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ABSTRACT The manufacturing of hard disk drives involves the intricate assembly of numerous
components, making the testing process time-consuming and resource intensive. To optimize the
manufacturing process and increase testing efficiency, the development of a rule-based expert system is
proposed. This system leverages predictive models constructed from assembly process data to identify
potentially defective hard drives before undergoing extensive testing. By preemptively identifying defects,
this approach substantially reduces testing time and enhances tester capacity. Given the categorical and
imbalanced nature of assembly data, Decision Trees are employed as the prediction model. Specifically,
three Decision Tree algorithms are explored: ID3, C4.5, and CART. In addition, four feature selection
techniques, namely Information Gain, Gain Ratio, Chi-Square, and Symmetrical Uncertainty, are utilized
to identify high-impact features. Our experimental findings reveal that Information Gain coupled with
the C4.5 algorithm yields the most favorable results in terms of prediction accuracy, modeling efficiency,
and rule generation. Moreover, our study establishes that setting the failure probability threshold between
0.15 and 0.70 provides the shortest total test time for the proposed process, as supported by a 95%
confidence level. This achievement represents a statistically significant enhancement compared with the
existing manufacturing process.

INDEX TERMS Decision tree, defect prediction, expert system, feature selection, hard disk drive
manufacturing.

NOMENCLATURE

χ2 Chi-Square.
ANN Artificial Neural Network.
BPNN Back Propagation Neural Network.
C4.5 Improved version of ID3.
CART Classification and Regression Tree.
CT Classification Tree.
DT Decision Tree.
eFMEA Extended Failure Mode and Effects

Analysis.
ECLPS Enhanced Common Lisp Production

System.
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FN False Negative.
FP False Positive.
FS Feature Selection.
GA Genetic Algorithm.
GBT Gradient Boosting Tree.
GR Gain Ratio.
HABs Harmful Algal Blooms.
HDD Hard Disk Drive.
HGA Head Gimbal Assembly.
HSA Head Stack Assembly.
ID3 Iterative Dichotomiser 3.
IG Information Gain.
MBA Motor Base Assembly.
MCFs Microwave Cavity Filters.
MLR Multiple Linear Regression.
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NB Naive Bayes.
NICU Neonatal Intensive Care Unit.
NN Neural Network.
NRO Nutrition Recommendation Ontology.
OPC-UA Open Platform Communications

Unified Architecture.
ORF Online Random Forest.
PCBA Printed Circuit Board Assembly.
RAT Rank-sum test Attribute.
RF Random Forest.
RNN Recurrent Neural Network.
SMART Self-Monitoring, Analysis, and Reporting

Technology.
SU Symmetrical Uncertainty.
SVM Support Vector Machine.
TN True Negative.
TP True Positive.
VCM Voice Coil Motor.

I. INTRODUCTION
The production process of Hard Disk Drives (HDDs)
involves assembling the device from various components
using different assembling machines. Once assembled, each
HDD undergoes a testing operation, which is critical to
identifying defects and ensuring that only fully functional
HDDs are shipped to customers. The detail process is as
shown in Figure 1. Testing each hard drive unit is a costly
and time-consuming process because each unit is composed
of numerous components, and testing must ensure that each
of these components functions properly and operates in sync
with the other components [1], [2], [3], [4]. Therefore, testing
a product with a high storage capacity, e.g., 20 TB HDD,
takes at least one month, regardless of whether it is defective
or not. In fact, a known defective HDD can be removed
from the normal full testing process. This could improve the
manufacturing process by increasing the test capacity. A rule-
based expert system with the objective of optimizing the
manufacturing process of hard disk drives is proposed in this
study. As illustrated in Figure 2, the system uses predictive
models to identify potentially defective drives before they
undergo extensive testing. This is achieved by classifying
hard drives into passers or defectives based on assembly data.
A hard drive predicted as defective is subjected to a tailored,
shorter testing process. This process, which involves selecting
the most relevant test operations from a complete list,
quickly identifies defects. This approach not only expedites
defect detection but also reduces testing time and resource
consumption, thereby enhancing the manufacturing process.
The effectiveness of this approach hinges on the accuracy
of the prediction model. The model, which relies solely on
information about the components and assembly machines
used, applies feature selection techniques and a decision tree
algorithm to create minimal and interpretable classification
rules. These components and machines may be supplied by
different vendors. Figure 3 further elaborates on the workings
of the expert system. It takes the assembly data as input and

FIGURE 1. A flow chart of the current production process of hard disk
drives, showing the assembly and testing operations.

generates rules for defect prediction. These rules are then
used to assign a failure probability to each hard drive. If the
failure probability exceeds a predefined threshold, the hard
drive is classified as defective; otherwise, it is classified as a
passer.

This study is confronted with two primary challenges
in constructing a prediction model. They are (1) all input
features to the model are categorical, and (2) there are many
input features. ADecision Tree (DT) is a well-understandable
binary classifier, and it is the most popular used for
categorical data [5]. It often performs well on imbalanced
data because its hierarchical structure allows it to learn signals
from both classes. Therefore, this study chooses the DT as
the prediction model. This study evaluates the ID3, C4.5, and
CART algorithms [6] to identify the most accurate one. The
large number of input features may cause DTs learning from
all input features to suffer from low predictive accuracy, due
to unrelated input features to the target class. To address this
problem, feature selection (FS) [7] is proposed by exploring
all combinations of four FS techniques (Information Gain,
Gain Ratio, Chi-Square, and Symmetrical Uncertainty) with
the three DTs mentioned above. The best combination is
determined in terms of prediction accuracy, modeling time,
and the number of rules. The study further investigates this
best combination to find its optimal parameters that minimize
the total test time of the proposed process.

In summary, this study embarks on the development
of a rule-based expert system aimed at enhancing the
manufacturing processes of Hard Disk Drives. Through
the utilization of predictive modeling, tailored testing, and
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FIGURE 2. A flow chart of the proposed production process of hard disk
drives, showing the expert system for defect prediction and the tailored
testing process.

feature selection, the aim is to streamline defect detection,
reduce resource consumption, and ultimately optimize HDD
production.

The rest of this paper is organized as follows. Section II
provides information about the HDD product and its
assembly process, as well as the background and related
works on defect prediction, decision tree algorithms, and
expert systems. Furthermore, it explains the methodology of
the rule-based expert system, which uses feature selection
techniques and decision tree algorithms to classify HDDs
into passers or defectives based on assembly data. Section III
presents the results of the experiments, which evaluate the
performance of the expert system in terms of accuracy,
modeling time, rule generation, and test time reduction.
Section IV discusses the ethical aspects of the research.
Section V concludes the article and suggests some directions
for future work.

FIGURE 3. A flow chart of the expert system for defect prediction,
showing the input, output, and components of the system.

II. MATERIALS AND METHODS
This section provides the background and related works
pertaining to the present study. The initial part outlines
the HDD product and its assembly process. The following
parts present illustrative examples on FS techniques and DT
algorithms employed in this study. Finally, the last part of
this section provides an overview of the relevant works in this
area.

A. HARD DISK DRIVE
The HDD is a non-volatile digital data storage device that
utilizes magnetic storage technology to store and retrieve
data on durable material disks [8]. The production of HDD
involves the assembly of hardware components sourced from
various vendors, performed by each production machine.
As illustrated in Figure 4, the HDD comprises six major
components [9]. These components include:

Base Deck/Motor base assembly (MBA) refers to the
aluminum casing that safeguards all internal hardware
components of the HDD from external factors [10].
Spindle Motor is responsible for the control and manage-

ment of the rotational speed of the disks [11].
Disk Platters are the components that store the data, com-

prising platinum group metals deposited on a substrate [12].
Head stack assembly (HSA) is composed of the Actuator

Arm and Head Gimbal Assembly (HGA), which incorporates
the assembly of the slider and the suspension.

The HSA is responsible for synchronizing the movement
of the heads to the appropriate reading/writing position,
in conjunction with the motor rotation speed [13].

Voice Coil Motor (VCM) is an electromechanical linear
motor responsible for positioning the read/write heads by
moving HSA [14].
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FIGURE 4. A diagram of the hard disk drive components, showing the base deck, spindle motor, disk platters, head stack assembly,
voice coil motor, and printed circuit board assembly.

Printed Circuit Board Assembly (PCBA) is a controller
board that controls HDD and provides an interface between
HDD and the computer [15].

All components will be assembled with the order of
process flow for each production machine. Hence, the man-
ufacturing of each HDD component sourced from various
vendors and produced by variousmachines will determine the
segregation of HDD into defect or passer.

B. DECISION TREE
A decision tree is a graphical representation of either a
classification or regression problem. Each node in this
tree corresponds to a feature, each branch represents a
decision rule, and each leaf node represents an outcome.
The decision tree has the capability to recursively partition
data into smaller subsets based on feature values until a
stopping criterion is met. One of the advantages of using
a decision tree is its ease of interpretation and explanation.
It also has the ability to handle both categorical and
numerical data. However, decision trees can be prone to
overfitting, sensitive to noise and outliers, and unstable to
small changes in the data. This section provides a description
of three popular decision tree algorithms, namely ID3, C4.5,
and CART.

1) ITERATIVE DICHOTOMISER 3 (ID3)
This algorithm, published in 1986 [16], is a well-known
decision tree technique. It uses Information Gain (IG) to
choose the best features for modeling. IG measures the
reduction in Entropy, which is the uncertainty or randomness
of the data, after splitting the data by a feature.

The formula for IG is:

IG(T , f ) = Entropy(T )

−

∑
v∈Values(f )

P(T |f = v) × Entropy(T |f = v)

(1)

Entropy, which is calculated using the following formula,
measures the level of disorder or randomness in the dataset:

Entropy(T ) = −

∑
c∈Classes(T )

P(c) × log2P(c) (2)

where T is the dataset, f is the feature, P(T |f = v) is
the probability of each value in feature f , and P(c) is the
probability of each class in dataset T .

ID3 can handle categorical data well, but it has some
limitations. It does not work with missing values and it may
overfit the data if the tree grows too large.

2) C4.5
The C4.5 decision tree algorithm, an extension of ID3, was
introduced in 1993 [17]. It is capable of handling both
categorical and numerical data. C4.5 uses the gain ratio (GR)
for feature selection, which mitigates the bias of information
gain towards features with many values. The GR is defined as
the ratio of information gain and split information, as shown
in the following formulas:

GR(T , f ) =
IG(T , f )

SplitInfo(T , f )
(3)

SplitInfo(T , f ) = −

∑
v∈Values(f )

P(T |f = v)

× log2 P(T |f = v) (4)

where T is the dataset, f is the feature, P(T |f = v) is the
probability of each value in feature f , and IG(T , f ) is the
information gain of the feature.

The algorithm also supports pruning the tree to avoid
overfitting and can handle missing values by assigning them
to the most common class or value.

3) CLASSIFICATION AND REGRESSION TREE (CART)
The CART, introduced in 1984 [18], is a decision tree
algorithm that uses the Gini Index as a criterion for feature
selection. The Gini Index measures the impurity of a node,
which is the probability of a randomly chosen sample being
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incorrectly classified. The Gini Index is calculated using the
following formulas:

GiniIndex(T |f ) =

∑
v∈Values(f )

|T |f = v|
|T |

× Gini(T |f = v)

(5)

Gini(T |f = v) = 1 −

∑
c∈Classes(T |f=v)

P(c)2 (6)

where T is the dataset, f is the feature, |T | is the total count
of items in the dataset, |T |f = v| is the count of items
in the dataset T where the feature f equals the value v,
Gini(T |f = v) is the Gini of each value in feature f , and P(c)
is the probability of each class in dataset T .
CART aims to find the feature and the split point that

minimize the weighted average of the Gini Index of the child
nodes. CART can handle both categorical and numerical data,
and it only allows binary splits. It can also deal with missing
values by assigning them to the most similar subset or using
surrogate splits, which are alternative splits that mimic the
best split as closely as possible.

C. EXPERT SYSTEM
An expert system is a software application that simulates
the problem-solving skills of a human specialist in a
specific domain. It consists of a knowledge base, which
stores facts and rules about the domain, and an inference
engine, which applies logical reasoning to infer solutions
or suggestions [19]. One of the benefits of using an expert
system is its ability to provide consistent and reliable answers
to complex problems, handling uncertainty and incomplete
information through techniques such as probability.

In 2019, Viktor proposed a method for assessing the state
of complex systems under random non-systematic influences,
based on subjective probabilities derived from expert opinion.
The author developed an algorithm for forming an expert
team and a method for constructing expert systems using
Bayes’ theorem. They presented a software implementation
of the expert system in C++ and an application to fault
diagnosis of telecommunication networks, demonstrating its
capability to estimate the subjective probability of the state of
a complex system and support decision-making [20].

For fuzzy logic, in 2022, Leyu et al. proposed a dynamic-
attention-based heuristic fuzzy expert system for tuning
microwave cavity filters (MCFs). The method includes
multiple evaluation functions, a dynamic-attention-based
expert system, and a heuristic fuzzy logic system, achieving
automatic tuning with high applicability, accuracy, and effi-
ciency for MCFs. Simulations and experiments validated the
method’s effectiveness, applicability, and practicality [21].

Foni et al. proposed an automated algae species identifica-
tion system in 2022, utilizing ontology and certainty factors
to assist and validate expert judgment. Tested on 60 samples
of 20 common harmful algal bloom (HAB) species in
Lampung Bay and Jakarta Bay, Indonesia, the system
achieved an accuracy of 73.33% and high agreement with

expert identification on six algae species. This system could
be used as an alternative tool for rapid algal identification or
as part of an early warning system for HABs [22].

However, expert systems have drawbacks. They can be
hard to maintain and update, as the knowledge base may
become outdated or inconsistent over time. Additionally,
they may lack common sense, creativity, or flexibility, being
limited by the rules and facts in the knowledge base.

1) RULE-BASED EXPERT SYSTEMS
Rule-based expert systems represent a significant branch
of expert systems, using IF-THEN rules to encapsulate
expert knowledge in a specific domain. Renowned for their
simplicity and interpretability, rule-based expert systems
find applications in various fields, including medicine. For
example, Ravneet et al. presented an ontology and rule-based
clinical decision support system for personalized nutrition
recommendations in the neonatal intensive care unit (NICU).
The authors developed the Nutrition Recommendation Ontol-
ogy (NRO), achieving a 98% accuracy rate in validation [23].

In industrial settings, a rule-based expert system for
fault detection and diagnosis leverages an extended Failure
Mode and Effects Analysis (eFMEA). A methodology
for digitalizing the eFMEA and generating rules for the
expert system is proposed, allowing communication with
equipment using OPC-UA protocol and handling multi-
fault scenarios. A web application visualizes fault detection
and diagnosis results, providing a clear description of the
approach, implementation, benefits, limitations, and future
work directions [24].

For manufacturing process control, [25] presented a
rule-based simulator for a semiconductor manufacturing
line, written in Enhanced Common Lisp Production System
(ECLPS), a knowledge-based language. The simulator uses
a single-rule template to move product lots through various
process steps, customized with data for each step, route, lot,
tool, etc. The model is simple, flexible, and maintainable,
running daily at the IBM semiconductor manufacturing
plant in Yasu, Japan, on three different semiconductor
manufacturing lines.

As mentioned, expert systems and rule-based expert
systems have been used in various fields such as medicine,
engineering, industrial, education, and manufacturing. In the
context of hard disk drive manufacturing, expert systems can
improve the production process, reduce defects, and enhance
quality. For instance, an expert system can use assembly
data to identify defective drives before extensive testing,
as proposed in this paper.

D. RELATED WORKS
There are two categories of studies for predicting faults issues
in the HDD industry: hard drive failure and manufacturing
defects. The first employs operating data of hard drives
named SMART (Self-Monitoring, Analysis, and Reporting
Technology) to forecast the status of HDD. Well-known data
sources for this kind of investigation include Backblaze and
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TABLE 1. Studies on hard drive failure.

Baidu. Table 1 summarized studies on hard drive failure [26],
[27], [28], [29], [30].

The second employs manufacturing data to predict
defects. For the last decade, only a limited number of
machine learning algorithms have been applied to assist
HDD manufacturing. These applications focus on improving
(1) the yield in hard drive manufacturing process [31] and
(2) the performance of HDD yield prediction [32]. The
objective of the study such as [31] is to improve the yield in
hard drive manufacturing process. To achieve this, a decision
tree technique to identify controllable parameters that could
reduce for HDD defects. The parameters were classified into
three categories: uncontrollable, controllable, and dependent.
The decision tree algorithm (C4.5) was applied to determine
the model with the highest accuracy. The model rules were
used to select the controllable parameters, which were then
adjusted to increase the number of passers. The results of
the experiment showed an increase in passers. However, the
experiments were only conducted in a test environment, mak-
ing it difficult to determine how well the method would per-
form in real-world scenarios. In a study focused on improving
the performance of HDD yield prediction in the manufactur-
ing process [32], researchers utilized machine learning algo-
rithms and feature selection techniques. They applied seven
FS techniques, includingDecision Tree (C5 and CART), Sup-
port Vector Machine (SVM), Stepwise Regression, Genetic
Algorithm (GA), Chi-Square, and Information Gain, to select
top 10 features for modeling. Multiple Linear Regression
(MLR) and Artificial Neural Networks (ANN) algorithms
were used for modeling. The study concluded that the best
prediction performance was achieved with the combination
between GA and MLR, but GA had the longest computation
time.

In this research, a practical issue encountered by manufac-
turers of HDDs is tackled, specifically the reduction of defec-
tive drive test time and the augmentation of test equipment
capacity. A rule-based expert system that utilizes data from
the assembly process to pinpoint defects is proposed, with the
caveat that the accuracy of these predictions is a determining
factor.

Several advantages over previous research in this field are
offered by thismethodology. Firstly, testing time and resource

consumption can be decreased by identifying defective
hard drives prior to comprehensive testing. Secondly, HDD
production can be enhanced by expanding the test capacity
and refining the defect detection process. Lastly, minimal
and interpretable classification rules can be formulated by
employing feature selection techniques and decision tree
algorithms.

However, some limitations are also presented by this
approach that warrant further investigation. Firstly, the model
is predicated on a single production timeframe and may
not extrapolate well to other timeframes or HDD products.
Secondly, the effectiveness of the model is contingent on the
quality and availability of the assembly data, which can fluc-
tuate depending on the vendors and machines involved in the
production process. Thirdly, all factors influencing the defect
probability, such as environmental conditions, human errors,
or hardware failures, might not be accounted for by themodel.

When compared to previous studies that concentrated
solely on hard drive failure prediction or HDD yield
prediction improvement, the model is found to be more
comprehensive and effective as it encompasses both aspects
of the manufacturing process. In contrast to previous studies
that employed complex or computationally intensivemachine
learning algorithms or feature selection techniques, themodel
is more practical and robust, utilizing simple and efficient
methods capable of handling categorical and imbalanced
data. Finally, unlike previous studies that used a fixed number
of features or a predefined threshold for defect prediction,
the model is more flexible and scalable, permitting feature
selection and threshold optimization based on the data and
performance criteria.

E. METHODOLOGY
The study employs a real-world dataset obtained from
HDD manufacturing, consisting of a single timeframe of
production. The dataset contains 53,451 instances and
includes 26 features related to components vendors and
17 features related to production machines. All 43 fea-
tures are categorical data, and the dataset includes two
classes: F (denoting defective instances, which number
7,165) and P (denoting non-defective instances, which
number 46,286. It is crucial to highlight that the dataset is
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complete, devoid of any missing data. This completeness
significantly contributes to ensuring the robustness and
reliability of our analysis. The R code used for the analysis
has been converted into pseudocode and is available in the
appendix section. The dataset used is confidential and cannot
be shared publicly.

The experiments were conducted utilizing R-3.6.3 soft-
ware in Windows 10 operating system. To implement the
FS techniques, namely Information Gain, Gain Ratio, Chi-
Square, and Symmetrical Uncertainty, FSelector library [33]
was utilized. In addition, the DT algorithms, ID3 and CART
were applied from rpart library [34], while C4.5 was utilized
from the RWeka library [35].
The experiments incorporated five-fold cross-validation,

where one fold was allocated as the test data while remaining
four served as the training data. The experimental procedure
encompassed the following steps:

1) Computation of feature importance for all 43 features
utilizing four feature selection techniques.

2) Descending order ranking of feature importance for
each feature selection technique.

3) Training and testing of each decision tree algorithm
with all features as a baseline.

4) Training and testing each decision tree algorithm with
each feature selection technique ranking, commencing
with the top-ranked feature until achieving the highest
accuracy.

The challenge of imbalanced assembly data was addressed
by selecting decision tree algorithms as prediction mod-
els. These algorithms are appropriate for imbalanced data
because they can capture signals from both classes through
recursive partitioning. The original data distribution was
preserved and any potential bias or noise was avoided by
not applying any resampling or weighting methods to the
data [36]. The accuracy of the models was measured by the
confusion matrix, which displays the number of correct and
incorrect classifications for each class. This metric allows the
evaluation of the performance of the models on both defective
and non-defective drives, irrespective of the class imbalance.

To evaluate the performance of the models, predictive
accuracy, total model-building times, the number of rules,
and the total test time were utilized. Predictive accuracy
was computed based on the confusion matrix, which is a
two-dimensional matrix that compares the predicted class
values to the actual class values. The confusion matrix reports
the number of false positives (FP), false negatives (FN ), true
positives (TP), and true negatives (TN ). Predictive accuracy
was determined as the proportion of correctly classified
outcomes with the total number of outcomes as shown in (7).

Accuracy =
TP+ TN

FP+ FN + TP+ TN
(7)

Total model-building time was computed by dividing it
into two cases. The first case involves the baseline, whereby
the time was computed by performing five-fold cross-
validation to all features until the model-building process

was complete. The second case pertained to feature selection
techniques, whereby the time was calculated based on the
feature importance calculation, training, and testing of each
algorithm starting with the top-ranked feature until the
highest accuracy is attained.

Total test times (TTT ) of the current and proposed
processes are calculated by (8) and (9), respectively. Total
test time of the current process is determined by multiplying
number of instances (Q) by the average test time (T ). For
a given classifier, the aim is to determine defect probability
threshold, α, that minimizes the total test time of the proposed
process. Therefore, the following quantities are considered:
number of true positives at threshold (QTPα), number of false
positives at threshold α (QTPα), and short test divider (r)
where r ranged from 1 to T . If r = 2, the short test time
is equal to half of the total test time of normal process.

TTTCurrent Process = Q× T (8)

TTTProposed Process,α = (QTPα ×
T
r
)

+ (QTPα ×
(1 + r) × T

r
)

+ ((Q− QTPα − QFPα) × T ) (9)

In order to validate the significance of the study’s findings,
a series of statistical tests were conducted. These tests focused
on the accuracy of the models and the total test time of
the model with the highest accuracy. The null hypothesis
proposed that there was no significant difference between
the use of all features and the use of feature selection
techniques for each decision tree algorithm. Conversely,
the alternative hypothesis suggested that the use of feature
selection techniques could enhance the accuracy and decrease
the total test time compared to the use of all features.

The study employed a t-test to compare the mean values
of the accuracy for each model and the total test time for the
model with the highest accuracy, setting the significance level
at 0.05. The p-values derived from the t-test were reported
to represent the likelihood of observing the results under the
null hypothesis. Additionally, the study calculated the 95%
confidence intervals for both the accuracy and the total test
time, providing a range within which the true population
mean is likely to fall with 95% certainty.

The study concluded that if the p-value was less
than 0.05 and the confidence interval did not encompass zero,
it could be inferred that the use of feature selection techniques
resulted in statistically significant improvements over the use
of all features.

III. RESULTS AND DISCUSSION
Table 2 presents the accuracy of each decision tree algorithm
for every feature selection technique, with the maximum
values highlighted in bold. All decision tree algorithms for
all feature selection techniques exhibited better than using
all features. Specifically, the accuracies of ID3, C4.5, and
CART with IG were better than using all features, with
improvements of 0.0054, 0.0047, and 0.0095, respectively.
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TABLE 2. Comparison of accuracy.

TABLE 3. Comparison of total times for building models (second).

TABLE 4. Comparison of number of rules.

TABLE 5. Comparison of accuracy for each decision tree algorithm at 95% confidence intervals between all features, IG, GR, χ2 and SU.

Table 3 displays the total times taken to build models,
in seconds, for each decision tree algorithm with each feature
selection technique, with the minimum values highlighted in
bold. All decision tree algorithms for all feature selection
techniques took less time to build models than using all
features. Moreover, all decision tree algorithms with IG took
the least time, with 70.4, 118.6, and 71.2 seconds less than
using all features, respectively.

Table 4 illustrates the number of rules for each decision
tree algorithm with each feature selection technique, with
the minimum values highlighted in bold. The numbers of
rules for all decision tree algorithms with feature selection
techniques were lower than using all features. Specifically,
the number of rules for ID3 and CART with GR were lower
than with all features, with 135 and 161. Furthermore, the
numbers of rules for C4.5 with IG, GR, and χ2 were lower
than with all features, with 380 equally.

Moreover, Table 5 presents the comparison of accuracy for
each algorithm between using all features and each feature

selection technique, with the results at 95% confidential
intervals. Highlighted in bold are results indicating that using
feature selection techniques yielded statistically significant
improvements over using all features.

Based on the best model, Table 6 shows the total test times
in millions of hours between the current process and the
proposed process for each threshold value, with the minimum
values highlighted in bold. Both total test times are calculated
for T = 720 hours and r = 2. The result shows that the
model with the optimal cut-off between 0.15 and 0.70 gives
the minimum total test time.

The failure probability threshold range of 0.15 to 0.70 was
chosen based on accuracy-efficiency trade-offs, empirical
evidence from our experiment, and practical significance for
HDD manufacturing. Lower thresholds increase efficiency
but also false positives, while higher thresholds decrease false
positives but increase testing time. Our experiment showed
the optimal range to be between 0.15 and 0.70. This range
ensures hard drives with low or high failure probabilities
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TABLE 6. Comparison of the total test time (in millions of hours) of the current process and the proposed process for each failure probability cut-off
(threshold).

undergo normal testing, optimizing testing time and resource
consumption while maintaining quality.

Figure 5 shows the optimal failure probability cut-off
versus the total test time for each fold and the average.
The figure illustrates that the optimal cut-off ranges between
0.15 and 0.70, which minimizes the total test time of the
proposed process.

Figure 6 shows the boxplots of the total test time of the
current process and the proposed process at the best threshold
for each fold and the average. The boxplots display the
minimum, maximum, median, and quartiles of the total test
time for each process and each fold. The figure illustrates
that the proposed process has a lower total test time than the
current process for all folds and the average. The figure also
shows that the proposed process has less variation in the total
test time than the current process, indicating that it is more
consistent and stable. The figure supports the conclusion that
the proposed process can significantly reduce the total test
time compared to the current process.

Additionally, Table 7 shows the differences in total test
times between the current process and the proposed process
at the best threshold. Table 8 shows the average difference
between the total test time and the 95% confidence interval
calculated from the data in Table 7. The result shows that the
total test time of the proposed process is significantly reduced
compared to the current process.

TABLE 7. Differences in total test times between the current process and
the proposed process at the best threshold.

TABLE 8. Mean total reduction test time at 95% confidence intervals
between normal process and proposed process.

A. RULE GENERATION AND APPLICATION
The rules were generated using the C4.5 algorithm with
IG as the feature selection technique. This algorithm uses
categorical features (C1, C2, . . . , C43) to classify hard disk
drives into passers (P) or defectives (F). Each feature has a
set of possible values denoted by V0, V1, V2, etc. The rules
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FIGURE 5. A plot of the optimal failure probability cut-off versus the total test time for each fold and the average, showing the range of cut-off
values that minimize the total test time of the proposed process.

are applied in a top-down manner, starting from the first rule
and moving to the next rule if the condition is not satisfied.
The rules can be written as follows:

• If C29 equals ‘‘V0’’, then the class is F.
• If C29 equals ‘‘V1’’ or ‘‘V2’’ and C23 equals ‘‘V0’’,
then the class is F.

• If C29 equals ‘‘V1’’ or ‘‘V2’’, C23 equals ‘‘V1’’ or
‘‘V2’’, and C29 equals ‘‘V1’’, then the class is P.

• If C29 equals ‘‘V1’’ or ‘‘V2’’, C23 equals ‘‘V1’’ or
‘‘V2’’, C29 equals ‘‘V2’’, and C43 is in [‘‘V0’’, ‘‘V1’’,
‘‘V2’’, ‘‘V3’’, ‘‘V4’’, ‘‘V5’’, ‘‘V6’’], then the class is F.

• If C29 equals ‘‘V1’’ or ‘‘V2’’, C23 equals ‘‘V1’’
or ‘‘V2’’, C29 equals ‘‘V2’’, C43 is in [‘‘V7’’,
‘‘V8’’, ‘‘V9’’, ‘‘V10’’, ‘‘V11’’, ‘‘V12’’, ‘‘V13’’, ‘‘V14’’,
‘‘V15’’, ‘‘V16’’, ‘‘V17’’, ‘‘V18’’, ‘‘V19’’, ‘‘V20’’,
‘‘V21’’, ‘‘V22’’, ‘‘V23’’, ‘‘V24’’, ‘‘V25’’, ‘‘V26’’,
‘‘V27’’, ‘‘V28’’, ‘‘V29’’], and C26 equals ‘‘V0’’, then
the class is F.

• If C29 equals ‘‘V1’’ or ‘‘V2’’, C23 equals ‘‘V1’’
or ‘‘V2’’, C29 equals ‘‘V2’’, C43 is in [‘‘V7’’,
‘‘V8’’, ‘‘V9’’, ‘‘V10’’, ‘‘V11’’, ‘‘V12’’, ‘‘V13’’, ‘‘V14’’,
‘‘V15’’, ‘‘V16’’, ‘‘V17’’, ‘‘V18’’, ‘‘V19’’, ‘‘V20’’,
‘‘V21’’, ‘‘V22’’, ‘‘V23’’, ‘‘V24’’, ‘‘V25’’, ‘‘V26’’,
‘‘V27’’, ‘‘V28’’, ‘‘V29’’], and C26 equals ‘‘V1’’, then
the class is P.

• If C29 equals ‘‘V1’’ or ‘‘V2’’, C23 equals ‘‘V1’’
or ‘‘V2’’, C29 equals ‘‘V2’’, C43 is in [‘‘V7’’,
‘‘V8’’, ‘‘V9’’, ‘‘V10’’, ‘‘V11’’, ‘‘V12’’, ‘‘V13’’, ‘‘V14’’,
‘‘V15’’, ‘‘V16’’, ‘‘V17’’, ‘‘V18’’, ‘‘V19’’, ‘‘V20’’,
‘‘V21’’, ‘‘V22’’, ‘‘V23’’, ‘‘V24’’, ‘‘V25’’, ‘‘V26’’,
‘‘V27’’, ‘‘V28’’, ‘‘V29’’], and C26 equals ‘‘V2’’ or
‘‘V3’’, then the class is F.

To apply these rules to a new instance, the values of the
features C29, C23, C43, and C26 need to be checked, and they
are comparedwith the conditions of each rule. The class of the

instance is determined by the first rule that matches the values
of the features. In terms of practical application in manufac-
turing, these rules can be used to predict the failure proba-
bility of hard drives. For example, if a rule states that a hard
drive with a certain combination of component and assembly
machine is likely to fail, this information can be used to adjust
the manufacturing process, such as changing the component
or assembly machine, to reduce the failure probability.

IV. ETHICAL CONSIDERATIONS
A. DATA PRIVACY AND SECURITY
The expert system relies on assembly data to identify
potentially defective drives before they undergo extensive
testing. This data contains confidential information about
the components, machines, and vendors that are part of
the production process. This data is only used within the
manufacturer and not disclosed to any external parties.

B. IMPACT ON WORKERS
The expert system does not affect the workers involved
in the production process. Workers do not need to change
their roles or tasks. The expert system only assists them in
streamlining defect detection and reducing testing time and
resource consumption.

C. ENVIRONMENTAL IMPACT
The expert system may have a positive environmental impact
by optimizing the manufacturing process of hard disk drives.
This may lead to lower energy consumption and waste
generation, which could benefit the environment. The expert
system aims to achieve high accuracy in defect prediction,
which could further reduce the test time.

D. TRANSPARENCY AND ACCOUNTABILITY
The expert systemmakes decisions based on the rules derived
from the prediction model. These rules are created from DT,
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FIGURE 6. Boxplots of the total test time of the current process and the proposed process at the best threshold for each fold
and the average, showing the reduction and variation of the total test time of the proposed process.

which are easy to understand and explain by the workers,
customers, or regulators. The expert system also verifies
its decisions with real test operations (short and full test
operations). Therefore, the system poses no risk for the
manufacturer.

V. CONCLUSION
This paper aimed to develop a rule-based expert system for
enhancing the hard disk drive manufacturing process. The
system predicts defective drives before undergoing extensive
testing, using feature selection techniques and decision tree
algorithms. The paper presented the following aspects:
Summary: The paper proposed a novel rule-based expert

system that leveraged assembly data to predict defects and
reduce testing time in the hard disk drive manufacturing
process. The paper compared various feature selection
techniques and decision tree algorithms for building the
predictive model, and showed that information gain using
C4.5 outperformed the others. The paper also determined
the optimal failure probability threshold that minimized the
total test time of the proposed process, and demonstrated
that the proposed process significantly reduced the test time
compared to the current process.
Major Findings: The experimental results revealed that

information gain using C4.5 achieved the highest accuracy
of 0.8817, required only 27.9 seconds to construct the model,
and generated only 7 rules for classification. The results
also indicated that the optimal failure probability threshold
ranged from 0.15 to 0.70, and that the proposed process with
this classifier and threshold reduced the total test time by
0.0605 million hours on average, with 95% confidence.
Contributions: The paper contributed to the literature on

hard disk drive manufacturing optimization by proposing
a novel rule-based expert system that leveraged assembly

data to predict defects and reduce testing time. The paper
also contributed to the literature on feature selection and
decision tree algorithms by evaluating different combinations
of techniques on a real-world dataset. The paper provided a
practical and effective solution to a real problem faced by
hard disk drive manufacturers, and validated its feasibility
and benefits with empirical evidence.
Practical Implications: The proposed approach could

improve the efficiency and cost-effectiveness of the hard
disk drive manufacturing process by reducing the time and
resources required for testing and increasing the capacity
of the test equipment. The proposed approach could also
enhance the quality and reliability of the hard disk drives
by identifying defects early and avoiding unnecessary
testing.
Ethical Implications: The proposed approach also raised

some ethical implications that need to be considered and
addressed by the researchers and the manufacturers. For
example, the impact of the predictive model on the workers’
well-being and job satisfaction, as themodel could potentially
replace some of their tasks or change their roles and
responsibilities. The environmental and social effects of the
increased production and consumption of hard disk drives,
as the model could stimulate the demand and supply of the
product, which could have negative consequences on the
natural resources, energy consumption, waste generation, and
digital divide. The ethical responsibility of the researchers
and the manufacturers to ensure the transparency, fairness,
and accountability of the predictive model, as the model
could have errors, biases, or uncertainties that could affect
the decision-making and the outcomes of the manufacturing
process. The protection of the data privacy and security of
the assembly process and the hard disk drives, as the model
could expose sensitive or confidential information about the
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components, machines, vendors, or customers, which could
be vulnerable to unauthorized access, misuse, or breach.
Future Work: Future work could focus on applying the

model to other time frames and hard disk drive prod-
ucts, exploring additional feature selection techniques and
machine learning algorithms, and further optimizing the
approach for greater accuracy and efficiency. Moreover,
future work could also address the ethical issues raised
by this paper, and propose ways to mitigate the potential
risks and enhance the benefits of the proposed approach for
the stakeholders involved. Future work could also involve
conducting a stakeholder analysis and an ethical impact
assessment to identify and evaluate the ethical values,
principles, and dilemmas associated with the proposed
approach, and to develop ethical guidelines, policies, and best
practices for its responsible and sustainable implementation.

APPENDIX. PSEUDOCODE FOR R CODE

Algorithm 1 Library Setup
{Define the list of packages}
list_packages <- ["dplyr", ‘‘tidyr’’, . . . , "reservr"]
{Install and load packages}
installed_packages <- Get installed packages
for each package in list_packages do
if package is not in installed_packages then

Install package from ‘https://cloud.r-project.org/’
end if
Load package

end for

Algorithm 2 Data Preparation
{Specify data path}
path <- ‘C:/’
{Import data as characters}
dt_raw <- Read CSV file from path
{Data preprocessing section}
col_str <- ""
col_too_many <- ""
col_singleton <- ""
for each column in dt_raw do
if column has only one unique value then

Add column to col_singleton
else if column has more than 100 unique values then
Add column to col_too_many

else
Add column to col_str

end if
end for
{Select non-singleton columns}
selected_columns <- Split col_str by ","
dt_select <- Select columns ‘‘STATUS’’ and
selected_columns from dt_raw
Remove dt_raw

Algorithm 3 Feature Selection
{Feature Importance section}
feature_importance_algorithms <- ["information_gain",
‘‘gain_ratio’’, ‘‘chi_squared’’, "symmetrical_uncertainty"]

feature_importance_results <- Empty list
for each algorithm in feature_importance_algorithms do
current_dr <- Calculate feature importance using algo-
rithm on dt_select
current_dr <- Order current_dr by attribute importance
Add current_dr to feature_importance_results

end for

Algorithm 4 Decision Tree Learning
{Feature Selection section}
top_n_values <- Sequence from 1 to 10
for each algorithm in ["ID3", ‘‘C4.5’’, "CART"] do
for each dr_list in feature_importance_results do
for each top_n in top_n_values do

dt_a <- Order dr_list by attribute importance
dt_sel_recode <- dt_select
for each val_list in Sequence from 1 to 10 do
top_n <- val_list
lst_col <- Select top_n columns from dt_a
dt_tmp0 <- Select columns ‘‘STATUS’’ and
lst_col from dt_sel_recode
dt_tmp0 <- Shuffle dt_tmp0
for each K in Sequence from 1 to 5 do

df_train <- Select first K rows from dt_tmp0
df_test <- Select rows from K+1 to end from
dt_tmp0
model <- Build decision tree model using
algorithm on df_train
Evaluate model on df_test
Record results

end for
end for

end for
end for

end for
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