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ABSTRACT Due to the limited light penetration in underwater environments, sonar equipment plays
a crucial role in various commercial and military operations. However, underwater images often suffer
from degradation due to scattering and absorption phenomena, resulting in poor visibility of submerged
objects. To address this challenge, image enhancement techniques are essential for enhancing the appearance
and visibility of underwater objects. This research proposes a novel approach called HLAST-ACNet,
which combines the advantages of a hybrid Local Acuity Swin Transformer and an Adapted Coat-Net for
Underwater Object Detection (UOD). The HLASwin-T-ACoat-Net leverages Contrast Limited Adaptive
Histogram Equalization (CLAHE) to increase the quality of images. Additionally, it incorporates a path
aggregation network to integrate deep and shallow feature maps and utilizes online complicated example
mining to improve training efficiency. Furthermore, the algorithm improves Region of Interest (ROI)
pooling by introducing ROI alignment, which mitigates quantization errors and enhances object detection
accuracy. Compared to existing algorithms, the algorithms based on HLASTACNet demonstrate significant
improvements in the URPC2018 and OUC datasets, achieving precision rates of 91.25% and 92.36%,
respectively. The research model has a higher computational complexity than four existing methods,
as evidenced by its GFLOPs, per-image processing time with a speed of 20ms, and the FPS measures for
average processed frames per second reaching 2.28s. The researchmodel effectively addressed the challenges
and false detection with varying sizes of objects in complicated underwater environments.

INDEX TERMS UOD, CLAHE, local acuity Swin transformer, ROI pooling and adapted coat-net.

I. INTRODUCTION
In the underwater realm, the restoration of physical entities
poses a significant challenge, mainly due to the attenuation
of light caused by water absorption and the unpredictable
nature of illuminations resulting from the scattering medium

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram .

[1], [2]. Various approaches were employed to capture visual
representations of objects in environments with inadequate
lighting, aiming to improve the visual clarity of images taken
in underwater settings [3], [4], Polarimetric imaging sys-
tems were employed to address backscattering effects and
achieve enhanced image resolution. While the application
of polarization correction holds the potential to improve
the reconstruction process, it simultaneously obstructs a
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portion of incident light, leading to a reduction in the signal-
to-noise ratio and introducing complexities in underwater
object detection (UOD) imaging. The quality of underwater
images is significantly affected by absorption and scattering,
both exhibiting wavelength dependence.

This phenomenon inevitably leads to reduced visibility,
contrast, and the emergence of color irregularities. These
adverse effects pose substantial limitations on the practical
utility of underwater images and videos in fields such as
marine biology, archaeology, and ecology. Consequently, var-
ious algorithms for underwater images enhancement (UIE)
serve as an initial pre-processing phase for UOD opera-
tions. This aims to enhance the identification accuracy of
the system by improving the overall quality of images [5].
Although with the extensive efforts, thorough investigation,
and perspicacious analysis of the comparison among UIE
and UOD tasks, the insufficient situation persists in this
field, owing to the absence of open access UOD image data
sets, equipped with reference images and bounding boxes
annotations, i.e., images unrestricted by underwater regres-
sion. Given the lack of reference images, a prior study [6]
solely examined the impact of UIE algorithms on UOD
tasks through an assessment of the interplay between the
non-reference image quality evaluation metrics [7] and detec-
tion accuracy. Nevertheless, metrics to utilize the image
quality without utilizing a reference image only provide a
limited insight into the image’s attributes and their correlation
with human perceptual experience is not always coherent,
as demonstrated in previous research [8].
An extensive inquiry into the interrelationship between

two given tasks necessitates an examination of the corre-
lation among the full-reference images and identification
accuracy metrics [9]. These metrics possess the capability to
evaluate various characteristics of the quality of an image,
including but not limited to its textures, colors, structures,
and contents. Though, the utilization of reference image
is deemed imperative in conducting comprehensive assess-
ments of image quality through the full-reference approach.
Numerous research endeavors on the detection of submerged
objects have substantially contributed to a wide range of eco-
logical applications. The generic methodologies formulated
are advantageous in the identification of entities in complex
environments. The field of deep learning, an area of emerging
research, has demonstrated notable efficacy in image process-
ing tasks, with examples including image recognition, object
detection, and person pose estimation [10], [11].
In the integration of neural networks with Signal Pro-

cessing Information (SPI) systems, two modalities exist for
obtaining the ultimate target images. One leverages the
resilient neural networks to restore the integrity of the object
images, while the another one employs the neural network for
training and forecasting images after the process of recon-
struction. The utilization of side-scan and forward-looking
sonars has become ubiquitous in the field of oceanography as
they are invaluable imaging systems employed for capturing

expansive seafloor images. Their usage has amplified expo-
nentially owing to their increased deployment of autonomous
underwater vehicles. The extraction of quantitative informa-
tion from images resulting from said processes poses a con-
siderable challenge, primarily concerning the detection and
extraction of information about the objects contained therein.
The recent progressions in the field of machine learning have
facilitated the automated identification process, which can be
efficiently utilized in real-time scenarios. Nevertheless, the
tool’s capacity to effectively manage dynamic backgrounds is
limited. The requirement for the creation of efficient schemes
for underwater detection that are appropriate for difficult
scenarios is evident.

As discussed earlier, the standard of subaquatic images
is based upon the aquatic surroundings. Consequently, the
efficacious application of the deep learning methodology is
contingent upon the acquisition of an ample quantity of sonar
images across diverse aquatic environments as well as vary-
ing operational parameters. UOD faces unique challenges
due to the specific characteristics of underwater images,
such as low visibility, colour irregularities, and background
complexities. Traditional approaches, including polarimetric
imaging systems, have shown some improvements in enhanc-
ing underwater image quality, but they still have limitations in
handling dynamic backgrounds and achieving robust detec-
tion performance. The present investigation employed deep
learning (DL) methodology utilizing the URPC2018 and
OUC datasets.

The main contributions of the research paper are summa-
rized as follows.

• The research paper introduces a novel approach for
UOD in challenging underwater frames. After restoring
the images, they are subjected to the LASwin-T model,
which is tailored for handling the intricacies of under-
water environments. This contribution aids in addressing
the complexities of underwater scenes and advances the
state-of-the-art in UOD.

• Another noteworthy contribution involves the inte-
gration of a path aggregation network, serving as
a mechanism to merge deep and shallow feature
maps. Through this integration, the research paper
enhances the representation of image features, result-
ing in a more comprehensive and informative feature
map that significantly contributes to improved detection
performance.

• The effectiveness of the proposed UOD method is rig-
orously examined through a series of comprehensive
experiments. The evaluation results underscore the supe-
riority of the system over existing state-of-the-art meth-
ods, both in terms of detection accuracy and overall
performance.

The remaining of the article is organized as follows. Section II
covers existing DL UOD methods. Section III outlines the
proposed UOD framework with CLAHE, Coat-Net, and local
Swin transformer-based schemes. Section IV presents the
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experimentations, dataset, results, and analysis. Finally, con-
clusions and future work are discussed in Section V.

II. RELATED WORKS
Abu and Diamant [12] utilized a Support Vector Machine
(SVM) to distinguish between background and shadow-
related pixels by extracting statistical characteristics from the
pixels in the ROI. This algorithm’s strength lies in its ability
to display resilience as a result of its primary parameters
being configured on the spot. Furthermore, the algorithm has
a broad scope as it can be utilized across various forms of
sonar detection without requiring any prior details regarding
the dimensions or arrangement of the object being detected.
To evaluate how well the detection works, this research
employed a unique self-governing underwater device to cap-
ture a total of 270 sonar images, which are also being shared
with the broader public. A detection strategy for pond-raised
river crabs was introduced by Ji et al. [13], which prioritizes
high accuracy and swift results. The successful identifica-
tion of the underwater river crab target can be achieved
through the utilization of both the MobileCenterNet model
and a multi-scale pyramid fusion image enhancement tech-
nique. The suggested strategy involves applying a multi-level
pyramid merging method to improve the quality of crab
images captured underwater, where blurriness and uneven
lighting are common issues. By utilizing CLAHE to boost
contrasts and Underwater Dark Channels Prior (UDCP) to
eliminate haze, the image’s overall quality is enhanced.More-
over, a MobileCenterNet model-based approach to identify
crab targets is presented. This approach not only achieves
simplicity and agility but also focuses the model’s sensi-
tivity on relevant characteristics specific to crabs. The Fea-
tures Fusion Model (FFM) was developed for extracting
multi-scale feature maps data, as explained in this study’s
description. In addition, the utilization of Atrous Spatial Pyra-
mids Pooling (ASPP) enables the integration of diverse con-
text information from separate receptive fields. Based on the
experiment’s results, it can be inferred that MobileCenter-
Net displays moderate-precision scores and F1 values, both
reaching 97.86% and 97.94%, respectively. Moreover, the
dimensions of the model are compact at just 24.46 M, and
it can detect with a rapid speed of 48.18 frames per second.

Hua et al. [14] have introduced a new type of subaquatic
object detector that employs YOLOv5s. At first, a module
was created to improve or decrease various hierarchical prop-
erties in a controlled way and reduce the interference of
acoustic signals from intricate underwater environments dur-
ing feature fusion. A novel approach called FMSPP involving
a rapidly mixing pool layer of equal size has been proposed,
aimed at spatiotemporal pyramid pooling. This architecture
can improve the descriptive abilities of texture and contour
features in a network, reducing the parameters and conse-
quently augmenting the network’s general performance and
accuracy in classifying. The effectiveness of the suggested
method is validated by conducting ablation and multi-method

comparison experiments on both the URPC and DUT-USEG
datasets. The detector showcased in this research exhibits
notable advantages in detecting precision and productivity
when compared to existing detectors.

Panda and Nanda [15] introduced the SKDE model, which
utilizes a method of spatial kernel density estimation for
learning within the SKDE feature space. Creating a model
of the surroundings and gaining an understanding of it largely
involves the use of individual pixels in an analytical approach.
Using the histogram representation, the model histograms
gain an understanding of the new pixel. The current research
has presented an innovative method for learning models and
categorizing pixels, which employs a similarity measurement
technique based on correntropy. Camera model parameters
are determined by utilizing a 2D optimization approach that
employs highly accurate corner features of an object. These
features are measured to subpixel precision. The use of sub-
pixel characteristics in the pipelining system enables the
smooth and accurate determination of model parameters. The
model’s estimated parameters are used as a tool to convert
the input frame, which is then employed for both acquiring
and organizing the model. The suggested plan has undergone
experimental testing by using six different datasets of video
frames captured underwater to validate its effectiveness.

Yeh et al. [16] put forward a compact DL model for iden-
tifying objects in images captured underwater. The network
was intentionally created to learn both colour conversion and
object detection simultaneously, with a focus on underwater
environments. The main aim of the module concerned with
converting image colors is to solve the problem of colour
absorption underwater by transforming coloured images into
grayscale ones. The objective is to maximize the identifying
object’s accuracy while limiting the overall computational
resources required. The experiment’s results indicate that
using the lightweight collaborative learning model on the
Raspberry Pi platform is a remarkably effective approach
for detecting underwater objects, especially when compared
to current methods. In their study, Sun et al. [17] presented
a convolutional neural network (CNN) based knowledge
transfer framework to recognize objects underwater. This
framework aimed to address the challenge of extracting
distinctive features from images that possess comparatively
low contrast. Despite the inadequacy of the training dataset,
the transfer framework can effectively acquire a recognition
model tailored to the specific task of underwater object recog-
nition, through the aid of data augmentation. To enhance
the identification of objects in underwater videos, this study
proposes the implementation of a weighted probabilities deci-
sion mechanism that is capable of identifying objects across
multiple frames. To verify the efficacy of the approach, the
evaluations were computed on a publicly available dataset.
The findings indicate that the method put forth demonstrates
favorable outcomes for recognizing objects in underwater
environments based on the analyses of the test image datasets
and underwater videos.
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Pan et al. [18] used a newCNN design to train video frames
captured underwater. The current methodology revolves
around a modified version of ResNet, a neural network,
which has been customized to ease the process of identifying
submerged objects. The M-ResNet is an advanced method
that effectively boosts productivity by integrating multi-scale
strategies for accurately detecting objects of different sizes,
especially those that are relatively smaller. The results gath-
ered from the trial showcase that the model achieved a
recognition accuracy rate of 96.5% (mean average precision),
indicating its effectiveness. From now on, there is a recently
suggested gadget that can independently recognize items pri-
marily in aquatic environments.

Li et al. [19] developed modified YOLOv8 DL model
aimed at detecting fish. To assess the precision and effec-
tiveness of the models, YOLOv8 becomes better equipped
to handle occlusion-related issues. To optimize the model’s
training on the occlusion dataset, employed a dedicated loss
function designed for such scenarios Repulsion Loss. This
tailored approach contributes to the improved performance
of the model in addressing occlusion challenges during
fish detection. These approaches were extremely lightweight
when correlated to updated versions, yet they exhibit similar
levels of performance.

An improved YOLOv5 model was designed in [20] for
detecting underwater target wakes in multi-source images.
The model, enhanced with linear feature detection, distin-
guished between underwater and surface targets, as well as
optical and infrared images. By optimizing the feature layer
through parameter and image space conversion, the proposed
model demonstrated superior performance over the original
YOLOv5 in experimental results. An enhanced Faster RCNN
model was developed for UOD. The VGG16 structure was
replaced with Res2Net101 in the backbone network, improv-
ing expressive ability. OnlineHard ExampleMining (OHEM)
addressed sample imbalance, and Generalized Intersections
Over Union (GIOU) with Soft Non-Maximum Suppressions
(Soft-NMS) optimized bounding box regression. Multi-scale
training enhanced model robustness, with results confirming
the method’s effectiveness in UOD [21]. The research in [22]
enhanced the YOLOv5 model and its subset version through
training on diverse data sets characterized by varying levels of
image qualities. The hyperparameters during the extraction of
features phase were initially set using momentum and learn-
ing rate, and subsequently refined through the utilization of
the ADAM optimizer and the implementation of a reducing-
learning-rate-on-plateau function. The optimized YOLOv5
models demonstrated improved performance, enhancing the
precision of UOD.

EfficientDet-Revised, an improved model for UOD was
implemented in [23]. Changes included adding the Channel
Shuffle module to the MBConvBlock for enhanced infor-
mation exchange, replacing the attention modules fully con-
nected (FC) layer with convolution to reduce parameters,
and introducing an Enhanced features extraction module for

multi-scale features fusion. Results showed that EDR outper-
formed other algorithms in detection efficiency. An enhanced
small target detection algorithm based on YOLOv7 was
developed for underwater scenarios. The approach improved
detection accuracy by concentrating on crucial features of
small targets, reducing model complexity through the inte-
gration of the SENet attention mechanism, enhanced FPN
network topology, and the EIoU loss function. Results
showed superior performance compared to other networks,
achieving heightened detection accuracy on the test set [24].
A two-stage UOD network based on Faster R-CNN, lever-
aging the Swin Transformer as the backbone was devel-
oped. It enhanced feature fusion with a path aggregation
network and improved training efficiency through online hard
example mining. Additionally, ROI pooling was upgraded
to ROI alignment, maximizing identification performances,
and reducing quantization errors. Experiments demonstrated
enhanced detection outcomes in complex underwater envi-
ronments for the enhanced FR-CNN model [25].

FIGURE 1. Overview of proposed UOD based hybrid deep learning
method.

The existing research landscape in UOD employs a variety
of ML and DL models. Approaches range from traditional
methods like SVM and CNN to more recent advancements
such as YOLOv5, EfficientDet, and Swin Transformer-based
models. Researchers have addressed challenges such as low
contrast, shadow-related pixels, and the need for accurate
detection in complex underwater environments. Despite the
progress, several research gaps persist. The literature shows
a diversity of models and methodologies, but there is a lack
of standardized evaluation metrics and benchmark datasets,
making it challenging to compare the performance of dif-
ferent models comprehensively. Additionally, many stud-
ies focus on specific marine organisms or objects, leaving
room for the development of more generalized and versatile
UOD models. Furthermore, there is limited exploration of
real-world applications and deployment scenarios, raising
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TABLE 1. Research gap of existing UOD methods based on ML and DL.

FIGURE 2. Proposed UOD based on HLAST-ACNet.

questions about the scalability and adaptability of these mod-
els in practical underwater settings. Table 1 presents the
research gap of existing UOD methods. The problem state-
ment in UOD research revolves around the need for improved
detection accuracy, particularly in challenging underwater
conditions. Existing models often grapple with issues related
to feature extraction, sample imbalance, and robustness in
varied environments.Moreover, the lack of standardized eval-
uation metrics impedes the establishment of a benchmark

for UOD models. Addressing these challenges is crucial for
advancing UOD capabilities and facilitating the deployment
of reliable and efficient underwater detection systems in real-
world scenarios.

III. PROPOSED UOD BASED HYBRID DEEP LEARNING
METHOD
The automated methodology presented in this study is
designed to identify multiple occurrences of fish presence in
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underwater images. Frames extracted from underwater videos
often encounter adverse effects such as blurring, illumination
diffraction, occlusions, and various forms of deterioration,
presenting challenges for accurate object identification. The
proposed scheme for optimal detection of submerged objects
comprises three distinct modules. Figure 1 illustrates the
overview of the research model. The primary objective of the
initial data pre-processing module is to address colour degra-
dation and geometric distortions within the input frames. The
results of the CLAHE are utilized by the transfer learning
approach using HLAST-ACNet to produce bounding boxes
for the targeted object.

A. INPUT IMAGE COLLECTION
This portion of the manuscript endeavors to establish an
extensive underwater dataset to facilitate the examination
about the proposed approach impacts the phenomenon of
UOD for researchers. The URPC2018 dataset comprises
2,901 pictures designated to train the model and 800 images
to test the model. The images presented in the dataset bear
varying resolutions, namely 586 × 480, 704 × 576, 720 ×

405, and 1, 920 × 1.080. The annotations about the test
set are currently unavailable. Furthermore, several images
were gathered from an artificial underwater habitat. Figure 2
depicts the proposed UOD based on HLAST-ACNet.

The OUC-VISION dataset offers annotated images of
aquatic environments along with bounding box annota-
tions for further analysis and research purposes. The
present dataset encompasses a collection of 4,400 photo-
graphic images of submerged environments, which have been
obtained under varying illuminative conditions through the
utilization of a bespoke lighting apparatus. Furthermore, the
present study has simulated three levels of turbidity variabil-
ity, namely, clarity, moderate and high turbidity, through the
incorporation of soil particles into the water sample. Con-
sequently, the aquatic imagery captured by OUC-VISION
exhibits a multitude of fluctuating illumination levels and
turbidity variations. The resolution of the images is 486 ×

648 pixels. The URPC 2018 and OUC dataset’s raw underwa-
ter images extracted from the OUC-VISION dataset are pre-
sented through examples depicted in Figure 3 and Figure 4.

FIGURE 3. The input images of the URPC 2018 dataset.

B. IMAGE ENHANCEMENT USING CLAHE
The image histogram serves as a graphical representation
of the intensity values present throughout an image. The
principal purpose of a histogram is to provide statistical data

FIGURE 4. Samples of the raw images in the OUC dataset.

regarding an image. For this reason, the manipulation of
the histogram can be employed as a means of conducting
image enhancement. The histogram equalization technique is
widely used in image enhancement owing to its simplicity and
low computational burden. The present investigation utilizes
the CLAHE technique to enhance colour retinal imagery. The
present technique of enhancement finds its widespread appli-
cation in the field of UOD, where the notable characteristics
include, inter alia, object contrast. The contrast of an image
is determined by the interplay between the extent of intensity
values present and the distinction between the highest and
lowest pixel values.

The primary aim of utilizing histogram manipulation for
image enhancement involves achieving a consistent dis-
tribution of intensity throughout the image. The visual
representation featuring limited contrast possesses a con-
strained effective range of intensity. Histogram equalization
is an image processing technique that facilitates the spread
of intensity distribution across an image and helps to adjust
the intensity values of the original image. The schematic
representation of the method for enhancing colour retinal
images, as postulated in this study, is depicted in Figure 5.

The methodology utilized in this study involves using
retinal images input in RGB color format. The initial step
involves partitioning the colour image into separate channels,
thereby generating three distinct images, each representing
the green (G), red (R), and blue (B) colour channel. The image
enhancement procedure utilizing CLAHE is exclusively per-
formed on the G channel, on account of the significant
blood vessel structural data present within that channel when
compared to the others. The image in the G channel with
improved clarity and definition. The subsequent step entails
the conflation of the three-image channels, specifically the
red channel, the enhanced green channel, and another red
channel. Upon completion of the procedure, the improved
subaquatic imagery for both theURPC 2018 andOUCdataset
was attained.

C. UOD USING HLASWIN-T-ACOAT-NET METHOD
A hybrid framework comprising three steps is recommended
for UOD, including the implementation of CLAHE for
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FIGURE 5. Underwater image enhancement flowchart using CLAHE.

pre-processing, training of HLAST-ACNet, and the use of the
predictive HLAST-ACNet model for prediction.

LASwin-T Model: The Swin transformer has four dif-
ferent versions of the model: Swin-T, Swin-S, Swin-B, and
Swin-L [27]. Given the distinctive features and intricate
computational nature of remote sensing images, the present
study presents Swin-T as a solution. Smartly paraphrased:
The patch partition layer divides an initial RGB image into
separate, non-overlapping sections, with each section con-
taining a varying number of blocks per stage - 2, 2, 6, and
2. Every segment is considered a ‘‘token’’ and its attributes
are established as a merging of the natural RGB values of the
pixels. The Swin transformer comprises four phases designed
to generate varying quantities of tokens.

If an underwater image, X, is available with a dimension
of × w, a single token comprises a concatenated raw
pixel vector of an RGB image patch of 4 × 4. This token
is subjected to a linear embedding technique, which trans-
forms it into a vector of dimension c. Tokens are generated
in different quantities at stages 1, 2, 3, and 4, which are

4 ×
w
4 , 8 ×

w
8 , 16 ×

w
16 , and 32 ×

w
32 , respectively. Every

phase includes a merging segment for patches, comprised of
a layer partitioning patches and a layer embedding linearly,
a block for local perception, and several transformer blocks
of Swin.

The fundamental component of the Swin transformer
algorithm is the Swin transformer block. The block comprises

three components namely, SMSA for space multi-head self-
attention, LSMSA for lifted spaces multi-head self-attention,
and MLP for multilayer perceptron. Integrating a layer nor-
malization (LN) layer within the module enhances training
stability while employing residual connections after each one.
Equations (1) to (4) represent the LASwin-T model.

X̂ l = SMSA
(
LN

(
X l−1

))
+ X l−1 (1)

X l = MLP
(
LN

(
X l

))
+ X̂ l (2)

X̂ l+1
= LSMSA

(
LN

(
X l

)) (
LN

(
X l

))
+ X l (3)

X l+1
= MLP

(
LN

(
X̂ l+1

))
+ X̂ l+1 (4)

Local Acuity Block (LAB): Detecting local correlation and
structural information of an image can be a difficult task for
position encoding in a transformer. Even though the Swin
transformer’s hierarchical structure includes sequential layers
with a shift window scheme, it does not effectively encode a
significant amount of spatial context information. To address
this issue, the team put forth a suggestion for the introduction
of a local perception block (LAB) to be positioned at the start
of the Swin transformer block. The Swin transformer utilizes
vector-based data flow as opposed to traditional CNNs that
operate with feature maps. As a result, in LPB, a group
of vector features is initially restructured to form a spatial
feature map. One way to rephrase this text could be: ‘‘To
illustrate, the token (b, ∗w, c) is transformed into a feature
map with dimensions (b, ∗ w, c).’’
To enhance the extraction of localized spatial character-

istics while maintaining a sufficiently broad receptive field,
a residual connection is employed alongside 3 × 3 dilated
convolution layers with a dilation of 2 and a GELU activation
function. Afterwards, the feature map is transformed into a
(b,c,h,w) shape and forwarded to the Swin transformer block.
The use of dilated convolution enhances the receptive field
of a spatial image, enabling effective coding of contextual
information across various scales. As a result, a broad range
of contextual details can be accurately captured. In [28]
introduced the concept of dilated convolution that facilitates
the extension of the receptive field when juxtaposed with the
conventional convolution operation. One important point to
consider is that the conventional 3 × 3 convolutions have
a field of 3× 3. When the kernel size remains the same
for the dilated convolutions with dilation factors of 2, the
receptive fields are increased to 7 × 7. Thus, the usage of
dilated convolution enables the expansion of the relevant area
without compromising the feature details.
ACoat-Net method: Translation equivariance is a notable

attribute of convolution layers, providing a valuable advan-
tage by imparting a robust inductive bias. This quality
becomes particularly crucial for enhancing model generaliza-
tion when dealing with limited training datasets and proves
beneficial for handling unseen data sets. The convolution
operation for an input (x) at position (i) was expressed
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mathematically through Equation (5).

yi
∑

j∈LR(i)
w⊙ xi (5)

In this context, yi represents the convolution output,
with LR (i) denoting the local receptive fields. Practically
designed for datasets in sequential, transformers, such as the
Vision Transformers (ViT), have demonstrated superior capa-
bility compared to CNN approaches. Transformers-based DL
models leverage the self-attention (SA) layer characterized
by the global receptive (GR) fields. A key distinction among
self-attention and convolution layers lies in the receptive
field’s size, as self-attention layers boast the global recep-
tive fields, offering more extensive contextual data. Addi-
tionally, self-attention layers incorporate the input-adaptive
weighting strategy, contributing to the higher model capacity
of transformers-based models, particularly advantageous for
large data sets. It is important to acknowledge the trade-offs
between receptive field size and computational complexi-
ties. The self-attention strategy was formally described using
Equation (6).

yi =

∑
j∈gs

DAW∑
k∈gs DAW

(6)

where gs represents the global spatial space and DAW =∑
k∈g e

xT
i xk represents the dynamic attention weight. The

ACoat-Net draws inspiration from the Coat-Net approach,
which integrates both transformer and convolution layers.
The primary objective of ACoat-Net was to enhance the
performances of Bounding Box Detection (BDD) by lever-
aging the strengths of both self-attention and convolution
layers. Consequently, ACoat-Net seeks to utilize the convo-
lution blocks to improve generalizations while employing
the self-attention layers to augment the model capability.
Straightforward approaches for combining convolutions and
SA layers involve the addition of the global static convolu-
tion kernels to the adaptive attention matrix, as illustrated in
Equation (7).

yi =

∑
j∈gs

DAW ∗ e(wi−j)

DAW ∗ e(wi−k )
Xj (7)

One important point to highlight is that this form is a vari-
ation of the self-attention mechanism referred to as relative
self-attention that solely concentrates on relative distance or
position. Integrating attention and convolution layers directly
results in a notable rise in computational complexity. The
ACoat-Net framework consists of a duo of convolutional
units, along with three two-dimensional-relative attention
sections and three FNN modules. Additionally, the classifi-
cation head is composed of a FC, global average pooling,
and the SoftMax layers. Notably, two key enhancements
distinguish this framework from the original Coat-Net:

• The incorporation of asymmetric convolution structures
with varying sizes of kernel, and

• The utilization of depth-wise separable convolution
to enhance network effectiveness and reduce model
parameters.

Convolution Blocks: Serving as the initial segment of the
proposed framework, the convolution block is designed for
in-depth feature extraction. Within this block, convolution
layers play a crucial role in extracting useful higher-level
attributes from the input data set. The employed convolu-
tion layers encompass three types: the standard convolutional
layers with the 3 × 3 kernel size, the asymmetric convo-
lution structures with (1 × 3 and 3 × 1) kernel sizes, and
the depth-wise separable convolutions (DWSC). The DWSC
layer consists of the depth-wise convolutional layers and a
point-wise kernel convolutions with kernel size.

FIGURE 6. RFFN Structure.

Residual Multi-Head Self-Attention Model: A crucial ele-
ment of the transformer widely applied in various sig-
nals, images, or language processing tasks is the SA layer.
This model incorporates two-dimensional relative positions
encryption. Initially, the input feature map undergoes layer
normalization. Subsequently, the pooling layer was employed
for reducing the spatial dimensions of the feature maps.
The processed feature maps are then directed to the relative
SA model. At last, the convolutional layers are applied for
additional explorations prior to the resulting feature maps
are added to the outcome of the attention model. In the case
of the feature maps with dimensions ( × w), the relative
position encryption involves the learnable parameters (LP)
with dimensions (2 − 1) × (2w − 1).
Residual FFN (RFFN) Model: The design of the RFFN

module mirrors the MLP head block in the ViT model.
As illustrated in Figure 6, this block comprises like: layer
normalizations, convolutional layer (1 × 1), Gaussian Error
Linear Units (GELU) activation, convolutional layer (1× 1),
GELU, and summation with the inputs.
Model Training: The iterative acquisition of model param-

eters employs an optimizer, adjusting parameters through
back-propagation at each step to minimize discrepancies
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between model output and actual values. This involves train-
ing the model with sample data, evaluating performance by
assessing the loss functions on a validation data set, and
ultimately gauging model effectiveness on a testing dataset.
Swin, an acronym for Shifted window (SwinT) [30], gener-
ates hierarchical feature map by integrating image patches in
deep layer. ViT, a novel transformer-based framework, incor-
porates spatial dimension conversion within its structure. The
CCT employs the convolution tokenizer to generate more
intricate token and retain local data.

D. ACoat-Net MODEL EXPLAIN ABILITY
DL models often yield promising outcomes, yet their inter-
nal mechanisms are frequently perceived as opaque, earning
them the label of ‘‘black box’’ methods. Grad-Cam repre-
sents a prevalent visual explanation technique employed with
deep learning models to enhance the interpretability of their
predictions. Its purpose is to visually illustrate the model’s
predictions. The initial step involves computing the gradient
of the scores y and c for all classes, with respect to the feature
map (fk ) of the specific layer.

gc
(
f k

)
=

∂yc

∂f k
(8)

In this context, k denotes the channel indexes. Subsequently,
the gradients undergo global averages pooling to assess sig-
nificance of the weights (ak) f k for class c in each channel.

ack =
1

wf × hf

∑wf

i=1

∑hf

j=1

∂yc

∂f ki,j
(9)

Here, hf and wf represent the height and weight of feature
map. The conclusiveGrad-Cam heat mapsH c

Grad−cam was the
weighted summation of the feature map, trailed by the appli-
cation of a rectified linear unit (ReLU) functionH c

Grad−cam =

ReLU
(∑

k a
c
k .fk

)
.

ROI Pooling: The term ROI pertains to the candidate
blocks within the features architecture. In the FR-CNN
approach, candidate blocks were produced through the
Region Proposal Networks, and these are subsequently
mapped onto the feature architecture to obtain the ROI. ROI
pooling is a process for extracting tiny feature maps from the
ROI, involving the following operations:

• Mapping the ROI to the related region positions on the
feature maps.

• Ensuring that ROIs of varying size are uniformly resized
to the fixed dimension of the N × N.

• Dividing the ROI evenly into the N × N region.
• Extracting the higher pixel values from all divided
regions, essentially performing the max pooling opera-
tions on all regions to serve as the ‘representatives.’ This
ensures that all ROIs attains a consistent size of N × N.

Nevertheless, the employment of this technique will result in
a decrement in precision because of the presence of rounding
errors. To clarify, will provide an example in the following
manner. Let us consider the backbone networks of the model

has the stride of 16, which means that the extracted image is
only 1/16 the size of the actual images. If the actual image
was 400 × 400 and the last layer’s feature maps is 25 × 25,
then ROI pooling will result in a fixed 5 × 5 feature map.
The original image contains a proposal area, measuring 200×

200, which translates to a featuremap size of 12.5× 12.5 (200
divided by 16 multiplied by 200.16). After executing the pro-
cess of rounding, the dimensions of the features mapped are
now 12 × 12, referred to as the initial quantization function.

To achieve a consistent 5 × 5 size for the feature map, the
12 × 12 regions proposal obtained earlier is subdivided into
25 equally-sized smaller regions, each measuring 2.4 × 2.4
(12 divided by 5 and 12.5, respectively). During this stage,
a mathematical operation known as the second quantization
is carried out, resulting in the reduction of the tiny region
to 2 × 2. Following these procedures, the resulting candi-
date box exhibits the certain level of displacement from its
initial placement as determined by RPN. This alteration has
a detrimental impact on the detection precision, particularly
for smaller objects. In this endeavor, the utilization of ROI
align was opted as a solution to prevent the issue, in contrast
to implementing rough ROI pooling. The technique utilized
for pooling ROI is distinct as it involves converting it into
a constant process using regional characteristic accumula-
tion instead of quantification and pooling. Eliminate the two
quantization processes involved in ROI pooling and replace
them with direct floating-point computations. The initial
output size measures 12.5 × 12.5 while the second output
size measures 2.4 × 2.4. Simultaneously, a hyperparameter
is established that denotes the number of sampling points
within each region. The number of points extracted from
each region to compute the area’s ‘representative’ value is
typically set to four. The region of the candidate is partitioned
into square cells measuring 2 by 2, and each cell remains
unquantified. Identify four locations of a specimen within
every individual cell. The method of bilinear interpolation
is utilized to determine the floating-point coordinate of the
points sampled through the calculation of their values in four
different positions. A fixed dimension can provide the output
for ROI. They select the highest value among the four central
pixels in each partition and utilize it as the ‘representative’
value, which alters the ROI to a 5 × 5 dimension.

The implementation of ROI pooling yields a significant
enhancement in the precision of the detected candidate
regions. Furthermore, it can augment the network’s efficacy
in the identification of minute flaws in objects. The convo-
lutional layers possess the property of being translationally
equivariant. Having a strong inductive bias is beneficial
because it enhances the model’s capability to generalize to
new datasets that are not used during training, especially
when the dataset used for training is limited. The process of
applying a convolution to the input (x) at a specific position
(i) can be expressed in equation (10).

yi =

∑
j∈LR(i)

w⊙ xi (10)
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The value of yi resulting from the convolution can be rep-
resented as LR (i) which denotes the local receptive field.
The original purpose of developing transformers was for a
dataset that is processed in a step-by-step manner. According
to research, transformer-based models like the ViT have a
greater model capacity compared to CNN models. The DL
model based on transformers uses a self-attention layer with
a broad sensory scope. A significant dissimilarity among
self-attention and convolution layers lies in the magnitude
of the receptive fields. The self-attention layer possesses the
comprehensive scope of perception, which imparts increased
contextual knowledge. Moreover, the self-attention layer
employs the mechanism that adjusts the weightings based on
the input. Therefore, transformer-based models possess sub-
stantial model capacity when it comes to extensive datasets.
It is important to consider that the computational complexity
increases as the receptive field size grows. As per reference
[29] the self-attention mechanism can be described in the
equation (11).

yi =

∑
j∈gs

DAW∑
k∈gs DAW

(11)

The dynamic attention weights, represented by DAW =∑
k∈g e

xT
i xk , for each k element within the broader spa-

tial area denoted as gs. The design of the ACoat-Net takes
inspiration from the successful Coat-Net algorithm, which
fuses convolutional and transformer layers. The core con-
cept behind ACoat-Net involves enhancing BDD’s efficacy
by effectively utilizing both convolutional and self-attention
layers. ACoat-Net has the goal of utilizing the convolution
blocks to enhance standardization capabilities and incorpo-
rating the self-attention layers to bolster model capability.
One straightforward way tomerge self-attention and convolu-
tion layers is to add an adaptive attention matrix with a global
static convolution kernel.

The initial component of the research concept is the con-
volution block, which is designed to enable extensive charac-
teristic extraction. The high-level features with significance
are extracted from the input dataset using convolution layers.
In this study, three distinct convolutional layers comprising a
conventional 3×3 kernel size layer, the asymmetric convolu-
tion architecture comprising 1 × 3, and 3 × 1 kernel sizes,
and the depth-wise separable convolutions were used. The
layer known as depth-wise separable convolutions involve
the 3 × 3 sized kernel for depth-wise convolution, as well
as convolution performed by a 1× 1 sized point-wise kernel.

The RFFN module bears a resemblance to the MLP head
found in the ViT algorithm. As illustrated in Figure 6, this
block comprises six distinct layers, namely:
(1) normalization of the layer,
(2) single pixel convolution,
(3) implementation of the Gaussian Error Linear Units acti-

vation functions,
(4) another single-pixel convolutions,
(5) a repeat of the GELU activation function, and
(6) addition of the input.

The optimizer is used iteratively to derive the model parame-
ters during model training. The model parameters undergo
continuous adjustment through back-propagation to reduce
errors that arise once comparing the model outcome with the
authentic value. To achieve this objective, the model is first
trained on a set of sample data and then its performance is
assessed by computing the loss functions on the data set for
validation. The testing data set was utilized for assessing the
efficacy of the module. The model’s efficacy was measured
against other advanced transformer-based models such as
SwinT, CCT, ViT, and conventional Coat-Net. The SwinT
can generate layered feature maps by combining patches
of image in its deep layers. The ViT utilizes the modern
architecture based on transformers and considers how the
spatial dimension is transformed. To ensure the retention of
local data, the CCT incorporates a convolutional tokenizer
that generates intricate tokens. A model named Coat-Net
can explain itself using deep learning and is expected to
produce impressive outcomes. Although these models have
been deemed as ‘‘black box’’ approaches due to a lack of
understanding regarding their internal mechanisms. Grad-
Cam ranks among the frequently employed techniques for
visually justifying deep learning models. This is employed as
a means of depicting the visual representation of the models’
forecasts. Firstly, the gradient of the score gc is computed
concerning the feature maps (fk ) of a specific layer according
to the formula presented in [30]. This calculation is performed
before the SoftMax operation.

gc
(
f k

)
=

∂yc

∂f k
(12)

‘‘K represents the channel identifier.’’ Afterwards, the signif-
icance of the weight (ak) f k for class c in each channel is
calculated by globally averaging the obtained gradients.

ack =
1

wf × hf

∑wf

i=1

∑hf

j=1

∂yc

∂f ki,j
(13)

The values wf and f indicate the dimensions of the feature
maps, with the former representing width and the latter rep-
resenting height. The last heat map generated by Grad-Cam
(GC), denoted as H c

GC = ReLU
(∑

k a
c
k .fk

)
, is produced by

taking a combination of the feature maps, which are multi-
plied by corresponding weights, trailed by applying a ReLU
function.

ROI pooling involves selecting the specific section of the
feature map that is of interest, also known as the candidate
block. The process of generating candidate blocks in the
Faster R-CNN algorithm involves utilizing the RPN tech-
nique, which enables mapping these blocks onto the feature
architecture to obtain ROI. This pooling involves extracting
tiny feature maps from ROIs [21]. The sequence of steps it
undergoes during processing are:

• The position of the region on the feature map is corre-
lated with its ROI.

• To standardize the ROI size to N × N, regardless of
its initial dimensions, it is divided evenly into N × N
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sections. One way to make each ROI the same size is
to conduct a max pooling operation on each section by
selecting the highest pixel value as a representative. This
results in a square ROI of N × N dimensions.

Our proposed approach, with its advanced capabilities in
underwater object detection, contributes significantly to the
protection and monitoring of these critical communica-
tion infrastructures. By accurately detecting and monitor-
ing underwater cables, we enhance the resilience of global
telecommunications, ensuring uninterrupted connectivity and
communication. Furthermore, oil and gas industry under-
score the versatility of our proposed approach. Identifying
and monitoring subsea structures, pipelines, and equipment
are vital aspects of ensuring the integrity of infrastructure
in this industry. The ability of HLASwin-T-ACoat-Net to
assess underwater objects not only supports maintenance and
inspection efforts but also plays a crucial role in preventing
potential environmental hazards.

Pseudocode for HLASwin-T-ACoat-Net
Input:
input_frame: The original input frame to be processed.
rois: Regions of interest for the object detection.
epochs: The number of training epochs for the HLASwin-T-ACoat-Net.
Output:
binary_segmented_frame: The final binary segmented frame representing the output of
the object detection using HLASwin-T-ACoat-Net.

1. HLASwin-T-ACoat-Net (input_frame, rois, epochs):
for k in range(epochs):

a. frame = capture_frame(input_frame)
b. enhanced_image = apply_clahe(frame)
c. swin_transformed_features=local_acuity_swin

_transformer(enhanced_image)
d. coat_net_features=adapted_coat_net(swin_transformed_features)
e. aggregated_features=path_aggregation_network

(swin_transformed_features, coat_net_features)
f. aligned_features = roi_alignment (aggregated_features, rois)
g. predictions = object_detection_head(aligned_features)
h. update_weights_and_biases(predictions)

return binary_segmented_frame
# Image Processing

2. def apply_clahe(image):
enhanced_image = clahe(image)
return enhanced_image
# Local Acuity Swin Transformer

3. def local_acuity_swin_transformer(features):
transformed_features = swin_transformer(features)
return transformed_features
# Adapted Coat-Net

4. def adapted_coat_net(features):
processed_features = coat_net(features)
return processed_features
# Path Aggregation Network

5. def path_aggregation_network(deep_features, shallow_features):
aggregated_features = aggregate features(deep_features, shallow_features)
return aggregated_features

6. def roi_alignment(features, rois):
aligned_features = align_rois(features, rois)
return aligned_features
# Object Detection Head

7. def object_detection_head(features):
predictions = detect_objects(features)
return predictions
# Combined Algorithm for Object Detection using HLASwin-T-ACoat-Net

IV. EXPERIMENTAL ANALYSIS
A. EXPERIMENTAL SETUP
This section presents a detailed analysis of the experimental
results of the proposed UOD model. The proposed technique
is implemented on an NVIDIA Inferno-CUDA GPU with
256 GB of RAM. The implementation is carried out using the
Python programming language and the PyTorch framework,
operating within the windows 10 operating system. Various
metrics such asmAP, recall, and precision are used to evaluate
the research model performance. To compare performance,
the URPC 2018 [32] and OUC datasets [5] were applied
for this study. The URPC2018 dataset is a broadly used
benchmark data set in the domain of UOD.

It consists of a large collection of high-resolution under-
water images captured in various underwater environments,
including different water conditions, depths, and lighting
conditions. The dataset covers a diverse range of underwater
objects, such as fish, corals, rocks, and man-made struc-
tures. Each image in the dataset is annotated with bounding
box labels to indicate the presence and location of objects
of interest. The dataset provides a valuable resource for
training, testing, and evaluating UOD algorithms. It enables
researchers to develop and compare different methods for
detecting and recognizing objects in challenging underwater
scenarios.

The OUC dataset is a comprehensive dataset specifically
designed for UOD research. It was created by the Ocean
University of China (OUC) and contains many high-quality
underwater images. The dataset covers various underwater
scenes and environments, including different water types,
depths, and lighting conditions. It includes a wide range of
underwater objects, such as marine life, submerged struc-
tures, and underwater vegetation. The images in the dataset
are annotated with accurate bounding box labels to facilitate
object detection and evaluation. The OUC dataset provides a
valuable resource for training and testing UOD algorithms.
It allows researchers to assess the performance of different
algorithms under different underwater conditions and com-
pare their results.

The URPC2018 dataset comprises 3,701 images, in which
2,901 images were applied for training and 800 images for
testing. The OUC-VISION dataset contains 4,400 images,
in which 3,520 images were applied for training and 880 for
testing. The datasets are divided into training, validation, and
testing sets in an 80:10:10 ratio. The proposed approach was
utilized to classify the datasets into four distinct groups of
submerged entities. To assess the effectiveness of the system,
evaluation criteria such as precision, recall, and mean Aver-
age Precision (mAP) were employed.

Precision is a parameter c that measures the accuracy of
the positive predictions made by the model. In the context
of UOD, precision is the ratio of correctly predicted pos-
itive instances (correct detections) to the total number of
instances predicted as positive by the model (both correct and
incorrect). A higher precision indicates a lower rate of false
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FIGURE 7. Visualization object detection results of different methods on URPC 2018 and OUC.

positives, which is crucial in applications where the cost of
misidentifying objects is high. Recall evaluates the capability
of the model to capture all relevant instances of a class. It is
the ratio of correctly predicted positive instances to the total
number of actual positive instances in the dataset. A higher
recall indicates that the model can successfully identify a
larger proportion of the actual positive instances.

mAP is a comprehensive metric that considers precision
at different levels of recall across multiple thresholds. It
involves calculating the average precision for each class and
then taking the mean across all classes. mAP provides a more
nuanced evaluation of the model’s performance, especially
in scenarios with imbalanced class distributions or varying
object sizes. The HLAST-ACNet method is compared to

YOLOv5 [14], ResNet [18], and YOLOv8 [19] using com-
parative tests to highlight its superiority. Figure 7 depicts the
object detection results of different methods on Underwater
Robot Picking Control 2018 (URPC 2018).

Research suggests that when it comes to identifying and
locating small or camouflaged objects in complicated under-
water settings, current methods often fall short due to their
inadequate feature representation. The detection capability
of small objects is improved with HLAST-ACNet as com-
pared to other available methods. Despite the availability
of numerous techniques, there remain certain items that are
similar in appearance to their surroundings, making it chal-
lenging to make accurate assessments using current methods.
When it comes to identifying ‘starfish’, which bear a striking

VOLUME 12, 2024 32211



S. Manimurugan et al.: HLASwin-T-ACoat-Net Based Underwater Object Detection

resemblance to the surroundings, there tends to be a compara-
tively high incidence of failure to detect them accurately. The
bidirectional feature pyramid generates a robust feature repre-
sentation, resulting in significant enhancements for the detec-
tion of ‘starfish’ in HLAST-ACNet. The approach exhibits
superior results compared to the previously mentioned meth-
ods. The approach’s capability to effectively differentiate
and classify objects with significant meaning is believed to
enhance the process of detecting underwater objects.

The HLAST-AC-Net technique is superior to other
approaches in terms of detecting a larger number of items
with more precise pinpointing, particularly for smaller
objects that may blend into the surroundings. The expected
boundary areas are shown by the solid rectangles, while
the ground truth boundary areas are depicted by the dashed
rectangles. An image or illustration that displays informa-
tion clearly and understandably. The diagram illustrates the
distribution of the leading incorrect positives across every
category of the UOD assessment collections. HLAST-ACNet
can precisely identify objects during cluttered information,
even in instances where those objects are situated against
intricate backgrounds. The successful use of the CLAHE
method, a potent technique showcased in Figure 8, has
made this achievable. Table 2 represents the outcomes of
the OUC experimentations. MPCNN elevates the ability to
detect objects underwater with its performance of 91.25 mAP
on OUC. The increase in input size directly impacts the
profit outcome. MPCNN outperforms other existing meth-
ods including YOLOv5, ResNet, and YOLOv8 in terms of
performance.

Table 3 and Figure 9 present a clear representation of the
findings derived from the URPC 2018 experiments. HLAST-
ACNet significantly improves the detection of objects under-
water by achieving a 91.25 mAP score on UOD. The increase
in the input size leads to an increment in profits. HLAST-
ACNet’s superiority in detecting small objects is attributed to
its capability to detect objects of various sizes across multiple
layers. The HLAST-ACNet stands out in its ability to detect
small entities, outperforming all other cutting-edge methods
by a considerable degree on UOD. Figure 10 showcases
the Precision/Recall graphs for different methods used in
URPC 2018.

TABLE 2. Comparisons with the state-of-the-arts on the OUC data set.

The HLAST-ACNet model, depicted as a blue curve,
demonstrates superior performance in the sea urchin and
scallop categories, while the Scallops approach surpasses its

predecessors. This implies that the HLAST-ACNet model
is unlikely to improve performance for either a single or
multiple categories of objects. One can observe a steady and
significant enhancement in the accuracy of all trackers when
assessed against the updated dataset. This is substantiated by
the quantitative results displayed in Table 3 and figure 10.

According to the graph in Figure 11, which demonstrates
a comparison of results, utilizing the recommended method
of HLAST-ACNet leads to a more effective enhancement of
data compared to using pre-enhanced data with the same tech-
nique. The graphs depicting the benchmark results demon-
strate that the tracking devices show exceptional efficiency
with the use of the suggested CLAHE enhancement technique
to refine the underwater data. The HLAST-ACNet outper-
forms all other methods with its exceptional performance.

The results from the evaluation of object detection models
for the identification of Holothurian, Echinus, Scallops, and
Starfish reveal intriguing insights into the performance of
the considered models. Precision/Recall percentages serve as
critical indicators of a model’s ability to balance accuracy
and completeness in its predictions. YOLOv5, the initial
model in the comparison, demonstrated a Precision/Recall of
0.52, indicating a moderate level of accuracy. However, both
ResNet and YOLOv8 surpassed YOLOv5, achieving Preci-
sion/Recall percentages of 0.6925 and 0.8175, respectively.
The standout performer in this regard was HLAST-ACNet,
boasting an impressive Precision/Recall of 0.8475, suggest-
ing superior accuracy in identifying the target marine organ-
isms. Success rates before and after denoising are crucial
factors in assessing the robustness of models in real-world
scenarios. YOLOv8 exhibited significant improvements in
success rates, reaching 0.7875 after denoising, surpassing
both YOLOv5 and ResNet. HLAST-ACNet outperformed all
other models in both success rates before and after denoising,
showcasing its effectiveness in accurately detecting marine
organisms even in noisy conditions. This emphasizes the
importance of denoising techniques in enhancing the prac-
tical applicability of object detection models.

The mean of average precision (mAP) provides a com-
prehensive measure of overall detection accuracy. HLAST-
ACNet once again emerged as the top performer with a mAP
of 92.36, underscoring its superiority in accurately identi-
fying Holothurian, Echinus, Scallops, and Starfish. While
YOLOv8 demonstrated a competitive mAP of 87.63, indicat-
ing strong overall performance, YOLOv5 and ResNet trailed
behind, suggesting potential for improvement in their detec-
tion capabilities. In summary, the results highlight the diverse
performance levels among the models, with HLAST-ACNet
standing out as the most accurate and reliable in detecting
marine organisms.

To make the combination of various techniques clear, the
mAP scores shall be depicted in a visual format. Figure 12
displays the number of loop executions. After analyzing
and contrasting the outcomes, HLAST-ACNet boasts better
recognition precision than alternative techniques, although
the difference is not pronounced. The proposed approach
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TABLE 3. Comparisons with the state-of-the-arts on URPC 2018 data set.

FIGURE 8. The distribution of top-ranked false positive (FP) types for each category and all categories on UOD (a) sea cucumbers,
(b) sea urchins, (c) scallops and (d) all categories. The false positives include localization errors (LOE), confusion with similar
categories (CSC), with background (BG).

FIGURE 9. Comparison of Models on the OUC data set.

is significantly more effective and has the potential to
achieve superior detection outcomes when compared with

existing methods. HDCNN-UODT achieved convergence
after approximately 2500 iterations, which is a relatively
early stage compared to other approaches. By incorporating
the updated strategies, the level of stability and mAP can
be improved. The proposed methods can produce a more
accurate result compared to traditional methods.

TABLE 4. Quantitative performance evaluation results of proposed and
existing methods.
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FIGURE 10. Precision/Recall curves of different methods on UOD.

FIGURE 11. Success rate plots on the URPC 2018 dataset-after and before
the denoising process in HLAST-ACNet.

All the techniques demonstrate accuracy that is adequate
for detecting objects and can therefore be effectively used
in real-time scenarios. Table 4 illustrates the importance of
identifying velocity, as expressed in measurable variables
including time cost, GFLOPs, and training epochs. The pro-
posed framework underwent an ablation study, resulting in
the attainment of said accomplishment. According to the data
displayed in Table 4, the advanced deep model suggested
demonstrates better excellence in detecting objects, although

FIGURE 12. mAP results and comparison with other methods (%).

it requires slightly higher GFLOPs and fewer training epochs
than the proposed method that lacks colour conversion and
the suggested method with traditional colour conversion.

The main reason for this is that the proposed method,
which employs LASwin-T and CLAHE for efficient feature
extraction, can eliminate interference and enhance the image,
all while retaining its edges. The approach suggested has
proven to have a higher computational complexity compared
to four other existing methods, as evidenced by its GFLOPs,
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per-image processing time with a speed of 20ms, and the
FPSmeasures for average processed frames per second reach-
ing 2.28s. Furthermore, the suggested network has a limited
computational power of only 5.05 GFLOPs. The proposed
advanced model is beneficial in detecting underwater objects
by enabling the removal of noise and facilitating object
detection.

TABLE 5. Computational and space complexity performance evaluation
results of proposed and existing methods.

Time and Space complexity: The complexity of the Neck
component can be expressed in terms of the variables n,
d, H, W, C, and k. The use of PANet suggests that there
are multiple operations, such as convolutions and element-
wise operations, contributing to the overall time complexity.
A more detailed breakdown may involve (n) number of input
channel, number of output channels (d), input height (H),
input width (W), number of channels in the current layer
(C), and the kernel size (k). In table 5 shows the comparative
analysis time and space complexity.

ResNet is noted for its efficacy in addressing the vanishing
gradient problem, enabling the training of deep networks
and providing expressive feature representations. However,
its quadratic dependency on input size may lead to increased
computational demands. YOLOv5 stands out for real-time
object detection with a balanced one-stage architecture, yet
the logarithmic term in its computational complexity raises
concerns about scalability with larger datasets. YOLOv8
introduces optimizations in bounding box processing effi-
ciency, making it suitable for real-time applications, but the
logarithmic term may pose challenges with increased dataset
sizes.

The proposed method combines an efficient feature repre-
sentation with the introduction of adapted Coat-Net and path
aggregation complexities. While these enhancements aim to
improve overall performance, the method’s multiple com-
ponents may increase computational demands, potentially
impacting real-time processing.

V. CONCLUSION
To enhance the precision of underwater targets identifica-
tion in the complicated underwater environments, a solution
called HLAST-ACNet is proposed. In the conducted experi-
ments, the performance of the ACoat-Net model with Swin

Transformers of various sizes as the backbone network was
evaluated. Ablation experiments are conducted to assess the
effectiveness of various improvement techniques. The pro-
posed algorithm is compared with alternative algorithms,
successfully demonstrating its advanced nature.

Through experimentation, the HLAST-ACNet model is
enhanced to achieve improved detection results in intricate
underwater settings. Notably, mAP rates of 91.25% and
92.36% are achieved on the URPC 2018 and OUC datasets,
respectively. While the model may have a slower detection
speed compared to single-stage detection algorithms, it is
important to consider its larger size. The URPC dataset com-
prises numerous indistinct images that were not specifically
designed to enhance detection performance. The research
encompasses several objectives, including model compres-
sion, detection acceleration, dataset expansion through the
collection of additional underwater target data, and enhanc-
ing robustness through data augmentation techniques. In
future, the proposed work can be extended for detecting very
tiny small objects in the underwater and system integration,
robustness evaluation in real-world scenarios, and addressing
operational challenges such as underwater object tracking.

Future works for the proposed HLAST-ACNet include
exploring multi-modal data fusion to further enhance object
detection accuracy in complex underwater environments
and integrating real-time adaptive learning mechanisms for
improved model adaptability. Additionally, investigating the
model’s performance across diverse datasets and extending
its applicability to three-dimensional object detection are
avenues for future research. However, limitations include the
need for robustness testing in dynamic underwater scenarios,
potential challenges in scalability for large-scale deploy-
ments, and the necessity for continuous refinement to accom-
modate evolving underwater conditions and object diversity.
Addressing these aspects will strengthen the model’s utility
and advance its potential in real-world applications.
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