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ABSTRACT Radar signal recognition plays a crucial role in modern electronic reconnaissance systems.
With the increasing complexity of electromagnetic environments, radar signals are susceptible to noise
interference under low signal-to-noise ratio (SNR) conditions, posing a challenge to accurate radar
signal recognition. To address this issue, we propose a multilayer decomposition denoising empowered
convolutional neural network (CNN) for radar signal recognition. Specifically, the original radar signals are
first processed by multilayer decomposition denoising, which consists of variational mode decomposition
(VMD), local mean decomposition (LMD), and wavelet thresholding (WT) in sequence, termed as VMD-
LMD-WT. Then we use the Choi-Williams distribution (CWD) to convert the denoised signals into
time-frequency images (TFIs). Finally, an improved CNN with dilated convolution is employed for radar
signal recognition. Experiments demonstrate that the multilayer decomposition denoisingmethod effectively
improves the SNR of the original signal, which is beneficial for the subsequent recognition task. The
recognition accuracy is improved by about 11% compared to that directly using the original signal.
Furthermore, compared to the current network models, the proposed CNN network can efficiently extract
the signal features and improve the detection accuracy of low probability of intercept (LPI) radar signals.
The recognition accuracy reaches 75.3% for 12 signals when the SNR is low to −14dB.

INDEX TERMS LPI radar signal recognition, signal denoising, time-frequency analysis, convolutional
neural network.

I. INTRODUCTION
Radar signal recognition is an essential component of radar
electronic reconnaissance and holds significant importance
in radar electronic countermeasures [1]. With an increasing
number of radar radiation sources, the electromagnetic
environment becomes increasingly complex. In practical
applications, radar signals captured by the receiver are often
disturbed by noise, leading to relatively low signal-to-noise
ratios (SNR). This presents a difficulty for radar signal
recognition under low SNRs. Feature extraction is of great
significance for radar signal recognition. Therefore, there is
an urgent need for improvement of the feature extraction,
especially in the case of low SNRs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Brian Ng .

Traditional methods for radar signal recognition often
rely on manual experience and expertise for extraction of
conventional parameters and pulse description words (PWD),
and then perform relatively simple recognition tasks [2].
However, in complex electromagnetic environments, analyz-
ing features from a single domain is insufficient. In view of
this point, time-frequency analysis methods are employed to
address the constraints of individual time-based or frequency-
based feature extraction, which has become one of the most
widely used feature extraction techniques. Techniques that
include the Wigner-Ville distribution (WVD) [3], short-time
Fourier transform (STFT) [4], and Choi-Williams distribution
(CWD) [5] are commonly used to simultaneously charac-
terize signals in the time-frequency domain. Qu et al. [6]
extracted the time-frequency images (TFIs) of the incom-
ing signals using a multi-core Cohen-like time-frequency

31652

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-4739-0838
https://orcid.org/0000-0002-1953-6281
https://orcid.org/0000-0002-4898-9167
https://orcid.org/0000-0002-5828-6908
https://orcid.org/0000-0002-8316-4996


M. Jiang et al.: Multilayer Decomposition Denoising Empowered CNN

distribution. Then, a convolutional denoising autoencoder
(CDAE) and a deep convolutional neural network (DCNN)
were designed to achieve improved classification for twelve
signals. In [7], the CWD method was employed to generate
TFIs, and the obtained TFIs were served as input to a
convolutional neural network in order to identify radar
signals. This approach enhanced the robustness against noise
and improved the accuracy of recognition. In [8], the authors
adopted CWD and WVD to generate TFIs and proposed
an approach using single-shot multi-box detector (SSD) and
complementary classifier to identify 12 various kinds of radar
signals.

As the common adaptive signal decomposition methods,
empirical mode decomposition (EMD), local mean decom-
position (LMD) [9], and variational modal decomposition
(VMD) have found extensive applications in signal denoising
analysis, mechanical fault identification, and other fields.
Huang et al. [10] introduced EMD to decompose non-smooth
signals intomultiple eigenmode functions in the time domain.
By analyzing the various eigenmodal functions, a certain
degree of noise reduction is achieved by the reconstruction
with more valuable signal information. Nevertheless, the
EMD method lacks rigorous mathematical proof and is
subject to end-point effects and modal aliasing. LMD [11]
has the ability to decompose signals into the combination of
a finite number of single-component amplitude modulation
(AM) and frequency modulation (FM) signals, obtaining
the product function (PF) components with clear physical
meaning. However, the LMD technique still exhibits endpoint
effects. Taking this into account, Dragomiretskiy et al. intro-
duced VMD, a novel adaptive time-frequency analysis tech-
nique [12]. Comparedwith EMDandLMD,VMDovercomes
the problems of endpoint effects and modal aliasing and has
other outstanding advantages in dealing with non-smooth
signals and noise suppression. Recently, numerous enhanced
VMD methods have been proposed, including sequential
variational mode decomposition (SVMD) [13], [14] and
multivariate variational modal decomposition (MVMD) [15].
By combining VMD and slope entropy (SloE), a new feature
extraction method is presented to obtain high recognition
accuracy of ship-radiated noise signals [16]. In [17],
Jiang et al. proposed a denoising method based on VMD and
Hilbert transform to enhance the accuracy of leak localization
in water pipeline systems. This method selectively chose
components with energy amplitudes greater than half of the
maximum energy amplitude for reconstruction. However, it’s
worth noting that these VMD-based signal analysis methods
directly eliminate parts of the IMF [18], potentially leading
to the loss of valuable information embedded in these IMF
components.

In order to make full use of the useful information in
uncorrelated IMFs, we propose a multilayer decomposition
denoising empowered CNN approach for low probability
of intercept (LPI) radar signal recognition in this paper.
The denoising scheme combines VMD, LMD, and wavelet
thresholding (termed as VMD-LMD-WT). Figure 1 depicts

the overall structure of the approach. We first employ the
VMD-LMD-WT method to denoise the time-domain signals
and subsequently analyze the denoised signals using the
CWD to obtain TFIs. After preprocessing, the denoised TFIs
are input into an improved CNN for deep feature extraction
and recognition of signal modulation types. In the CNN,
we use dilated convolution instead of normal convolution to
increase the receptive field without sacrificing the feature
map size. Finally, the aforementioned CNNmodel is used for
classification which successfully recognizes 12 types of LPI
radar signals.

II. SIGNAL MODEL AND BASIC THEORY
A. SIGNAL MODEL
The received radar signal is generally contaminated by noise,
expressed as:

y(t) = x(t) + n(t) = A exp(j2π fk (t) + ϕk ) + n(t) (1)

where x(t) denotes the observed radar signal, n(t) represents
the additive white complex Gaussian noise (AWGN), and
A is the amplitude. fk (t) and ϕk are respectively the
carrier frequency and phase functions, which determine the
modulation of the radar signal.

This paper verifies the performance of the proposed
method by detecting 12 typical LPI modulation types. The
modulation types include FM signals (LFM, Costas), BPSK,
polyphase codes (Frank, P1, P2, P3, P4), and multi-temporal
codes (T1, T2, T3, T4).

B. VARIATIONAL MODE DECOMPOSITION
The basic idea of VMD [19], [20], [21] is to use an
iterative method to identify the optimal solution to the
variational issue, which can efficiently determine the optimal
center frequency and finite bandwidth. The VMD can avoid
the inevitable endpoint effect and the problem of modal
component mixing in the EMD algorithm. The process of
VMD is composed of two stages: constructing the variational
model and determining the optimal solution of the variational
model. The first stage is to construct a variational model.
We first assume that the input signal can be split into k modal
components {uk} each of which possesses a specific center
frequency and finite bandwidth. The Hilbert transform is then
used for the modal component to obtain the analytic signal.
Subsequently, the analytic signal is mixed with the predicted
center frequency to modulate the spectrum of each modal
component to the frequency band. Finally, we calculate the
squared L2 paradigm of the signal gradient. The constrained
variational model can be represented as follows:

min
{uk },{ωk }

{

∑
k

∥∥∥∂t [δ(t) + j
/
π t) ∗ uk (t)]e−jωk t

∥∥∥2
2
}

s.t.
K∑
k=1

uk (t) = x(t) (2)

where {uk} represents the k-th modal component with the
center frequency {ωk}. K indicates the number of modes to
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FIGURE 1. The overall framework of LPI radar signal recognition.

be decomposed, δ(t) denotes the Dirac function, and ∗ is the
convolution operator.

Secondly, the optimal solution of the variational model
is solved by applying the Lagrange multiplier method
which transforms the constrained variational issue into an
unconstrained one,

L({uk} , {ωk} , λ)

= α
∑
k

∥∥∥∂t [(δ(t) + j
/
π t) ∗ uk (t)]e−jωk t

∥∥∥2
2

+

∥∥∥∥∥x(t) −

∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), x(t) −

∑
k

uk (t)

〉
(3)

where L(·) and λ symbolize the Lagrangian function and the
Lagrange multiplier, and α is a quadratic penalty factor.

C. LOCAL MEAN DECOMPOSITION
LMD is a signal decomposition method that breaks down
a random signal into a limited number of sums of PF
components. The PF component is calculated by multiplying
the envelope and the pure FM signal [22], [23]. The
process combines the instantaneous frequency and amplitude,
resulting in full time-frequency distribution of the original
signal. The LMD is improvedwith respect to endpoint effects,
spurious components, and over-envelope and under-envelope
problems. In the signal decomposition procedure, we first
find the neighboring local extremes ni and ni+1 of x(t), and
then evaluate the local mean mi and the local amplitude ai,

mi =
ni + ni+1

2
(4)

ai =
|ni − ni+1|

2
(5)

These local means mi are extended in a straight line
between adjacent extreme points. Then the straight line is
smoothed using the sliding average method to form a local
mean function m11(t). Similarly, we can derive an envelope
estimation function a11(t).The local mean function is then
separated from the original signal,

h11(t) = x(t) − m11(t) (6)

The FM signal s11(t) is obtained by dividing h11(t) by
a11(t), expressed as:

s11(t) =
h11(t)
a11(t)

(7)

By repeating the above steps, the envelope a12(t) of s11(t)
can be obtained. If a12(t) ̸= 1, continue with the preceding
stages until s1n(t) becomes a pure frequency modulated
signal. The envelope signal a1(t) is the product of all envelope
estimation functions,

a1(t) = a11(t)a12(t) · · · a1n(t) =

n∏
q=1

a1q(t) (8)

The PF1(t) component of the original signal is the product
of the envelope signal a1(t) and the pure FM signal s1n(t),

PF1(t) = a1(t)s1n(t) (9)

u1(t) is obtained by splitting PF1(t) component from
the initial signal x(t). Repeat (4) through (9) until uN (t)
is a monotone function. Finally, x(t) is split into N PF
components and uN (t),

u1(t) = x(t) − PF1(t)

u2(t) = u1(t) − PF2(t)
... (10)

uk (t) = uk−1(t) − PFk (t)

x(t) =

N∑
q=1

PFq(t) + uN (t) (11)

III. DENOISING METHOD AND NETWORK MODEL
A. VMD-LMD-WT Denoising Method
Traditional noise reduction techniques using filters can
selectively remove noise in a particular frequency band. For
instance, noise in the high frequencies can be eliminated
by a low-pass filter, while noise in the low frequencies can
be eliminated by a high-pass filter. However, this method
requires predetermined filter types and parameters. Different
from the aforementioned methods, the denoising method
based on VMD can potentially remove the noise from the
signal components in wide frequency ranges. The VMD
divides the input signal into numerous IMFs, with each IMF
representing different frequency bands. The low amplitude
noise components can be more accurately eliminated on
each IMF using thresholding or other denoising methods.
In this paper, AWGN is added to the signals, characterized
by its spectral density being evenly distributed over the entire
spectrum. Therefore, the latter method is more appropriate
for signal denoising in this study.

31654 VOLUME 12, 2024



M. Jiang et al.: Multilayer Decomposition Denoising Empowered CNN

However, VMD denoising requires the manual selection
of parameters and IMF components, leading to insufficient
noise reduction. To address this problem, we propose a
multilayer denoising algorithm based on VMD-LMD-WT.
In particular, VMD performs excellently when splitting
complex non-stationary signals into a series of IMFs. LMD
is good at dealing with these relatively simple IMFs and
the resulting PFs have clear physical meaning [24]. Wavelet
decomposition is a powerful time-frequency analysis tool,
which has found widely application in signal and image
processing. Through the integration of these methods, a more
precise decomposition of the signal at various frequencies
and time scales is obtained. Multi-layer denoising methods
provide comprehensive adaptive solutions for signal noise
reduction and help to understand the characteristics of the
signal. By performing denoising layer by layer, the effect
of noise on the signal can be minimized, and the useful
information of the signal can be retained. In the proposed
algorithm, the signal is divided into two parts: noise-
dominated and signal-dominated. Our primary objective is to
denoise the noise-dominated part of the signal, extracting a
small quantity of useful signals that are hidden by the noise,
and avoiding the loss of valuable signals.

FIGURE 2. Flowchart of the VMD-LMD-WT denoising algorithm.

Figure 2 illustrates the process of the denoising algorithm
which involves the following steps:

(1) The VMD is used to divide the noisy radar signals
into a sequence of IMFs characterized by different frequency
components. This is conducted separately for the I and Q
channels of the signals;

(2) To prevent the loss of valid signals resulting from
manual selection, the correlation coefficient method is
employed to determine the noise-dominated IMFs and signal-
dominated IMFs. The following is the definition of the
correlation coefficient between IMF and the original radar
signal [25]:

ri =

n∑
j=1

[x(j) − x][yi(j) − yi]√
n∑
j=1

[x(j) − x]2[yi(j) − yi]2
(12)

where ri is the correlation coefficient between the i-th IMF
and the original signal, i = 1, 2, 3, · · · ,K , x(j) is the
noise-containing signal with sampling point j, yi(j) is the i
component of the decomposed noise-containing signal with
sampling point j, x represents the mean value of x, and yi
means the average of y(j);

(3) Utilize the LMD method to further decompose
noise-dominated IMFs selected by thresholding. With the
correlation coefficient approach, the decomposed PFs with
higher correlation coefficients are reserved, and the others are
discarded;

(4) WT denoising method is used to denoise the reserved
PFs and remove noise at various frequency bands [26].
The signal-dominated IMFs and the denoised PFs are
reconstructed to obtain the denoised signal.

B. NETWORK MODEL
An LPI radar waveform recognition system based on a
deep convolutional network is proposed in [27]. The model
consists of one convolutional layer, three processingmodules,
and two fully connected layers, enhancing the performance
of LPI radar waveform recognition. In order to achieve multi-
scale feature extraction, we present an improved LPI-Net with
dilated convolution, which incorporates some modifications
from the original LPI-Net. The dilation convolution expands
the original 3× 3 convolution kernel to 5× 5 (dilation rate =

2) or a larger receptive field while keeping the same number
of parameters and computational complexity. To prevent
information loss, we use variant dilation rates instead of a
fixed one. Figure 3 depicts the overall network structure,
while Figure 4 depicts the network’s inception and processing
modules. Themain adjustments to the LPI-Net are as follows:

(1) Following the first 7× 7 convolutional layer, an incep-
tion module is introduced to reduce the dimensionality of
the features while enhancing the network’s feature extraction
capability;

(2) The number of parallel convolutional layers in the pro-
cessing module is increased to three. Using skip-connections,
the concatenate layer collects the learned features from
the previous layer to achieve multi-scale and multi-level
information fusion;

(3) In the processing module, the convolution kernels are
changed from 1 × 3 and 3 × 1 to 3 × 3 and 1 × 1. Each
3 × 3 ordinary convolution layer is replaced with a dilated
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FIGURE 3. The overall structure of the network.

FIGURE 4. The structure of the module. (a) inception module. (b) processing module.

convolution to increase the sensory field without sacrificing
the feature map size. And the dilation rate was set to 1, 2,
and 4, respectively.

IV. EXPERIMENTS AND DISCUSSION
A. DATASET AND EXPERIMENTAL SETTINGS
In the experiment, the LPI radar signal dataset is created by
simulation. The range of SNR is from −14 dB to 10 dB
with steps of 2 dB. For each SNR, 400 training samples
are created at random for each signal, resulting in a total
of 62,400 TFIs. The dataset is split into an 8:2 ratio, with
80% of the samples allocated to the training set and 20%
assigned to the validation set. Additionally, 150 test samples
of each signal for each SNR are generated to test the training
results.

To train the model, we use the cross-entropy function as
the loss function and the Adam function as the optimization
function. The epoch is set at 100 and the batch size to 64.
Every ten epochs, the learning rate is changed from its orig-
inal value of 0.001 to 0.1 times that value. The experiments
are performed on a system equippedwith a 2.40GHzCPU and
an NVIDIAGeForce RTX 3090GPU. Themodels are trained
using the Python 3.9.16 programming language and the deep
learning model framework TensorFlow 2.12.0. For further
research, the code for multilayer decomposition denoising
and improvedCNN is available at https://github.com/stu-cjlu-
sp/rsrc-for-pub/tree/main/VMD-LMD-WT.

B. RESULTS AND ANALYSIS
1) COMPARISON OF DENOISING EFFECT
In the simulation, we take an LFM signal with an SNR of
−6 dB as an example. Initially, we conduct a VMD on the
radar signal, resulting in nine IMF components spanning
from low to high frequencies, as illustrated in Figure 5. The
correlation coefficients associated with each IMF component
are presented in TABLE 1. It can be seen that the correlation
coefficients of IMF2, IMF3, and IMF4 significantly exceed
those of the other IMFs. The higher correlation with
the original signal implies that these components contain
more relevant information. To distinguish between signal-
dominant and noise-dominant components, a correlation
coefficient threshold of 0.2 is established. Accordingly,
IMF2, IMF3, and IMF4 are classified as signal-dominant
components and the remaining IMF components are noise-
dominant ones.

After that, we extract six PF components from each noise-
dominated IMF by using the LMD approach. TABLE 2
lists the correlation coefficients for each PF component after
decomposing IMF1. The correlation coefficient of PF2 is
significantly higher than the others, which indicates that the
PF still contains useful information to be further extracted.
In contrast, the remaining PFs show lower correlation
coefficient and are subsequently eliminated. Based on the
above analysis, The correlation coefficient threshold is set
to 0.02. Subsequently, the selected PF components undergo
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FIGURE 5. VMD decomposition results of LFM signal at SNR = −6 dB.

TABLE 1. Correlation coefficient values for IMF components.

TABLE 2. Correlation coefficient values for PF components.

a denoising process using the WT to extract valuable
information from them. After denoising, the PF components
are reconstructed only with the signal-dominant components,
resulting in the VMD-LMD-WT denoised signal.

To evaluate performance of our suggested denoising
approach, we compare it with two commonly used algo-
rithms, ensemble empirical mode decomposition (EEMD)
[28] and VMD-WT [29]. In Figure 6, we present the signal
waveforms before and after denoising using the three afore-
mentioned algorithms. Figure 6(a) illustrates the waveform
before denoising and Figure 6(b-d) show the waveforms
after denoising using EEMD, VMD-WT, and VMD-LMD-
WT, respectively. It is observed that the noise interference
in the signal is significantly reduced by using the VMD-WT
and VMD-LMD-WT algorithms, whereas the EEMD shows
limitations in reconstruction waveform with residual noise
interferences.

The SNR is adopted to further measure the performance of
signal denoising, which can be written as:

SNRout = 10lg


N∑
i=1

x(t)2

N∑
i=1

[x(t) − x ′(t)]2

 (13)

where x(t) and x ′(t) represent the original input signal and the
denoised signal, N indicates the number of sampling points.

TABLE 3. SNRout under different denoising methods.

TABLE 3 compares the SNR before and after denoising
using three different algorithms. As the input SNR increases,
the SNR improvement shows a general decreasing trend.
When the SNR is −14 dB, the SNR improvement value
reaches the maximum, and the proposed VMD-LMD-WT
can improve the SNR by about 11.76 dB, which outperforms
the other two denoising methods. In general, the VMD-
LMD-WT algorithm is highly effective in filtering out the
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FIGURE 6. Noisy and denoised waveforms using three denoising algorithms. (a) noisy signal. (b) denoised signal by EEMD. (c) VMD-WT.
(d) VMD-LMD-WT.

Gaussian noise from the LPI radar signal to emphasize its
signal characteristics.

2) EFFECTIVENESS OF MULTILAYER DENOISING ALGORITHM
To assess the effectiveness of the multilayer denoising
method, we compare it with EEMD and VMD-WT. For
fairness, the neural network is fixed as the proposed CNN
model. Figure 7 displays the CWD-TFIs of the noised signal
and the denoised signals by three denoising algorithms.
Compared to Figure 7(a)(b), Figure 7(c)(d) contain less noise
and are visually clearer. Based on this observation, we can
conclude that the VMD-WT and VMD-LMD-WT denoising
methods are significantly better than EEMD.

Then, we analyze the detection accuracy of 12 signals
using the EEMD, VMD-WT, and VMD-LMD-WT denoising
algorithm. The results, as shown in Figure 8, indicate
that VMD-LMD-WT denoising can achieve a recognition
accuracy of 75.3% when the SNR is −14dB. This represents
an improvement of approximately 11% compared to the
original signal. Additionally, there is also an improve-
ment when compared to the two methods of EEMD and
VMD-WT.

Due to the poor performance of EEMD denoising in
previous experiments, we further investigate the VMD-WT
and VMD-LMD-WT denoising algorithms. We compare the
recognition accuracies of these two methods for different
radar signals in Figure 9, which demonstrates that the
VMD-LMD-WTmethod has significantly higher recognition
accuracy than the VMD-WT method for polyphase codes,
especially at low SNR. The foregoing phenomena can be
linked to the VMD’s poor noise tolerance in high-noise

FIGURE 7. CWD-TFIs of the noised signal and the denoised signals by
three denoising algorithms. (a) signals with noise. (b) EEMD. (c) VMD-WT.
(d) VMD-LMD-WT.

environments. However, in the VMD-LMD-WT method,
the VMD and LMD use different signal decomposition
strategies, which help to preserve the structural information
of multiphase codes more successfully. Additionally, wavelet
thresholding provides enough information to handle residual
noise more precisely.

Furthermore, we analyze the recognition confusion of the
VMD-LMD-WT method. Figure 10 demonstrates that while
most signals have higher classification accuracy at SNRs of
−10 dB, P1 and P4 codes are still poorly recognized. In fact,
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FIGURE 8. Recognition accuracy under different denoising algorithms.

FIGURE 9. Recognition accuracy of different radar signals: (a) VMD-WT;
(b) VMD-LMD-WT.

approximately 27% of P1 codes are incorrectly recognized
as P4 codes. This is mainly caused by the high bandwidth
occupancy and frequency jitter of polyphase codes in both the
time and frequency domains. When dealing with such high-
dynamic-range and fast-transforming signals, the VMD and
LMD may not be able to capture the details and features of
the signals, resulting in poor denoising results.

FIGURE 10. Confusion matrix for SNR = −10dB.

FIGURE 11. Accuracy of different neural networks.

3) PERFORMANCE COMPARISON OF DIFFERENT MODELS
In this section, experiments based on different neural
networks are conducted to validate the superiority of our
proposed network. The input data is the TFI of the signal
denoised using the VMD-LMD-WT denoising technique.
We compare the proposedmodel with other models, proposed
by Kong et al. [7], Huynh-The et al. [27], Wang et al. [30],
and Ni et al. [31]. The comparison results are shown in
Figure 11. Figure 11 demonstrates that our model achieves
the highest accuracy at almost every SNR level. When the
SNR increases to 0 dB, the classification accuracies of
all compared algorithms approach 100%. At an SNR of
−12dB, our model has a classification accuracy of 85.17%,
which is approximately 6% and 3% better than the CNN
suggested by Kong et al. and Huynh-The et al., respec-
tively. We attribute this improvement to the introduction
of dilated convolutions and the modifications of network
structure. Dilated convolutions increase the receptive field
by introducing blank space in the convolutional kernel.
In the low SNR environment, dilated convolution has
the better ability to capture of contextual information as
compared with the conventional counterpart, enhancing the
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ability of model to understand and accurately recognize
signals. The increase in skip connections enables the direct
connection of information from lower levels to higher levels,
facilitating better integration of features from different levels
of the network. This improvement contributes to the overall
performance of the model.

V. CONCLUSION
In this paper, a novel method is proposed for radar signal
recognition under low SNR scenarios by leveraging a
multilayer denoising scheme and improved CNN. The multi-
layer denoising algorithms and neural network adjustments
are the two key measures that contribute to the success of the
proposed method. The proposed method uses a combination
of VMD, LMD, and WT for effective multi-layer noise
reduction. In comparison to existing denoising methods, the
proposed multilayer denoising approach demonstrates the
capability to enhance the SNR significantly. The introduction
of this denoising method can potentially improve the quality
of TFIs, thereby contributing to improved identification per-
formance. In addition, the recognition network incorporates
dilated convolution to increase the sensing field without
increasing the number of parameters. Simulation results
demonstrate that the proposed method achieves a recognition
accuracy of 75.3% for 12 radar modulation signals when the
SNR is as low as −14 dB. In future work, we will focus on
the study of the sophisticated signal decomposition methods
to enhance the denoising effect of TFIs, and the design of
network architecture to improve the recognition accuracy of
the radar signals.
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