k to complete the distribu-

tion task of customer j.
Thus, the dimension of sr is |C| + |C| + |C|.
Where sc includes the following:
1) The time overhead for vehicle k to complete all tasks of

the current distribution route.
2) Remaining available time of a distribution route.
3) The total delivery time violation of requests assigned to

vehicle k .
Thus, the dimension of sc is |C| + |C| + |C|.
Inter 2-opt contains three steps. For step 1, the remaining

time of all dispatching routes needs to be sorted, so the
complexity is O(|K | log |K |). For step 2, all customers on the
selected route need to be sorted, so the maximum complexity
of step 2 is O(|C| log |C|). For step 3, the maximumm com-
plexity of 2-opt is O((|C| − 1)2).
By the same token, it can be inferred that the maximum

complexity of the remaining four heuristic actions is uni-
formly O((|C| − 1)2).
For the DQN training, the complexity depends on the

number of parameters to be trained. Since the state space
has a dimension of 10 |C| + 2 |K |. Thus, the first layer has
(10 |C| + 2 |K |) × e parameters to be trained (e denotes the
number of neurons in each hidden layer). The subsequent
hidden layer has up to e2 parameters. Given that the network
yields a maximum of five actions, the number of parameters
present in the output layer is 5e. Further recognizing that
|C| > |K |, the complexity of a time step of DQN training,
is O(|C| × e + (l − 2) × e2 + (|C| − 1)2), which l denotes
total layers of DQN. In this paper, the quantity of customers
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(|C|) surpasses the number of vehicles (|K |). Given that DQN
training has n episodes, each with up to T time steps, the
overall complexity of the DQN training can be approximated
as O(n · T · |C|

2).

F. IMPLEMENTATION OF DQN-BASED ADAPTIVE SEARCH
DQN is an off-policy reinforcement learning method that
combines the advantages of DNN and Q-learning. DQN is
trained utilizing multiple episodes, just like DNN. Actions
described in 3.3.2 are used in each episode to improve solu-
tions. The optimal policy (πθ ) is finally obtained through
the continuous improvement of the weighting parameters (θ)
during the learning process.

In order to improve the sampling efficiency and stability of
the algorithm, DQN introduces an empirical playbackmecha-
nism and samples in a stochastic, equiprobable manner. DQN
consists of three main components, including the objective
prediction network, the target network, and the experience
playback mechanism.

In reinforcement learning, sample data are often correlated
and non-static among each other, which can lead to difficult
model convergence and continuous fluctuation of loss values
if the correlated data are directly used for model training.
Therefore, in the initial stage of the algorithm, DNN mod-
els are not trained until the experience pool has E (where
E represents the size of the experience pool) experiences.
Agent stores the experience samples (et = (st , at , rt , st+1))
obtained from interacting with the environment at each step
into the experience pool, and after executing several steps,
a small batch of samples is randomly drawn from the expe-
rience pool and fed into the neural network as discrete data.
DQN uses two network models containing DNN for learning,
including the prediction network Q(s, a, θ) and the target
network Q(s, a, θ ′). Therefore, the loss function under the
dual network architecture is shown below:

L(θ ) = Eπθ [(r + γ max
a′

Q(s′, a′, θ ′) − Q(s, a, θ))2] (20)

Then calculating the semi-gradient of parameter θ :

∇θL(θ )=Eπθ [(r+γ max
a′

Q(s′, a′, θ ′)−Q(s, a, θ))∇Q(s, a, θ)]

(21)

Update the weighting parameter θ using MBSGD:

θ = θ − α∇θL(θ ) (22)

The pseudocode of DQN-based adaptive search:

IV. EXPERIMENTAL AND COMPARATIVE ANALYSIS
In this section, we use the proposed algorithm to solve the
generated instances based on Solomon benchmark instances
and conduct comparative experiments based on the idea of
the control variable method to verify the effectiveness of the
initialization strategy and crossover strategy. Finally, the pro-
posed algorithm is compared with four other multi-objective
optimization algorithms. All algorithms and tests are per-
formed on a computer with an Intel Core i7-12700KF CPU
@ 3.5GHz and 64GB RAM, and NVIDIA RTX GPU.

1. Initialize size of (experience pool) = E ; Episodes = M ;
Frequency of target network updates: C
2. Initialize the minibatch size: n
3. Initialize the experience pool empty
4. Randomly initialize the weight parameters θ
5. Initialize the target network’s parameter θ ′

= θ

6. for i = 1 to M do:
7. initialize state s1
8. for t = 1 to T do: # an episode has T time steps
9. select a random action at with ε − greedy strategy
otherwise select an action at = argmaxaQ(st , a : θ)
10. execute action at and get reward rt ; st → st+1
11. store et = (st , at , rt , st+1) in the experience pool
12. if E > n do:
13. if NRt > ψ do: #NRt denotes the total negative reward
in an episode
14. randomly select a minibatch from experience pool
15. for ej in the selected minibatch do:
16. calculate rj + γ maxQ

a′

(sj+1, a′
: θ ′)

17. end for
18. calculate loss by equation
19. update weighting parameter θ
20. update target network parameter θ ′

= θ

21. else:
22. break
23. end if
24. end if
25. end for
26. end for

TABLE 2. Basic information about instances.

A. DATASETS DESCRIPTION AND PARAMETER SETTING
The generated instances are used to validate the effectiveness
of the proposed algorithm. Based on the type of distribution,
customers can be categorized into three types: C (cluster-
ing customers), R (random distribution of customers), and
RC (the combination of clustering and random distribution).
There are three types of customer numbers, and the number
of customers, vehicle capacity, and service time are shown in
Table 2. The working day T is divided into five time zones,
and the road inclination between customer i and customer j is
generated by a uniform distribution U [15, 0]. Table 3 shows
the speed information for five time zones.

According to Tanvir Ahamed et al. [41], the hyperparame-
ter values of DQN are selected by an informal search in this
paper. It should be noted that these values are obtained in
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TABLE 3. Speed information about each time zones.

TABLE 4. Hyperparameter values.

our research context and may not be fully applicable to other
problems. The hyperparameter settings are shown in Table 4.

B. INDICATORS FOR PERFORMANCE EVALUATION
In this section, three assessment indicators—hypervolume,
inverted generational distance, and proposed indicator—RPD
are used to assess the algorithm’s performance. Since it
is the first time to solve this multi-objective optimization
problem, there is no real PF (pareto front) available in prac-
tice. Therefore, in order to achieve the approximative PF,
we begin with repeated trials utilizing the existing multi-
objective algorithm [27]. The details of the three evaluation
indicators are as follows:

The evaluation indicators used in this paper are shown
below:

Hypervolume (HV): an indicator to evaluate the
algorithm’s performance. Given a reference point, the con-
vergence and diversity of the solutions will be measured
by the reference point and PS (pareto set) obtained by
algorithm [42]. The higher the hypervolume values are, the
better the solution.

HV = δ
(
∪

|S|

i=1vi
)

(23)

where δ denotes the Lebesgue measure, which is used to mea-
sure the volume. |S| denotes the number of non-dominated
solution sets. vi denotes the hypervolume formed by the
reference point and the ith solution in the solution set.

Inverted generational distance (IGD): an indicator to evalu-
ate the distance between the approximate PF and PF obtained
by the algorithm. The lower the IGD, the better the solution.

IGD(P,P∗) =

∑
x∈P∗ miny∈P dis(x, y)

|P∗|
(24)

where P is the solution obtained by the algorithm and P∗ is a
set of uniformly distributed reference points. dis(x, y) denotes
the Euclidean distance between the reference point x and the
point y in P.

FIGURE 11. (a) The loss on each episode(25 customers). (b) The loss on
each episode(50 customers). (c) The loss on each episode(100 customers).
(d) The average Q value on episode. (e) The total reward on episode.
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TABLE 5. Comparison of partial computational results.

TABLE 6. Overall comparison of computational results.

Additionally, in order to compare the performance between
various algorithms, the relative percentage difference (RPD)
is used to analyze the compared algorithms in the same
instance. The RPD value is calculated as follows:

RPD =


Db − Dc
Db

, HV − basedRPD

Dc − Db
Db

, IGD− basedRPD
(25)

where Dc represents the HV or IGD value acquired from the
comparing algorithms, Db represents the best HV or IGD
value. The lower the RPD, the better the current algorithm.

FIGURE 12. (a) The mean HV value of solutions (25 customers). (b) The
mean HV value of solutions (50 customers). (c) The mean HV value of
solutions (100 customers).

C. TRAINING RESULTS AND EVALUATION OF
ALGORITHM’S EFFECTIVENESS
1) TRAINING RESULTS
In this section, we train the DQN model using instances
with 25, 50, and 100 customers, respectively, and obtain the
following training result plots:
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FIGURE 13. The comparisons of two groups experiments

Fig. 11(a) to Fig. 11(c) show the training loss of datasets
with 25, 50, and 100 customers, respectively. Fig. 11(d) plots
the average Q value on each episode for datasets with 25, 50,
and 100 customers. Fig. 11(e) plots the total reward on each
episode for datasets with 25, 50, and 100 customers. On each
episode, termination occurs when the accumulated negative
reward is less than the episode termination threshold. Over-
all, the training loss for all datasets will no longer improve
significantly after 600 episodes.

As shown in Fig. 11(a) to Fig. 11(c), in the early stage train-
ing of datasets with 25, 50, and 100 customers, the training
loss jumps down about every 1000 time steps and 2500 time
steps, which corresponds to the parameter θ ′ update fre-
quency of the target network, respectively. As a result of
the gradual acquisition of experience by the agent in the
early state, DQN training has acute jumps of loss for datasets
with 25 and 50 customers before 200 episodes. However,
on the dataset with 100 customers, this phenomenon of drop
in loss values occurs up to about episode 550. Fig. 11(d)

shows the average Q value on each episode for datasets
with 25 and 50 customers steadily increasing and stabilizing
after 300 episodes. For datasets with 100 customers, it is
more sensitive to the updating of θ ′, the average Q-value is
changing about every 50 episodes (2500 time steps), and this
change continues until about episode 500. The magnitude
of change decreases over time steps, suggesting that the
marginal improvement of DQN is diminishing as training
continues. Fig. 11(e) illustrates the gradual stabilization of
the total reward value of each episode after several steps of
training. During post-training, the actions executed by the
agent have little effect on the value of the objective function
to be optimized.

2) EFFECTIVENESS OF PROPOSED STRATEGIES
In order to verify the effectiveness of the hybrid initialization
strategy, two types of DQMOEA are used for compari-
son in this section: DQMOEA-R: DQMOEA using only
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TABLE 7. Computational results of algorithms (25 customers).
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TABLE 7. (Continued.) Computational results of algorithms (25 customers).

the random initialization strategy; DQMOEA-H: DQMOEA
using a hybrid generation strategy with four initialization
methods. The two algorithms were used to solve all datasets
five times, and the HV values of the nondominated solutions
were averaged separately. Comparison results are obtained as
shown in Fig. 12.
From Fig. 12(a) to Fig. 12(c), it can be seen that

DQMOEA-H performs significantly better than DQMOEA-
R. This indicates that the hybrid initialization strategy can
generate high-quality and diverse initialization solutions.
Moreover, as the number of customers increases, the differ-
ence between the hybrid strategy and the randomized strategy
becomes more and more significant, and the superiority of
DQMOEA using the hybrid initialization strategy becomes
more apparent.

Two different forms of DQMOEA are designed to test the
effectiveness of the two crossover strategies. (1) DQMOEA-
X integrates both PSCX and PCPX crossover strategies. (2)
DQMOEA-NX does not include PSCX as well as PCPX and
uses only random crossover strategies. The solving ability of
the two algorithms on different datasets is compared through
HV values as well as IGD values.

As shown in Table 5 and Table 6, the combined perfor-
mance of the two crossover strategies on the C1-type dataset
is optimal and stable. The amount of QMOEA-X’s domi-
nance in HV values among the 27 C1-type instances solved
by the two algorithms is 19, which is a 70% dominance. The
corresponding IGD value is 74% at the same time. Out of
the 168 datasets solved, DQMOEA-X achieved a favorable
number of 103 on the HV values and an overall favorable
rate of 61.3%. The number of advantages on the IGD values
reached 109, and the overall favorable rate reached 64.8%.
In addition, the overall trend of the two indicators in different
instances is consistent, indicating that the proposed crossover
strategy can improve the convergence of solutions as well as

the diversity of solutions. The experimental results verify the
effectiveness of the proposed crossover strategies.

3) PERFORMANCE EVALUATION OF PROPOSED ALGORITHM
In this section, four well-known MOEAs: NSGA3,
MOEA/D, MaOEA/AC, and hpaEA are used to compare
with the DQMOEA for further validation of the effectiveness
of the DQMOEA. For the purpose of objective and fair
comparison, we conducted two sets of experiments for com-
parative analysis. The first group of trials does not include
the hybrid initialization and pareto-based crossover strate-
gies; as a control, the second group of studies includes the
hybrid initialization and pareto-based crossover strategies.
Each algorithm was repeated 10 times independently, and
the average values of HV as well as IGD were obtained.
Using RPD values to compare and assess the performance
of different algorithms, the results are shown as follows:

Fig. 13 shows the RPD values of five algorithms for each
of the three instances. In general, DQMOEA has the optimal
RPD values, which suggests that the solutions obtained by
DQMOEA have better convergence and diversity. The overall
comparison between the first and second columns indicates
that the proposed strategies not only help DQMOEA achieve
better solution convergence and diversity but also improve
the performance of the other four control algorithms as well.
However, the comparison of the algorithms still favors the
DQMOEA, which indeed demonstrates the effectiveness of
the DQN-based adaptive search and strategies suggested in
this research. In a longitudinal comparison, for control algo-
rithms, the median as well as the upper quartile in the box plot
of RPD values are gradually increasing, which means that the
quality of solutions will decrease as the size of the problem
gets larger. However, the results obtained by DQMOEA only
fluctuate slightly, implying that as the number of customers
increases, the conflict between convergence and diversity of
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TABLE 8. Comparison of the computational results of the five algorithms (100 customers).
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TABLE 8. (Continued.) Comparison of the computational results of the five algorithms (100 customers).

the solution schemes becomes more severe, and the superior-
ity of DQMOEA becomes more significant.

Tables 7 and 8 show the results of the five algorithms
for a small-size instance with 25 customers and a large-size
instance with 100 customers, respectively. Overall, the solu-
tions obtained by DQMOEA have optimal convergence and
distribution. When comparing the solution results of the
two instances, it can be seen that the gap value increases
as the size of the instance increases. The slight change in
the gap value based on the IGD value, compared to the
more significant change in the gap value based on the HV,
shows that DQMOEA has better convergence in solving large
instances.

V. CONCLUSION
In this paper, a multi-objective optimization problem of
time-dependent green vehicle scheduling with time windows
is investigated. and the multi-objective optimization mathe-
matical model is established by considering vehicle trans-
portation time, customer satisfaction, and carbon emissions
as the optimization objectives. We propose a novel deep rein-
forcement learning-based two-stage optimization algorithm
that consists of a hybrid initialization and DQN-based adap-
tive search. Four initialization methods are used to initialize
solutions based on the distribution types of customers. Aim-
ing at the blind searching of the multi-objective optimization
algorithm in the process of running, two crossover strategies
(PSCX and PCPX) based on pareto front are designed to learn
the structure of the pareto optimal solution. The DQN-based
adaptive search uses a new way to describe the state space of
delivery and selects the heuristics to execute the actions for
local searching. The experimental results show that the hybrid
initialization and crossover strategy used in this paper can fur-
ther explore the solution space and improve the algorithm’s

global search capability and convergence. DQN-based adap-
tive search is able to learn to perform higher-quality
local searching and obtain better approximate optimal
solutions.

In the future, we will explore the following aspects: (1)
combining production scheduling and vehicle scheduling to
carry out joint scheduling research, establish the correspond-
ing scheduling model, and design the algorithm to solve the
problem; (2) considering more realistic and complex con-
straints, such as customers with pick-up and delivery needs;
and (3) considering such multi-objective optimization prob-
lems in the dynamic case.

REFERENCES
[1] Y.-L. Lan, F. Liu, W. W. Y. Ng, J. Zhang, and M. Gui, ‘‘Decomposition

based multi-objective variable neighborhood descent algorithm for logis-
tics dispatching,’’ IEEE Trans. Emerg. Topics Comput. Intell., vol. 5, no. 5,
pp. 826–839, Oct. 2021, doi: 10.1109/TETCI.2020.3002228.

[2] J.Wang, T.Weng, and Q. Zhang, ‘‘A two-stage multiobjective evolutionary
algorithm for multiobjective multidepot vehicle routing problem with time
windows,’’ IEEE Trans. Cybern., vol. 49, no. 7, pp. 2467–2478, Jul. 2019,
doi: 10.1109/TCYB.2018.2821180.

[3] X. Wang, T.-M. Choi, Z. Li, and S. Shao, ‘‘An effective local search
algorithm for the multidepot cumulative capacitated vehicle routing
problem,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 12,
pp. 4948–4958, Dec. 2020, doi: 10.1109/TSMC.2019.2938298.

[4] Y. Lyu, J. H. Yuan, andY. Sun, ‘‘Optimization of vehicle routing problem in
military logistics on wartime,’’ Control Decis., vol. 34, no. 1, pp. 121–128,
Jan. 2019, doi: 10.13195/j.kzyjc.2017.0983.

[5] C. Malandraki and M. S. Daskin, ‘‘Time dependent vehicle rout-
ing problems: Formulations, properties and heuristic algorithms,’’
Transp. Sci., vol. 26, no. 3, pp. 185–200, Aug. 1992, doi: 10.1287/
trsc.26.3.185.

[6] S. Ichoua, M. Gendreau, and J.-Y. Potvin, ‘‘Vehicle dispatching with time-
dependent travel times,’’ Eur. J. Oper. Res., vol. 144, no. 2, pp. 379–396,
Jan. 2003, doi: 10.1016/s0377-2217(02)00147-9.

[7] M. Andres Figliozzi, ‘‘The time dependent vehicle routing prob-
lem with time windows: Benchmark problems, an efficient solution
algorithm, and solution characteristics,’’ Transp. Res. E, Logistics
Transp. Rev., vol. 48, no. 3, pp. 616–636, May 2012, doi: 10.1016/j.tre.
2011.11.006.

VOLUME 12, 2024 33417

http://dx.doi.org/10.1109/TETCI.2020.3002228
http://dx.doi.org/10.1109/TCYB.2018.2821180
http://dx.doi.org/10.1109/TSMC.2019.2938298
http://dx.doi.org/10.13195/j.kzyjc.2017.0983
http://dx.doi.org/10.1287/trsc.26.3.185
http://dx.doi.org/10.1287/trsc.26.3.185
http://dx.doi.org/10.1016/s0377-2217(02)00147-9
http://dx.doi.org/10.1016/j.tre.2011.11.006
http://dx.doi.org/10.1016/j.tre.2011.11.006


B. Yue et al.: Deep Reinforcement Learning-Based Adaptive Search

[8] B. Sawik, J. Faulin, and E. Pérez-Bernabeu, ‘‘A multicriteria analysis
for the green VRP: A case discussion for the distribution problem of a
Spanish retailer,’’ Transp. Res. Proc., vol. 22, pp. 305–313, Jan. 2017, doi:
10.1016/j.trpro.2017.03.037.

[9] L. Cai, W. Lv, L. Xiao, and Z. Xu, ‘‘Total carbon emissions minimiza-
tion in connected and automated vehicle routing problem with speed
variables,’’ Exp. Syst. Appl., vol. 165, Mar. 2021, Art. no. 113910, doi:
10.1016/j.eswa.2020.113910.

[10] X. Ren, X. Jiang, L. Ren, and L. Meng, ‘‘A multi-center joint distribution
optimization model considering carbon emissions and customer satisfac-
tion,’’Math. Biosciences Eng., vol. 20, no. 1, pp. 683–706, Dec. 2022, doi:
10.3934/mbe.2023031.

[11] H. Cui, J. Qiu, J. Cao, M. Guo, X. Chen, and S. Gorbachev,
‘‘Route optimization in township logistics distribution considering cus-
tomer satisfaction based on adaptive genetic algorithm,’’ Math. Com-
put. Simul., vol. 204, pp. 28–42, Feb. 2023, doi: 10.1016/j.matcom.
2022.05.020.

[12] V. S. Nguyen, Q. D. Pham, T. H. Nguyen, and Q. T. Bui, ‘‘Modeling and
solving a multi-trip multi-distribution center vehicle routing problem with
lower-bound capacity constraints,’’Comput. Ind. Eng., vol. 172, Oct. 2022,
Art. no. 108597, doi: 10.1016/j.cie.2022.108597.

[13] M. K. Mehlawat, P. Gupta, A. Khaitan, and W. Pedrycz, ‘‘A hybrid
intelligent approach to integrated fuzzy multiple depot capacitated green
vehicle routing problem with split delivery and vehicle selection,’’ IEEE
Trans. Fuzzy Syst., vol. 28, no. 6, pp. 1155–1166, Jun. 2020, doi:
10.1109/TFUZZ.2019.2946110.

[14] H. Fan, Y. Zhang, P. Tian, Y. Lv, and H. Fan, ‘‘Time-dependent multi-
depot green vehicle routing problem with time windows considering
temporal-spatial distance,’’ Comput. Oper. Res., vol. 129, May 2021,
Art. no. 105211, doi: 10.1016/j.cor.2021.105211.

[15] B. Pan, Z. Zhang, and A. Lim, ‘‘A hybrid algorithm for time-
dependent vehicle routing problem with time windows,’’ Comput.
Oper. Res., vol. 128, Apr. 2021, Art. no. 105193, doi: 10.1016/j.cor.
2020.105193.

[16] B. Pan, Z. Zhang, and A. Lim, ‘‘Multi-trip time-dependent
vehicle routing problem with time windows,’’ Eur. J. Oper. Res.,
vol. 291, no. 1, pp. 218–231, May 2021, doi: 10.1016/j.ejor.
2020.09.022.

[17] M. Ghasemi, A. Rahimnejad, R. Hemmati, E. Akbari, and S. A.
Gadsden, ‘‘Wild geese algorithm: A novel algorithm for large scale
optimization based on the natural life and death of wild geese,’’
Array, vol. 11, Sep. 2021, Art. no. 100074, doi: 10.1016/j.array.
2021.100074.

[18] M. Ghasemi, I. F. Davoudkhani, E. Akbari, A. Rahimnejad, S.
Ghavidel, and L. Li, ‘‘A novel and effective optimization algorithm
for global optimization and its engineering applications: Turbulent
flow of water-based optimization (TFWO),’’ Eng. Appl. Artif.
Intell., vol. 92, Jun. 2020, Art. no. 103666, doi: 10.1016/j.engappai.
2020.103666.

[19] M. Ghasemi, S. Ghavidel, J. Aghaei, E. Akbari, and L. Li, ‘‘CFA optimizer:
A new and powerful algorithm inspired by Franklin’s and Coulomb’s
laws theory for solving the economic load dispatch problems,’’ Int. Trans.
Electr. Energy Syst., vol. 28, no. 5, p. e2536, May 2018, doi: 10.1002/
etep.2536.

[20] W. Zhang, D. Yang, G. Zhang, and M. Gen, ‘‘Hybrid multiobjective
evolutionary algorithm with fast sampling strategy-based global search
and route sequence difference-based local search for VRPTW,’’ Exp.
Syst. Appl., vol. 145, May 2020, Art. no. 113151, doi: 10.1016/j.eswa.
2019.113151.

[21] Y. Zhou and J. Wang, ‘‘A local search-based multiobjective optimization
algorithm for multiobjective vehicle routing problem with time win-
dows,’’ IEEE Syst. J., vol. 9, no. 3, pp. 1100–1113, Sep. 2015, doi:
10.1109/JSYST.2014.2300201.

[22] F. E. Zulvia, R. J. Kuo, and D. Y. Nugroho, ‘‘A many-objective gra-
dient evolution algorithm for solving a green vehicle routing problem
with time windows and time dependency for perishable products,’’ J.
Cleaner Prod., vol. 242, Jan. 2020, Art. no. 118428, doi: 10.1016/j.jclepro.
2019.118428.

[23] J. Wang, W. Ren, Z. Zhang, H. Huang, and Y. Zhou, ‘‘A hybrid multi-
objective memetic algorithm for multiobjective periodic vehicle routing
problem with time windows,’’ IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 50, no. 11, pp. 4732–4745, Nov. 2020, doi: 10.1109/TSMC.2018.
2861879.

[24] J.-Y. Ji and M. L. Wong, ‘‘Decomposition-based multiobjective opti-
mization for nonlinear equation systems with many and infinitely many
roots,’’ Inf. Sci., vol. 610, pp. 605–623, Sep. 2022, doi: 10.1016/j.ins.
2022.07.187.

[25] W. Zhang, H. Li, W. Yang, G. Zhang, and M. Gen, ‘‘Hybrid multiobjec-
tive evolutionary algorithm considering combination timing for multi-type
vehicle routing problem with time windows,’’ Comput. Ind. Eng., vol. 171,
Sep. 2022, Art. no. 108435, doi: 10.1016/j.cie.2022.108435.

[26] Y. Cai, M. Cheng, Y. Zhou, P. Liu, and J.-M. Guo, ‘‘A hybrid evolution-
ary multitask algorithm for the multiobjective vehicle routing problem
with time windows,’’ Inf. Sci., vol. 612, pp. 168–187, Oct. 2022, doi:
10.1016/j.ins.2022.08.103.

[27] G. Srivastava, A. Singh, and R. Mallipeddi, ‘‘NSGA-II with objective-
specific variation operators formultiobjective vehicle routing problemwith
timewindows,’’Exp. Syst. Appl., vol. 176, Aug. 2021, Art. no. 114779, doi:
10.1016/j.eswa.2021.114779.

[28] X. B. Yan, Y. W. Fang, andW. S. Peng, ‘‘Multi-objective Harris hawk opti-
mization algorithm based on adaptive Gaussian mutation,’’ J. Beijing Univ.
Aeronaut. Astronautics., pp. 1–14, Jan. 2023, doi: 10.13700/j.bh.1001-
5965.2022.0686.

[29] P. X. Zhao, W. H. Luo, and X. Han, ‘‘Time-dependent and bi-
objective vehicle routing problem with time windows,’’ Adv. Prod.
Eng. Manag., vol. 14, no. 2, pp. 201–212, Jun. 2019, doi: 10.14743/
apem2019.2.322.

[30] Z. Wang, K. Ye, M. Jiang, J. Yao, N. N. Xiong, and G. G. Yen,
‘‘Solving hybrid charging strategy electric vehicle based dynamic rout-
ing problem via evolutionary multi-objective optimization,’’ Swarm Evol.
Comput., vol. 68, Feb. 2022, Art. no. 100975, doi: 10.1016/j.swevo.
2021.100975.

[31] Z. Zhang, H. Qin, and Y. Li, ‘‘Multi-objective optimization for the vehicle
routing problem with outsourcing and profit balancing,’’ IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 5, pp. 1987–2001, May 2020, doi:
10.1109/TITS.2019.2910274.

[32] J. Long, Z. Sun, P. M. Pardalos, Y. Hong, S. Zhang, and C. Li, ‘‘A hybrid
multi-objective genetic local search algorithm for the prize-collecting
vehicle routing problem,’’ Inf. Sci., vol. 478, pp. 40–61, Apr. 2019, doi:
10.1016/j.ins.2018.11.006.

[33] J.-Q. Li, Y. Du, K.-Z. Gao, P.-Y. Duan, D.-W. Gong, Q.-K. Pan,
and P. N. Suganthan, ‘‘A hybrid iterated greedy algorithm for a
crane transportation flexible job shop problem,’’ IEEE Trans.
Autom. Sci. Eng., vol. 19, no. 3, pp. 2153–2170, Jul. 2022, doi:
10.1109/TASE.2021.3062979.

[34] Z. Zhang, Z. Wu, H. Zhang, and J. Wang, ‘‘Meta-learning-based deep
reinforcement learning for multiobjective optimization problems,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 34, no. 10, pp. 7978–7991,
Oct. 2023, doi: 10.1109/TNNLS.2022.3148435.

[35] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018. [Online]. Available:
https://ieeexplore.ieee.org/servlet/opac?bknumber=6267343

[36] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
pp. 279–292, May 1992, doi: 10.1007/bf00992698.

[37] K. M. R. Hoen, T. Tan, J. C. Fransoo, and G. J. van Houtum, ‘‘Effect of
carbon emission regulations on transport mode selection under stochastic
demand,’’Flexible ServicesManuf. J., vol. 26, pp. 170–195, Jun. 2012, doi:
10.1007/s10696-012-9151-6.

[38] T. Bektas and G. Laporte, ‘‘The pollution-routing problem,’’ Transp.
Res. B, Methodol., vol. 45, no. 8, pp. 1232–1250, Sep. 2011, doi:
10.1016/j.trb.2011.02.004.

[39] M. Bruglieri, M. Paolucci, and O. Pisacane, ‘‘A matheuristic for the
electric vehicle routing problem with time windows and a realistic
energy consumption model,’’ Comput. Oper. Res., vol. 157, Sep. 2023,
Art. no. 106261, doi: 10.1016/j.cor.2023.106261.

[40] M. M. Solomon, ‘‘Algorithms for the vehicle routing and scheduling
problems with time window constraints,’’ Oper. Res., vol. 35, no. 2,
pp. 254–265, Apr. 1987, doi: 10.1287/opre.35.2.254.

[41] T. Ahamed, B. Zou, N. P. Farazi, and T. Tulabandhula, ‘‘Deep
reinforcement learning for crowdsourced urban delivery,’’ Transp.
Res. B, Methodol., vol. 152, pp. 227–257, Oct. 2021, doi:
10.1016/j.trb.2021.08.015.

[42] R. J. Kuo, M. F. Luthfiansyah, N. A. Masruroh, and F. Eva Zulvia, ‘‘Appli-
cation of improved multi-objective particle swarm optimization algorithm
to solve disruption for the two-stage vehicle routing problem with time
windows,’’ Exp. Syst. Appl., vol. 225, Sep. 2023, Art. no. 120009, doi:
10.1016/j.eswa.2023.120009.

33418 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.trpro.2017.03.037
http://dx.doi.org/10.1016/j.eswa.2020.113910
http://dx.doi.org/10.3934/mbe.2023031
http://dx.doi.org/10.1016/j.matcom.2022.05.020
http://dx.doi.org/10.1016/j.matcom.2022.05.020
http://dx.doi.org/10.1016/j.cie.2022.108597
http://dx.doi.org/10.1109/TFUZZ.2019.2946110
http://dx.doi.org/10.1016/j.cor.2021.105211
http://dx.doi.org/10.1016/j.cor.2020.105193
http://dx.doi.org/10.1016/j.cor.2020.105193
http://dx.doi.org/10.1016/j.ejor.2020.09.022
http://dx.doi.org/10.1016/j.ejor.2020.09.022
http://dx.doi.org/10.1016/j.array.2021.100074
http://dx.doi.org/10.1016/j.array.2021.100074
http://dx.doi.org/10.1016/j.engappai.2020.103666
http://dx.doi.org/10.1016/j.engappai.2020.103666
http://dx.doi.org/10.1002/etep.2536
http://dx.doi.org/10.1002/etep.2536
http://dx.doi.org/10.1016/j.eswa.2019.113151
http://dx.doi.org/10.1016/j.eswa.2019.113151
http://dx.doi.org/10.1109/JSYST.2014.2300201
http://dx.doi.org/10.1016/j.jclepro.2019.118428
http://dx.doi.org/10.1016/j.jclepro.2019.118428
http://dx.doi.org/10.1109/TSMC.2018.2861879
http://dx.doi.org/10.1109/TSMC.2018.2861879
http://dx.doi.org/10.1016/j.ins.2022.07.187
http://dx.doi.org/10.1016/j.ins.2022.07.187
http://dx.doi.org/10.1016/j.cie.2022.108435
http://dx.doi.org/10.1016/j.ins.2022.08.103
http://dx.doi.org/10.1016/j.eswa.2021.114779
http://dx.doi.org/10.13700/j.bh.1001-5965.2022.0686
http://dx.doi.org/10.13700/j.bh.1001-5965.2022.0686
http://dx.doi.org/10.14743/apem2019.2.322
http://dx.doi.org/10.14743/apem2019.2.322
http://dx.doi.org/10.1016/j.swevo.2021.100975
http://dx.doi.org/10.1016/j.swevo.2021.100975
http://dx.doi.org/10.1109/TITS.2019.2910274
http://dx.doi.org/10.1016/j.ins.2018.11.006
http://dx.doi.org/10.1109/TASE.2021.3062979
http://dx.doi.org/10.1109/TNNLS.2022.3148435
http://dx.doi.org/10.1007/bf00992698
http://dx.doi.org/10.1007/s10696-012-9151-6
http://dx.doi.org/10.1016/j.trb.2011.02.004
http://dx.doi.org/10.1016/j.cor.2023.106261
http://dx.doi.org/10.1287/opre.35.2.254
http://dx.doi.org/10.1016/j.trb.2021.08.015
http://dx.doi.org/10.1016/j.eswa.2023.120009


B. Yue et al.: Deep Reinforcement Learning-Based Adaptive Search

BIN YUE received the B.E. degree in computer
science and technology from Nanyang Institute of
Technology, Nanyang, China, in 2020. He is cur-
rently pursuing the Ph.D. degree in management
science and engineering with the North China Uni-
versity of Water Resources and Electric Power.
His research interests include operations optimiza-
tion, decision-making, and intelligent optimization
algorithms.

JUNXU MA received the M.S. degree from
Guangxi University, Nanning, China, in 2009, and
the Ph.D. degree from Xi’an Jiaotong University,
Xi’an, China, in 2017. He is currently a Lec-
turer with the North China University of Water
Resources and Electric Power. He has published
multiple articles in the fields of CNC machine
tools and intelligent manufacturing. His research
interests include mechanical manufacturing sys-
tems and improving manufacturing precision.

JINFA SHI received the Ph.D. degree from
ChongqingUniversity, Chongqing, China, in 1994.
He received the Postdoctoral Certificate at the
Postdoctoral Mobile Station, Beijing Institute of
Technology, Beijing, China, in 1996. He is cur-
rently a Professor, a Ph.D. Supervisor, and the Vice
President of the North China University of Water
Resources and Electric Power. He has published
nearly 200 academic articles. His research inter-
ests include advanced manufacturing technology

and management, industrial engineering and integrated management, infor-
mation management, and system simulation.

JIE YANG received the B.E. and M.E. degrees
from the North China University of Water
Resources and Electric Power, Zhengzhou, China.
He has published nearly 60 academic articles. His
research interests includemanagement science and
engineering, mechanical engineering, and intelli-
gent manufacturing and management.

VOLUME 12, 2024 33419


