
Received 20 January 2024, accepted 17 February 2024, date of publication 23 February 2024, date of current version 14 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3369234

Anemone Image Generation Based
on Diffusion-Stylegan2
HUIYING ZHANG , FEIFAN YAO , YIFEI GONG , AND QINGHUA ZHANG
College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin City, Jilin 132022, China

Corresponding author: Huiying Zhang (yingzi1313@163.com)

This work was supported by the Science and Technology Development Plan of Jilin Provincial Department of Science and Technology
under Grant 20220508145RC.

ABSTRACT Given the complexity and uncertainty of the underwater environment, it is of great importance
to generate realistic and high-quality images. In this paper, we propose six unconditional generative models
based on the Diffusion-Styegan2 generative model, incorporating Wasserstein, R2 regularization terms, and
other techniques for anemone image generation. The Wasserstein distance technique is used in the loss part
of Diffusion-Styegan2, combined with the back propagation algorithm to compute the gradient in the neural
network while retaining the computational map to improve the training efficiency and training stability; the
R2 regularization term is used to introduce the r2 hyperparameter, and the L2 regularization technique is used
based on the original R1 regularization term to regularize the gradient of the discriminator to improve the
training and generation performance of the model; the ADA technique is used based on DWBG-Stylegan2
to further improve the quality and stability of the generated images. In addition, a set of SA datasets (sea
anemone datasets) with a resolution of 256∗256 is proposed in this paper. The experimental results show
that the FID value of Diffusuion-Stylegan2 is 10.31, the value of FID of DWBG-Stylegan2 is 8.32, the
value of FID of Diffusion-Stylegan2-R2 is 9.58, and the optimal FID value of this experiment is achieved
by DWBG-Stylegan2-ADA with a value of 5.67, which is considerably lower compared to the FID value of
Diffusion-Stylegan2. Therefore, techniques such as Wasserstein and R2 regularization terms can effectively
generate more realistic images of anemones. Meanwhile, this experiment provides new ideas and methods
for the construction of the unconditional generative model.

INDEX TERMS Diffusion-Stylegan2, Wasserstein, R2 regularization term, SA datasets.

I. INTRODUCTION
The study of underwater imagery has gone through several
stages of development, from early photographic techniques
to modern digital underwater photography and advanced
imaging techniques, as well as the emergence of deep-sea
exploration and underwater robotics [1]. These advances
have had a profound impact on the fields of marine science,
environmental protection, resource exploration, and cultural
heritage preservation.

Currently, the main research methods for generating
marine biology images include: physical model-based meth-
ods, image synthesis-based methods, neural network-based
methods, and meta-learning [2] based methods. Researchers
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mainly use GAN (Generative Adversarial Network) to
generate marine biology images. Among them, GAN models
including Cyclegan [3], Pix2Pix [4], Stargan [5], and Style-
gan [6] are widely used in underwater image generation tasks.
In addition, some researchers have tried to combine deep
learning models with traditional image processing techniques
to improve the quality of marine biology images. However,
in practice, GAN models often suffer from problems such
as non-convergence, unstable training, and pattern collapse.
Therefore, a wide range of analyses and improvements have
been proposed for GAN, including improving the network
architecture, changing the objective function, regularizing the
weights or gradients, etc.

GAN and Diffusion are two highly regarded directions in
the field of deep learning, representing the frontiers of gener-
ative and probabilistic modeling respectively. Combining the
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two creates a new approach to generative modeling that opens
up new possibilities for image generation. The combination
of GAN and Diffusion overcomes the limitations of each,
and this model is often referred to as Diffusion-GAN
(Dif-GAN) or Diffusion-Stylegan. This model utilizes the
stability and sampling performance of Diffusion and the
generative power of GAN to produce realistic and diverse
images.

In this paper, we try to improve the training and generation
results of the model by employing the loss function or
regularization term in the loss part of Diffusion-Stylegan2
[7]. Employing the Wasserstein loss function in the loss
part of the discriminator of Diffusion-Stylegan2 is used to
measure the gap between the generated fake image and
the real image, thus helping the discriminator to better
distinguish between them. Firstly, the logits of the generated
fake image and the logits of the real image (from the training
datasets) are obtained by using the generator to generate the
fake image and the logits of the real image. These logits
represent the scores of the fake image and the real image
on the discriminator respectively. Then, the Wasserstein
distance is calculated by computing the difference in
expected value between the two distributions. Here, the
Wasserstein distance is obtained by calculating the difference
between the expected values of the two logit distributions.
Finally, to compute multiple loss terms (e.g. ‘‘loss_Gmain’’,
‘‘loss_Gpl’’, ‘’loss_Dgen’’, ‘‘loss_Dr1’’) gradients, in the
back propagation, the relevant nodes in the computational
graph are retained so that the parameters of the model can be
correctly updated in subsequent steps. In another model, this
paper employs the R2 regularization term in the discriminator
loss, which changes the training and generation behavior
of the original model. The R2 regularization term applies
the technique of the L2 regularization term [8], and also
penalizes the gradient, which is a sum of squares of the
weights, usuallymultiplied by a hyperparameter known as the
regularization factor. At the same time, the R2 regularization
term introduces the r2 hyperparameter, which together with
the R1 regularization term and the L2 paradigm acts on the
discriminator loss part of the model. The R2 regularization
term helps to balance the weights to mitigate the gradient
explosion problem, promotes the smoothing of the gradient,
improves the model’s generalization ability, and effectively
controls the training process to ensure the stability of the
model.

This paper makes the following contributions: 1) six
unconditional generative models are proposed based on
the Diffusion-Stylegan2 generative model, which are
WBG-Stylegan2, DWBG-Stylegan2, Diffusion-Stylegan2-
R2, DWBG-Stylegan2-ADA,DWBG-Stylegan2-R2, DWBG-
Stylegan2-GP; 2) a large number of experimental results
show that the DWBG-Stylegan2 model is more stable
in training and produces higher quality images than the
Diffusion-Stylegan2 model, and is, therefore, more suitable
for underwater work; the Diffusion-Stylegan2-R2 model in a

large extent improves the generalization ability of the model
and the quality of the generated images is closer to the real
images; the DWBG-Stylegan2-ADA model greatly improves
the image generation quality of the generated model after
adopting the ADA technique; 3) given the scarcity of the
marine single-organism datasets, 9235 SA datasets with a
resolution of 256∗256 are provided.

II. RELATED WORKS
A. COMBINATION OF GAN AND DIFFUSION
A simple technique to stabilize GAN training is to inject
suitable instance noise into it. This approach extends the
support of the generator and discriminator distributions
and prevents overfitting of the discriminator. However,
finding suitable noise distributions is difficult. In 2017,
Mescheder et al. showed that adding instance noise to
high-dimensional discriminators is ineffective and proposed
to approximate it by adding a zero-centered gradient penalty
to the discriminator [9]. In 2018, Mescheder et al. proved
both theoretically and empirically that this approach is
convergent. They also showed that adding a zero-centered
gradient penalty to unsaturated GANs leads to stable training
and better generation quality compared to WGAN-GP [10].
In the same year, NVIDIA released Stylegan for the first
time, a model that introduced several innovations, including
AdaIN (Adaptive Instance Normalization) [11] and a style
transfer mechanism [12]. In 2019, to address the problem of
feature artifacts in Stylegan-generated images, NVIDIA used
a PLR (Path Length Regularization) new training technique
and proposed Stylegan2. In 2020, Ho et al. proposed the
DDPM (Denoising Diffusion Probabilistic Models) [13], and
the excellent results of DDPM on image generation and
denoising in the Deep Learning field caused an extensive
research boom. In 2022, Zhendong Wang et al. used a
diffusion process to generate Gaussian mixed distributed
instance noise and proposed the Diffusion-Stylegan2 model.

The noise of Diffusion-Stylegan2 is obtained by sampling
a Gaussian mixture distribution over the diffusion step with
the help of a temporal correlation discriminator. The use
of Gaussian mixture distribution sampling provides two
benefits: firstly, it can stabilize the training by mitigating
the gradient vanishing problem, which occurs when the data
and generator distributions are too different; secondly, the
data can be augmented by creating different noisy versions
of the same image, which improves the data efficiency and
the diversity of the generators.

B. ANALYSIS OF PRIOR APPROACHES
In recent years, the research on image generation methods
has been very hot, this paper focuses on several newer
image generation methods for GAN, and summarizes the
advantages and disadvantages of the models used in various
generation methods, Table 1 gives the advantages and
disadvantages of several comparison models used in this
paper.
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TABLE 1. Advantages and disadvantages analysis of previous methods.

C. WASSERSTEIN DISTANCE AND R2 REGULARIZATION
TECHNIQUES
In 2017, Martin Arjovsky, Soumith Chintala, and Leon
Bottou first proposed the concept of ‘‘Wasserstein GAN’’,
which introduces the Wasserstein distance into GAN models
to measure the difference between the generators and
discriminators, as an alternative to the JS dispersion or
KL dispersion used in traditional GANs. The key idea
of WGAN [14] is to measure the distributional difference
between the generators and discriminators by theWasserstein
distance, which leads to more stable training and mitigates
the problem of pattern collapse when training GANs, and
this approach is an important advancement. Subsequently,
many researchers have proposed improved models such
as WGAN-GP based on WGAN, introducing asymptotic
penalties to promote gradient smoothness and improve the
convergence of training.

In 1943, Andrey Tikhonov et al. first proposed L2 reg-
ularization technology, and it has been widely used in
statistics and linear regression to control the complexity of
the model parameters. In 1970, Rokem and Kay applied
L2 regularization technology to ridge regression [15] to
solve the problem of multicollinearity [16]. In 1992, David
H. Wolpert et al. mentioned L2 regularization in the
paper ‘‘Stacked Generalization’’. This technique is widely
used in machine learning and deep learning to reduce the
risk of model overfitting. With the rise of deep learning,
L2 regularization has been widely adopted to stabilize the
training of neural networks.

III. UNCONDITIONAL IMAGE GENERATION MODEL
A. ARCHITECTURE ANALYSIS OF DIFFUSION-STYLEGAN2
Diffusion-Stylegan2 is a unique generative model for GANs
that uses a forward diffusion chain to generate Gaussian
mixed distributed instance noise, allowing for a better
combination of the Diffusion Model and GAN.

1) INJECTION OF INSTANCE NOISE
Diffusion models are latent variable models that use Markov
chains [17] mapped to a latent space. Fundamentally, the

diffusion model works by reducing the quality of the training
data by continuously adding Gaussian mixture distributed
noise in iterations, and then recovering the data by inverse
denoising, the diffusion process of the model is shown in
Fig.1.

To make the generator more robust and diverse, Gaussian
mixture distributed instance noise is injected into the
generated sample xg at each step of the diffusion process.
Starting from the original sample x, Gaussian noise z is
continuously added to the original image, gradually erasing
its information until an isotropic normal distribution N(0,1) is
reached after T steps. The mixing distribution q(y|x) models
the noise samples acquired at any step of the diffusion
process, with a mixing weight πt at each step t. The mixing
component q(y|x,t) is Gaussian distributed with a mean
proportional to x and a variance that depends on the noise
level at step t. The diffusion-induced mixing distribution can
be expressed as follows:

x ∼ p(x), y ∼ q(y|x), q(y|x) :=

∑
T
t=1πtq(y|x, t)

(1)

xg ∼ pg(x), yg ∼ qg(y|x), q(yg|xg) :=

∑
T
t=1πtq(yg|xg, t)

(2)

where q(y|x) is a T-component mixture distribution and the
mixture weights πt are non-negative and sum to 1. The
mixture components q(y|x,t) are obtained by diffusion and
are denoted as:

q(y|x, t) = N (y;
√

αtx, (1 − αt )σ 2I ) (3)

Samples of this mixture can be plotted as t∼pπ :=
Discrete(π1, π2, . . . , πT), y∼q(y|x,t), one can sample y from
this mixture distribution to obtain real and generated samples
with different noise levels.

2) GENERATE TRAINING
Diffusion-Stylegan2 trains its generator and discriminator by
solving the min-max game, which is given in Eq.4 after
adding Gaussian mixed distributed instance noise to the
original GAN:

V (G,D) = Ex∼p(x),t∼pπ ,y∼q(y|x,t)[log(Dφ(y, t))]

+ Ez∼p(z),t∼pπ ,yg∼q(y|Gθ (z),t)[log(1 − Dφ(yg, t))]

(4)

For any diffusion step t, the objective function in Eq.4
encourages the discriminator to assign a high probability to
the perturbed real data and a low probability to the perturbed
generated data. On the other hand, the generator tries to
generate samples that can deceive the discriminator at any
diffusion step t.

3) ADJUSTMENT OF DIFFUSION INTENSITY
The discriminator is optimized by the strength of the diffusion
process, adding noise to y and yg. When the diffusion step
size t is large, the noise-to-data ratio is higher and the
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FIGURE 1. The flowchart of Diffusion Stylegan2. The top row image represents the forward diffusion
process of the real image, while the bottom row image represents the forward diffusion process of the
generated fake image.

likelihood of completing the task is lower. Use 1 − αt to
measure the diffusion strength, which increases as t grows.
To control the diffusion strength, the maximum number
of steps T is adaptively modified. The discriminator first
learns from the original data samples, and then progressively
increases the difficulty by providing it with samples of larger
t. For this purpose, a schedule is customized for T, which
depends on the discriminator and a metric rd for the degree
of data overfitting:

rd = Ey,t∼p(y,t)[sign(Dφ(y, t) − 0.5)],T = T

+ sign(rd − dt arg et ) ∗ C (5)

Every four small batches rd is computed and T is updated,
with two options for the distribution pπ used to sample t in
the diffusion process:

t ∼ pπ := {
uniform:Discretre( 1T , 1T ,..., 1T )

priority:Discretre( 1∑T
t=1t

, 1∑T
t=1t

,..., 1∑T
t=1t

)
(6)

The ‘‘priority’’ option gives more weight to larger t, which
means that the discriminator will see more new samples from
new steps as T increases.

B. ARCHITECTURAL DESIGN OF DWBG-STYLEGAN2
1) INTRODUCING WASSERSTEIN AND PRESERVING
COMPUTATIONAL GRAPHS
The architecture of DWBG-Stylegan2 is based on the archi-
tecture of Diffusion-Stylegan2 using theWasserstein distance
loss function, while the computational graph is retained to
perform additional back propagation calculations for multiple
gradient calculations. DWBG-Stylegan2 is trained several

times on the SA datasets to obtain the optimal pre-trained
model, the structure of which is shown in Fig.2.

In a Generator, Diffusion is used to improve the quality and
stability of the generated image. The main architecture of the
Generator is Stylegan2, in this part of the architecture com-
bined with Diffusion, further noise addition and denoising of
the generated image is carried out to get the generated image
of higher quality. The architectural diagram of the Generator
is shown in Fig.3.

In particular, the Mapping network serves to perform
feature untangling, consists of 8 fully connected layers, and
has the same size of output and input layers. The middle
part is the architecture of Stylegan2, which removes some
redundant operations from Stylegan’s architecture, moves the
addition of b and B outside the active region of style, and
adjusts only the standard deviation of each feature mapping.

If KL divergence and JS divergence are used as a measure
of the difference between the two probabilities, the most
critical point is that if the support sets of the two probabilities
do not overlap, it is impossible to make that parameterized,
moveable probability distribution slowly move over to fit the
target distribution. So in this paper, we use Wasserstein dis-
tance as a loss function in Loss, and also as a measure of the
distance between two probability distributions, to calculate
the difference between the generated data and the real data,
which is defined as follows:

W (Pr , Pθ ) = sup
||f ||L≤1

Ex∼Pr [f (x)] − Ex∼Pθ
[f (x)] (7)

where W (Pr , Pθ ) is the probability distribution, Pr and Pθ

denote the distributions of the real data and the generative
model respectively, which represent the lower bound on the
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FIGURE 2. Generating adversarial flowchart for DWBG-Stylegan2.

FIGURE 3. The generator structure of DWBG-Stylegan2.

mean of the difference in the paradigms of two random
variables x, y on the same space. f(x) is a function in the set of
functions ||f ||L ≤ 1, ||f ||L ≤ 1 denoting the set of functions
that satisfy the 1-Lipschitz condition.

2) BASIC PRINCIPLES AND TECHNICAL EXPLANATIONS
Traditional GANs use cross-entropy losses or mean-square
error losses, which can lead to unstable training, especially
when there is an imbalance in power between the generator
and the discriminator. In Stylegan2 combines Diffusion’s
reconstruction loss and latent loss, the reconstruction loss
ensures that the denoising process recovers a high-quality
image, and the latent loss encourages the generated samples

to follow a simple prior distribution, these losses add a certain
amount of training stability, especially when dealing with
complex and high-resolution images. The Wasserstein loss
function, on the other hand, serves to provide a smoother
gradient, which helps to reduce oscillations in the training
process, thus making training more stable. In addition, using
the Wasserstein loss function, the generator can produce
samples that are closer to the true data distribution. This
is because the Wasserstein distance directly measures the
‘‘distance’’ between the generated samples and the real
samples, thus providing a more direct optimization objective.

The computational map is retained for the fact that in
some cases, calculating the Wasserstein distance requires
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calculating the cost of pairing between the generated and
real samples. Preserving the computational map can help
calculate these costs more efficiently, thus speeding up the
training process.

C. ARCHITECTURAL DESIGN OF
DIFFUSION-STYLEGAN2-R2
1) CALCULATION OF THE L2 PARADIGM
The L2 regularized loss function is based on the original loss
function with an L2 paradigm penalty term for the weight
parameter, and the L2 regularized loss function and weight
update can be expressed as:

Ĵ(w) = J(w) + λ ||w||
2
2 = J(w) +

α

2
wTw (8)

w = (1 − η · α)w − η · ∇wJ(w) (9)

where J(w) is the original loss function, λ is the regularization
strength hyperparameter, w is the weight parameter, ∇wJ(w)
is the gradient of the original loss function, and η is the
learning rate. Compared to the weight update of the original
loss function, the difference between the weight update with
the addition of L2 regularization and the weight update of the
original loss function is only the addition of the coefficient
of 1 − η · α in front of w. When 0 < 1 − η · α < 1, the w
weights are scaled down for each weight update, i.e., for each
learning of the gradient descent method.

To find the expression between the maximum value wi
for which L2 regularization is added and the maximum
value w∗

i for the original loss function. The L2 regularization
is added to the original loss function to give a Taylor
expansion, preserving only the quadratic terms, i.e., the
quadratic approximation expression:

Ĵ(w) ≈ J(w∗) + ∇wJ(w∗)(w − w∗)

+
1
2
(w − w∗)TH(w − w∗) +

α

2
wTw (10)

Simplifying and deriving the above equation yields the
gradient of the loss function with the addition of L2
regularization as:

∇ŵJ(w) = H(w − w∗) + α · w (11)

When w = w, find w and convert to the form of
H = Q3QT to get:

w = Q(3 + α · I)−13QT
· w∗ (12)

Get the expression between wi and wi
∗:

wi =
λi

λi + α
· w∗

i (13)

From the above equation, it follows that when α = 0, the
two are equal; when α > 0, it corresponds to a magnification
of wi

∗; and when α > 0, it corresponds to a reduction of wi
∗.

2) ANALYSIS OF THE R2 REGULARIZATION TERM
To reduce the overfitting phenomenon of the generated
image, this paper proposes the R2 regularization term applied
in the discriminator loss, which retains the R1 regularization
term in Diffusion-Stylegan2 and introduces the new r2
hyperparameter. The structure of the Diffusion-Stylegan2-R2
is shown in Fig.4.

The computation of the R2 regularization term added to
the discriminator loss consists of: 1. computing the sum of
squares of the gradients: in the loss section, ‘‘r1_grads’’ is
used to denote the gradients, ‘‘r1_grads.squares()’’ compute
the squares of the gradients for each parameter, and then
‘‘.sum([1], [2], [3])’’ is used to sum the squares of all the
parameters; 2. Calculate the L2 parameter: the L2 parameter
of the sum of the squares of the gradients is calculated as
part of the regularization term. In discriminator loss, this is
calculated by ‘‘r2_penalty=(r1_grads∗∗2).sum([1], [2], [3])’’,
where ‘‘r1_grads∗∗2’’ represents the square of the gradient,
and then L2 norms for each parameter are calculated using
‘‘.sum([1], [2], [3])’’. Taken together, the formula for R2
regularization is:

Ĵ(w) = Jr1(w) +
γr2

2m
||w||

2
2, where w = ∇xDreal(x) (14)

The above equation can be noted as:

J = J0 +
γr2

2m
||∇xDreal(x)||22 (15)

where γr2 are hyperparameters used to control the strength
of the R2 regularization terms, ||∇xDreal(x)|| denotes the L2
paradigm of the gradient of the discriminator for the real
image, and m denotes the batch size. This formula describes
the R2 regularization term, which is used to smooth the
gradient, prevent certain weights from being too large, and
improve the generalization of the model.

3) BASIC PRINCIPLES AND TECHNICAL EXPLANATIONS
The R2 regularization term is a technique used to prevent
neural network overfitting by adding a penalty term to
the loss function to discourage large weights, which can
improve the training stability and overall quality of generative
models such as Stylegan2. By penalizing large gradients
and encouraging smoother decision boundaries, the R2
regularization term helps prevent overfitting and promotes the
generation of high-quality, realistic images.

D. ADAPTIVE DISCRIMINATOR ENHANCEMENT
TECHNOLOGY
Adaptive Discriminator Augmentation (ADA) technique [18]
can be used on top of DWBG-Stylegan2 to get the best
generated images, the architecture of DWBG-Stylegan2 is
described in detail in B. Based on the PCR (balanced
consistency regularization) method, Stylegan2-ADA does
image enhancement for the discriminator along with image
enhancement for the generator and removes the consistency
regularity term which is enhanced in the loss. The network
architecture of DWBG-Stylegan2-ADA is shown in Fig.5.
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FIGURE 4. The generative adversarial flowchart of Diffusion-Stylegan2-R2.

FIGURE 5. Network structure diagram of DWBG-Stylegan2-ADA.

ADA solves the problem mainly by getting the probability
p of data enhancement through network adaptation, and
deciding whether to do image enhancement on the image or
not with the probability p. Here p is generally a human-set
hyperparameter, and its value can have a great impact on the
generated results. In practice, the weights of the samples or
the training difficulty of the discriminator can be adjusted
manually, or the parameters can be adjusted automatically by
some automatic adjustment methods such as gradient descent
and Adam.

In a word, the training stability of DWBG-Stylegan2
proposed in this paper far exceeds that of Diffusion-
Stylegan2, has more reasonable gradient flow, generates
higher-quality anemone images, and this model applies to a

wider range of tasks and datasets; the Diffusion-Stylegan2-
R2 proposed in this paper introduces the R2 module, which
is a new module combining the R1 regularization term and
the L2 paradigm in the loss function of Diffusion-Stylegan2,
which generates images of higher quality than Diffusion-
Stylegan2, with better training stability, and at the same
time, it can accelerate the convergence speed of the training;
with the introduction of the ADA, DWBG-Stylegan2-ADA
can generate the highest quality anemone images among all
comparison models.

IV. SEA ANEMONE DATASETS
The datasets of underwater images are more difficult to
obtain than other datasets, so the research on underwater
images is largely limited by the problems of insufficient basic
information, imperfect equipment, etc. In 2020, Md Jahidul
Islam et al. publicly released the EUVP [19] datasets on
the web through marine field data collection and related
information search, which provided relatively abundant
large-scale marine underwater image datasets for the subse-
quent underwater image researchers. Other underwater image
datasets include SQUID [20], LSUI [21], UIEB [22], etc.
However, datasets about marine underwater single organisms
are very scarce, and the research in their related directions
is largely limited. Therefore, in this paper, 9235 SA datasets
with a resolution of 256∗256 were collected and produced,
and some examples are provided in Fig.6.

The SA datasets contains a large number of single-
individual biological images of anemones with good per-
ceptual quality, which are mainly derived from the EUVP
datasets, Flickr, and YouTube. High-quality images after data
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FIGURE 6. Displayed some example images from the SA datasets: (a). Individual small sea
anemone images; (b). Large-scale images of sea anemones and their communities; (c). Images of
sea anemones and clownfish in symbiosis.

augmentation by the FUnIE-GAN [19] model were selected
one by one in the paired and unpaired datasets of the publicly
released EUVP datasets. Meanwhile, on Flickr and YouTube,
this paper collects a large number of better-quality anemone
images publicly posted by users and bloggers. Through
the image cropping technique, 9235 anemone images were
uniformly cropped to a resolution size of 256∗256 to facilitate
the experimental operation.

Compared with existing underwater image datasets, the
anemone image dataset provided in this paper belongs to
a medium-sized single-individual biological image dataset,
which is suitable for unconditional image generation, and is
the first medium-sized anemone dataset for underwater image
generation. The dataset contains multiple species of large and
small anemones, and at the same time, the use of anemone
images with a resolution of 256∗256 can effectively shorten
the training time and reduce the training cost of the model.
However, since anemones and clownfish are symbiotic
organisms in marine ecosystems, clownfish may be present
in some anemone images. In this paper, we have collected
this dataset ofmarine underwater single-organism images and
minimized the impact of clownfish on image generation as
much as possible. There may be some shortcomings in the
dataset that subsequent researchers will hopefully be able to
remedy.

V. EXPERIMENTAL RESULTS AND ANALYSIS
The Pytorch library was used to implement the construction
of the Diffusion-Stylegan2 model and trained on 9235 SA
datasets with a resolution of 256∗256. The training was
performed using an NVIDIA GeForce GTX 4090 graphics
card, all models were trained with 8K iterations, the cfg was
auto, the batch was 16, the lr was 0.0025, the target was 0.6,
and the optimizer was Adam.

A. QUALITIVE EVALUATION
The similarity between the images generated by Diffusion-
Stylegan2 and real samples is first qualitatively analyzed
to measure the performance of the generated models.
At the same time, several models proposed in this paper

are pre-trained for model generation and the images with
relatively good generation results are demonstrated. Some
examples of generation are given in Fig.7.

As shown in Fig.7(a), the original anemone image with
a resolution of 256∗256 is input, and the anemone image is
output through each generative model respectively. Stylegan2
[23] and Diffusion-Stylegan2 are the original models, the
DWBG-Stylegan2 model is the model with the best gener-
ation in this paper, and the last model is based on DWBG-
Stylegan2 using ADA. As can be seen, DWBG-Stylegan2
and DWBG-Stylegan2-ADA have significantly improved
the distortion of the image over Stylegan2 and Diffusion-
Stylegan2, and the backgrounds are generated with more
diversity than the original model. In addition, as shown in
Fig.7(b), (c), and (d), the image generation effects of DWBG-
Stylegan2, Diffusion-Stylegan2-R2, and DWBG-Stylegan2-
ADA are demonstrated, where the DWBG-Stylegan2-ADA
has been largely close to the real image in generating
anemone images.

This paper provides a qualitative comparison of Diffusion-
Stylegan2 and related models. Eleven deep learning-based
generative models are considered:(I) GAN [24]; (II) Style-
gan2; (III) Diffusion-Stylegan2; (IV) Stylegan2 with ADA
(Stylegan2-ADA) [25]; (V) Stylegan2 with Wasserstein and
back propagation preserving computational maps (WBG-
Stylegan2); (VI) Diffusion-Stylegan2 with Wasserstein and
back propagation preserving computational maps (DWBG-
Stylegan2); (VII) Diffusion-Stylegan2 with the addition
of R2 (Diffusion-Stylegan2-R2); (VIII) Diffusion-Stylegan2
with ADA (Diffusion-Stylegan2-ADA); (IX) Diffusion-
Stylegan2 with ADA, Wasserstein, and back propagation
preserving computational maps (DWBG-Stylegan2-ADA);
(X) Diffusion-Stylegan2with R2,Wasserstein and back prop-
agation preserving computational maps (DWBG-Stylegan2-
R2); (XI) Diffusion-Stylegan2 with the addition of GP,
Wasserstein and back propagation preserving computational
maps (DWBG-Stylegan2-GP). These models use technical
tools such as regularization and introduce the concept of
style migration from Stylegan2 onwards. The training was
performed on the SA datasets using the same setup (the aug

VOLUME 12, 2024 37317



H. Zhang et al.: Anemone Image Generation Based on Diffusion-Stylegan2

FIGURE 7. Demonstrates the generation effect of sea anemone images and the three
improved models in this article.

needs to be added as ada for the ADA experimental part of the
training). In addition, Diffusion-Stylegan2 was considered
as a benchmark for comparing the performance of DWBG-
Stylegan2 and Diffusion-Stylegan2-R2 and qualitatively

evaluated using generated images with 1K resolution of
256∗256. Fig.8 shows some example comparisons.
As shown in Fig.8, the generation effect of GAN is

relatively limited in terms of the quality of the raw generated
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FIGURE 8. Qualitative performance comparison of generative models based on deep learning (250% zoom for
optimal viewing effect).

images compared to several other models. Stylegan2 and
WBG-Stylegan2 can generate roughly anemone images, but
the distortion is high and the generation effect is relatively
poor. However, it is a great breakthrough compared to GAN.
Diffusion-Stylegan2 has improved the quality of anemone

images compared to Stylegan2 and WBG-Stylegan2, the
distortion is reduced, and the contours and details of the
generated anemone images are improved. DWBG-Stylegan2-
GP and DWBG-Stylegan2-R2, which are two models with a
relatively complex structure, are more effective in terms of
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the details and textures of the images compared to Stylegan2
and WBG-Stylegan2 are significantly improved, but there
is no substantial improvement over Diffusion-Stylegan2.
The DWBG-Stylegan2 proposed in this paper has much
lower distortion and more visible details compared to the
backbone model Diffusion-Stylegan2. Diffusion-Stylegan2-
R2 has a smoother model compared to the backbone model
Diffusion-Stylegan2, which makes the generated image more
realistic and natural and the quality of the generated image
is enhanced. From the data enhancement point of view,
Stylegan2-ADA, Diffusion-Stylegan2-ADA, and DWBG-
Stylegan2-ADA significantly outperform the other generated
models in terms of clarity, diversity, and distortion. Espe-
cially, DWBG-Stylegan2 with ADA augmentation generates
anemone images that are more realistic than real images
in terms of color and texture. All in all, the performance
of DWBG-Stylegan2-ADA has improved significantly in
underwater image generation.

B. QUANTITATIVE EVALUATION
1) EVALUATION METRICS
In this paper, seven metrics are considered to measure the
performance of the generative model, which are Frechet
Inception Distance (FID) [26], Kernel Inception Distance
(KID) [27], Perceptual Path Length (PPL) [28], Inception
Score Mean (IS_mean), Inception Score Standard Deviation
(IS_std), Precision (P) [29] and Recall (R) [11], to quantita-
tively compare the model performance.

FID indicates the difference between the distribution of the
generated image and the real image, smaller FID value means
higher quality of the produced image. The formula for FID is
given below:

FID = ||µr − µg||
2
+ Tr(6r + 6g − 2

√
6r6g) (16)

where µr denotes the feature mean of the real image, µg
denotes the feature mean of the generated image, 6r denotes
the covariance matrix of the real image, and 6g denotes the
covariance matrix of the generated image.

KID measures the difference between two sets of samples
by calculating the square of the maximum mean difference
between the Inception representations. A lower KID value
indicates a smaller difference between the distribution of the
generated image and the distribution of the real image. The
formula for KID is given below:

KID(x, y) = ||mx − my||
2
+ Tr(Cx + Cy − 2(CxCy)

1
2 )
(17)

wheremx andmy are the centers of the feature representations
of the true image distribution x and the generated image
distribution y, and Cx, Cy are the covariance matrices of the
feature representations of the true image distribution x and
the generated image distribution y.

The idea of PPL is to give two random noises z1 and z2 to
find the length of the perceptual paths of the two points, the
idea of differentiation is used to subdivide the interpolated

paths of the two noisy points into small segments, to find the
length of each segment, and then averaged. A lower value
of PPL indicates a smoother and more continuous transition
between the generated images. The formula for PPL is given
below:

PPL = E[
1
ϵ2

d(G(slerp(z1, z2; t)),G(slerp(z1, z2; t + ϵ)))]

(18)

where ϵ denotes subdivided segments, slerp denotes spherical
linear interpolation, and t denotes interpolation parameters
obeying a uniform distribution.

IS is a metric used to evaluate the quality of images
generated by a generative model. IS_mean denotes the mean
value of the Inception Score [30], this metric is usually used
to measure the diversity of the generated images, and a higher
mean value of IS implies that the generated images are more
diverse. IS_std denotes the standard deviation of the Inception
Score, a smaller valuemeans that the generated image is more
consistent and stable across multiple samples. The formula
for IS is given below:

ISmean(G) = exp(Ex[DKL(p(y|x)||p(y))]) (19)

ISstd(G)

=

√
Ex[DKL(p(y|x)||p(y))2] − (Ex[DKL(p(y|x)||p(y))])2

(20)

where p(y|x) denotes the category probability distribution
predicted by the Inception-v3 [31] network given an image x,
and p(y) denotes the average category probability distribution
over all images.

P and R are an evaluation metric based on the
precision-recall curve used to assess the performance of a
generativemodel. P is the proportion of the generated samples
that match the real data. R is the proportion of the real data
that is successfully matched. Higher precision and recall
indicate that the generated samples are both diverse and
similar to the real data. The formulas for P and R are given
below:

P =
TP

TP+ FP
(21)

R =
TP

TP+ FN
(22)

where TP denotes the number of samples in which the
survival samples match the real data, FP denotes the number
of samples in which the generation samples do not match the
real data and FN denotes the number of samples in the real
data that have not been successfully matched.

2) ABLATION EXPERIMENT
In this paper, three sets of ablation experiments were per-
formed:(1) Stylegan2,WBG-Stylegan2, Diffusion-Stylegan2,
DWBG-Stylegan2, DWBG-Stylegan2-R2, DWBG-Stylegan2-
GP; (2) Stylegan2, Diffusion-Stylegan2, Diffusion-Stylegan2-
R2, DWBG-Stylegan2-R2; (3) Stylegan2, Stylegan2-ADA,
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TABLE 2. Quantitative comparison of wasserstein distance series training on FID, KID, PPL, P and R metrics.

TABLE 3. Quantitative comparison of R2 series training on FID, KID, P and R metrics.

TABLE 4. Quantitative comparison of ADA series training on FID, KID, IS_mean, IS_std, P and R metrics.

Diffusion-Stylegan2-ADA, DWBG-Stylegan2-ADA. The
experimental results are shown in Tables 2, 3 and 4.

In Table 2, the values measured by the generated models on
the FID, KID, PPL, P, and R evaluation metrics are provided.
The results show that DWBG-Stylegan2 performs best on the
FID, KID, and R metrics, with a decrease of 1.99 on the
FID metric, a decrease of 0.001603 on the KID metric,
and an increase of 0.0463 on the R metric, as compared
to Diffusion-Stylegan2; WBG-Stylegan2 performed best on
the PPL metric, with a reduction of 19.2516 over Diffusion-
Stylegan2; Stylegan2 had the best results on the P metric.
In a comprehensive comparison, the performance of DWBG-
Stylegan2 is significantly improved relative to Diffusion-
Stylegan2. In Table 3, the above fivemetrics were also used to
test the generative model, and the results show that Diffusion-
Stylegan2-R2 performs the best on the FID, KID, and R
metrics, with a reduction of 0.73 on the FIDmetrics compared
to Diffusion-Stylegan2, a reduction of 0.000657 on the
KID metrics compared to Diffusion-Stylegan2 and increased

by 0.0051 in the R metrics than Diffusion- Stylegan2;
Stylegan2 performed best in the PPL and P metrics. In a
comprehensive comparison, the performance of Diffusion-
Stylegan2-R2 is improved relative to Diffusion-Stylegan2.
In Table 4, six metrics, FID, KID, IS_mean, IS_std, P, and R,
are selected to evaluate the ADA series of generative models.
The experimental results show that DWBG-Stylegan2-ADA
achieves the optimal values for FID, KID, and R, and is
slightly lower than Stylegan2 in the IS_mean metric and
Diffusion-Stylegan2-ADA in the P metric. However, in a
comprehensive comparison, the performance of DWBG-
Stylegan2-ADA is optimal among the compared models.

3) COMPARISON EXPERIMENT
To comprehensively compare the performance of the pro-
posed models, this paper conducts comparative experiments
on 11 generative models using FID, KID, P, and R as the
evaluation metrics, and the experimental results are shown in
Table 5.
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TABLE 5. Comparative data of 11 generative models on FID, KID, P and R metrics.

The experimental results show that DWBG-Stylegan2
performs better in FID, KID, and R metrics compared to
GAN and Stylegan2. Stylegan2-ADA, DWBG-Stylegan2,
Diffusion-Stylegan2-R2, Diffusion-Stylegan2-ADA,DWBG-
Stylegan2-ADA, and DWBG-Stylegan2-GP outperform
Diffusion-Stylegan2 in FID, KID and R metrics. DWBG-
Stylegan2 achieves 8.32 in the FID metric, which is
1.99 smaller than the FID value of Diffusion-Stylegan2; in the
KID metric, it reached 0.002270, which was 0.001603 less
than the KID value of Diffusion-Stylegan2; and in the R
metric, it reached 0.2658, which was 0.0463 larger than
Diffusion-Stylegan2. In the FID, KID, and R metrics,
DWBG-Stylegan2-ADA experimental data was the best
generated among the 11 compared models. In the P metric,
Diffusion-Stylegan2-ADA reached the optimal value among
the 11 compared models. DWBG-Stylegan2-ADA reached
5.67 in the FID metric, which is 2.65 less than the FID
value of 8.32 for DWBG-Stylegan2; in the KID metric,
it reached 0.001073, which is 0.001197 less than the KID
value of DWBG-Stylegan2; and reached 0.3793 in the R
metric, which is 0.1135 larger than the R-value of DWBG-
Stylegan2. Diffusion-Stylegan2-ADA reached 0.5404 in
the P metric, which is 0.0264 larger than the P value
of Diffusion-Stylegan2. Overall, DWBG-Stylegan2-ADA
generates optimal results on the SA datasets.

Based on the four evaluation indexes of FID, KID, P, and
R given in Table 5, the 11 generated models are compared
and trained to get the pre-trained model. Evaluation tests
are performed on the 11 pre-trained models obtained from
training, and the evaluation data of the pre-trained models
are measured to obtain the data, which are organized to make
Fig.9.

The training of this paper used 8k rounds, and uncondi-
tional training of 11 groups of comparison models, mainly

on the FID evaluation index with epochs of the data obtained
by the recorders setting the recording interval to 200 epochs.
Due to some special circumstances, in the training process,
retaining the settings of the disconnection reconnection
reduces the loss of data due to unexpected circumstances and
other problems. Fig.10 gives the change in the value of FID
during the training process.

As can be seen from the data given in Fig.10, the GAN
training starts to collapse the model at around 2k. Stylegan2
and WBG-Stylegan2 have improved in training time and
stability compared to the GAN. Diffusion-Stylegan2, WBG-
Stylegan2, Diffusion Stylegan2-R2, DWBG-Stylegan2-GP,
and DWBG-Stylegan2-R2 are relatively stable in training.
The up and down fluctuations of the data are significantly
reduced and stabilized after 1k, and the model starts to slowly
collapse after 4k. Stylegan2-ADA, Diffusion-Stylegan2-
ADA, and DWBG-Stylegan2-ADA generate the best results,
as can be seen from the data in the figure, their FID values are
the closest to the real image. However, after adding ADA, the
gap between the FID values of the models with the progress
of training is not particularly obvious, and the superiority
of the improved model cannot be shown intuitively. In a
comprehensive comparison, the DWBG-Stylegan2model has
the most obvious effect on SA datasets training generation,
the training process is stable, and the training results are
also greatly improved based on Diffusion-Stylegan2. Its
generation effect is visible in Fig.10(b).

Without considering the ADA series model, the training
curve of DWBG-Stylegan2 in Fig.10(b) clearly shows that
after the model is trained to 1000 rounds, the generated
images have been generally better than the generated images
of other models, and the stability of the training process is
far better than that of other models. This is closely related
to the smooth gradient provided by Wasserstein, which
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FIGURE 9. Evaluation metrics for underwater image generation: (a). FID evaluation metric; (b). KID evaluation metric; (c).
P evaluation metric; (d). R evaluation metric.

FIGURE 10. The values of FID evaluation metrics during the training process: (a). Changes in FID values during 8k rounds of
training; (b). Enlarged line graph of FID between values (0,150) in (a).

reduces unnecessary oscillations in the training process,
thus making the model more stable in the training process,
while Wasserstein directly measures the ‘‘distance’’ between
the generated samples and the real samples to optimizes
the quality of the generated images. Therefore, this model
achieves the best generation effect in this paper after
removing the addition of ADA.

C. GENERATION OF IMAGES OF OTHER MARINE
ORGANISMS
In this paper, a simple training generation using the
DWBG-Stylegan2 model was performed on existing
small-scale fish datasets. The main purpose of this
experiment is to demonstrate the generalizability of the
model for different underwater image generations, and
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FIGURE 11. Fish images generated through 3k rounds of training.

the results of fish monomer generation are shown in
Fig.11.

As seen in Fig.11, DWBG-Stylegan2 can effectively
generate underwater images of several different species
under different datasets. However, the generated images
of the fish shown in Fig. 11 differ greatly from the real
images except for the fish scales and fins. Analyzing from
the algorithm, the reason for such generation results may
be improper initialization of parameters or unreasonable
setting of hyperparameters in the training process; from the
perspective of the dataset, it may be insufficient diversity of
data; and from the analysis of the training process, it may
be that the training time is too short. Improvements and
research on the fish dataset will continue in subsequent
experiments.

VI. CONCLUSION
This paper highlights the potential applications of the
proposed model in marine biology and related fields by
applying the Diffusion-Stylegan2 model across disciplines
and proposing six new models based on Diffusion-Stylegan2
for improving the quality of the generated images. A large
number of experiments show that the DWBG-Stylegan2
proposed in this paper is more suitable for the generation
of complex and variable anemone images than Diffusion-
Stylegan2, which reduces the FID by 1.99 based on
Diffusion-Stylegan2, and the model training is more stable,
and generates higher-quality underwater images with clearer
image textures. The FID of Diffusion-Stylegan2-R2 is
0.73 lower than that of Diffusion-Stylgan2 and the quality
of the generated image is closer to the real image than
that of Diffusion-Stylegan2, which indicates that the R2
regularization term replaces the R1 regularization term to
generate a better image. DWBG-Stylegan2-ADA generates
the best results, reducing the FID to 5.67, which greatly
improves the image generation quality of the generated
model. In addition, this paper provides a set of SA datasets
with a resolution of 256∗256 to solve the problem of
insufficient underwater image datasets.

The model in this paper generates higher-quality anemone
images compared to previous studies, but some limiting

problems also occur. For example, the introduction of ADA
technology in the DWBG-Stylegan2 model of this paper,
although the model with the best generation effect in this
paper is obtained, it still cannot generate the details such
as the background effectively, and due to the complexity
and uncertainty of the underwater environment, the quality
of the generated images is still a certain distance from the
realism of the real images. In addition, the operation of
retaining the computational graph in DWBG-Stylegan2 in
this paper only accelerates the training process to a certain
extent, and does not shorten the problem of the long training
time of Diffusion-Stylegan2 in the full sense. The next step
of the experiment will be to build a more suitable model for
underwater image generation for the complex environment of
underwater images, and at the same time, propose an effective
solution to the problem of long training time.
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