
Received 24 January 2024, accepted 20 February 2024, date of publication 23 February 2024, date of current version 29 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3369613

Formal-Guided Fuzz Testing: Targeting Security
Assurance From Specification to
Implementation for 5G
and Beyond
JINGDA YANG , (Graduate Student Member, IEEE), SUDHANSHU ARYA , (Member, IEEE),
AND YING WANG , (Member, IEEE)
School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Corresponding author: Ying Wang (ywang6@stevens.edu)

This work was supported by the Defense Advanced Research Project Agency (DARPA) under Grant D22AP00144.

ABSTRACT Softwarization and virtualization in 5G and beyond necessitate thorough testing to ensure
the security of critical infrastructure and networks. This involves identifying vulnerabilities and unintended
emergent behaviors, from protocol designs to their software stack implementation. Formal methods are
efficient in abstracting specification models at the protocol level, while fuzz testing provides comprehensive
experimental evaluations of system implementations. However, the state-of-the-art in formal and fuzz testing
is both labor-intensive and computationally complex. To provide an efficient and comprehensive solution,
we propose a novel, first-of-its-kind approach that combines the strengths and coverage of formal and fuzzing
methods. This approach efficiently detects vulnerabilities across protocol logic and implementation stacks
in a hierarchical manner. We design and implement formal verification to detect attack traces in critical
protocols. These traces then guide subsequent fuzz testing, and feedback from fuzz testing is used to broaden
the scope of formal verification. This innovative approach significantly improves efficiency and enables the
auto-discovery of vulnerabilities and unintended emergent behaviors from the 3GPP protocols to software
stacks. We demonstrate this approach with the 5G Non-Stand-Alone (NSA) security processes, which have
more complicated designs and higher risks due to compatibility requirements with legacy and existing 4G
networks, compared to 5G Stand-Alone (SA) processes. We focus on the Radio Resource Control (RRC),
Non-access Stratum (NAS), and Access Stratum (AS) authentication processes. Guided by the identified
formal analysis and attack models, we exploit 61 vulnerabilities, including 2 previously undiscovered ones,
and demonstrate these vulnerabilities via fuzz testing on srsRAN platforms. These identified vulnerabilities
contribute to fortifying protocol-level assumptions and refining the search space. Compared to state-of-
the-art fuzz testing, our unified formal and fuzzing methodology enables auto-assurance by systematically
discovering vulnerabilities.

INDEX TERMS NSA 5G, formal methods, fuzz testing, self-reinforcing solution, specifications.

I. INTRODUCTION
Verticals in 5G and next-generation infrastructure create a
diverse and intricate environment consisting of software,
hardware, configurations, instruments, data, users, and
various stakeholders [1]. However, due to the system’s

The associate editor coordinating the review of this manuscript and

approving it for publication was Junho Hong .

complexity and the often overlooked emphasis on security
by domain scientists, this formed ecosystem necessitates a
comprehensive evaluation and validation. This is critical for
enhancing research and improving the transitional security
posture of Critical Infrastructure (CI) [2].

Despite two major state-of-the-art approaches, formal
verification and fuzz testing, being proposed to detect various
vulnerabilities and unintended emergent behaviors in the 5G

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

29175

https://orcid.org/0009-0005-0532-8907
https://orcid.org/0000-0002-6030-5258
https://orcid.org/0000-0002-9004-7253
https://orcid.org/0000-0001-5035-8260

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

network, limitations in large-scale systems and stacks still
persist. Formal verification can provide a high-level concept
of protocol security and logical proof of vulnerabilities,
as described by Hussain et al. [3]. In contrast, fuzz
testing offers a detailed and comprehensive experimental
platform for detecting potential vulnerabilities in 5G code
implementation, as evaluated by Klees et al. [4]. However,
challenges and open issues related to selective fuzz testing
and formal analysis in various scenarios remain, as noted by
Souri and Norouzi and Beaman et al. [5], [6].

The limitations and challenges of implementing fuzz
testing and formal analysis to detect vulnerabilities in 5G
networks are multi-faceted. Formal verification offers a
high-level conceptual understanding of protocol security but
may not cover all real-world scenarios. In contrast, fuzz
testing provides comprehensive experimental testing but
faces difficulties with numerous computational resources.
Our proposed approach aims to achieve a balance by
leveraging formal verification to guide the fuzz testing
process. This means that formal verification, with its
precision, is used to initially detect high-risk logical vul-
nerabilities. These vulnerabilities then serve as starting
points for fuzz testing, which explores various inputs and
implementation vulnerabilities in a more scalable manner.
This technique aims to overcome the limitations of both
fuzz testing and formal analysis, enabling model checkers
to detect a wide range of vulnerabilities in large, complex
5G systems.

Our paper contributes significantly to the fields of
programming languages and infrastructure cybersecurity by
designing and implementing a formal verification framework
for 5G authentication and authorization specifications. This
framework not only detects attack traces but also forms attack
models, which guide subsequent fuzz testing and incorporate
feedback to broaden the scope of formal verification. Such
integration is crucial in the rapidly evolving landscape of 5G
and beyond, where conventional methods may fall short due
to the increasing complexity and scale.

The proposed interdisciplinary approach has the potential
to make meaningful contributions to programming languages
by improving the methods and tools available for formal
verification and fuzz testing. This contribution is partic-
ularly relevant in ensuring that emerging communication
technologies can be rapidly and securely integrated into
existing digital infrastructure. The approach also significantly
contributes to infrastructure cybersecurity by enhancing the
security measures against a wide range of vulnerabilities and
attack vectors, thereby strengthening system assurance and
resilience against potential threats. By continually refining
this approach, we aim to contribute to the development of
more secure, reliable, and efficient systems in the 5G era and
beyond.

Specifically, our contribution includes:
• Novel Approach for Enhancing Security Assurance:
Combining formal verification and fuzz testing pro-
vides a systematic method to identify vulnerabilities,

significantly enhancing security assurance for critical
infrastructure and communication systems.

• Reduced Resource Intensiveness: Streamlining tradi-
tional verification and fuzz testing processes makes
these methods more accessible and less resource-
intensive, encouraging broader participation in cyberse-
curity research.

• InterdisciplinaryApplication: Our protocol-independent
approach’s applicability across various domains fosters
interdisciplinary collaboration and innovation in cyber-
security solutions.

• Automatic Vulnerability Detection: Automation in our
approach enables automatic vulnerability discovery,
freeing researchers to focus on robust mitigation
strategies.

• Real World Validation: we present a comprehensive
application and evaluation of our security methodology
in real 5G environments, demonstrating its viability and
practical value.

In summary, our proposed approach aims to revolution-
ize vulnerability detection and management in large-scale
systems, benefiting the research community and society by
enhancing critical infrastructure and communication net-
works’ security and reliability.We believe our work will drive
innovation and substantial contributions in Programming
Languages and Infrastructure Cybersecurity.

In the subsequent sections of this paper, we provide a con-
cise overview of the structure of our proposed comprehensive
formal verification and fuzz testing integrated vulnerability
detection framework (Section III). Subsequently, we eluci-
date the mechanism behind our proposed dependency-based
protocol abstraction and evaluation approach (Section IV),
followed by presenting examples of dependency analysis
(Section IV-D). Furthermore, we apply the dependency-based
protocol abstraction and evaluation approach to the Non
Standard-Alone (NSA) 5G communication establishment
process (Section IV-A), where we present and analyze the
results of formal verification (Section V). Additionally,
we propose proven or novel solutions for each detected
formal attack model. Subsequently, leveraging the identified
assumptions, we apply our proposed fuzz testing framework
to verify and analyze the implementation of the NSA 5G
communication establishment process (Section VII). Lastly,
in Section IX, we utilize intuitive visualizations to analyze
the efficiency of different fuzzing strategies across various
fuzzing scopes.

II. RELATED WORK AND BACKGROUND
5G technologies are rapidly becoming crucial to national and
regional infrastructures and offer unprecedented connectivity
benefits. However, these technologies also present an attack
surface of unprecedented size due to the complexity of
both the specifications and implementations of 5G stacks.
Previous researchers have proposed various vulnerability
detection approaches [3], [7], [8], with two categories being
intensively researched: formal verification and fuzz testing.

29176 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

Formal verification is a technology that translates natural
language-defined protocols into symbolic logic language,
enabling the establishment of the validity of propositions
through a finite process of mathematical verification. Several
formal analysis frameworks have been proposed in exist-
ing research to determine which security guarantees are
satisfied in 5G protocols. These frameworks apply formal
methods and automated verification in symbolic models,
such as Tamarin [9], and 5G Reasoner [10]. Hussain et al.
[3] proposed a cross-layer formal verification framework,
which combines model checkers and cryptographic protocol
verifiers through the application of the abstraction-refinement
principle. In addition to formal verification frameworks,
different formal strategies have been introduced to prove
security assumptions, like those in [11]. For example,
the pre-authentication message sent unencrypted has been
acknowledged as the root cause of many known LTE
and 5G protocol exploits [12], [13], [14]. Furthermore,
some registration and access control protocols, including
authentication and key agreement (AKA), RRC, etc., have
applied formal methods in various frameworks [3], [10],
[15]. When applied in 5G security design, necessary lemmas,
helping lemmas, sanity-check lemmas, and lemmas that
check relevant security properties against 5G protocols are
verified [15].
A fuzz tester (or fuzzer) is a tool that iteratively and

randomly generates inputs to test the quality of a target
program [4]. Compared to formal analysis, fuzz testing
has proven successful in discovering critical security bugs
in real software [4]. For instance, [16] implemented a
Radio Resource Control (RRC) fuzz testing experiment
for air interface protocols. Significant effort has been
devoted to devising new fuzzing techniques, strategies, and
algorithms. Fuzz testing is used intensively for large-scale
system cybersecurity purposes, and various strategies have
been proposed to efficiently detect cyber vulnerabilities.
He et al. [17] proposed a state transition fuzzing framework
applicable to different types of message identifiers. To reduce
the randomness and blindness of fuzzing, [18] intro-
duced a vulnerability-oriented fuzz (VulFuzz) testing frame-
work, prioritizing fuzzing cases by security vulnerability
metrics.

Leveraging the advantages of both formal verification and
fuzz testing has become a popular research topic. In [19],
extreme cases like buffer overflow or incorrect format are
discussed, combined with the advantages of protocol and
mutation. Besides these extreme cases, rule-based fuzzing
[20] focuses on covering all protocol-based cases. Under the
limited directions defined by formal verification, coverage-
guided fuzz [21] was proposed to test the security of
cyber-physical systems. Furthermore, the state-of-the-art
vulnerability detection approach [22] proposed a possible
combination of formal verification and fuzz testing. For long-
term, multi-time attacks, Ma et al. [23] proposed a state
transaction method to analyze serial attacks. Based on formal

verification, fuzz testing can efficiently locate high-risk
areas. However, significant gaps remain in highly relying on
pre-assumptions of prior knowledge awareness and focusing
on the specific implementation of targeted protocols. There-
fore, LZfuzz [24] was proposed to eliminate the requirement
for access to well-documented protocols and implementa-
tions, focusing instead on plain-text fuzzing. Osborne and
Pascutto [25] proposed a framework applying fuzz testing
with area limitations in real-world experiments to narrow
the fuzzing scope. To address the challenges of computation
power, without presupposing but leveraging available prior
domain knowledge, we presented a multi-dimensional, multi-
layer, protocol-independent fuzzing framework in [26].
This framework aims for protocol vulnerability detection
and unintended emergent behavior identification in fast-
evolving 5G and NextG specifications and large-scale open
programmable 5G stacks.

Compared to previous approaches, where formal veri-
fication and fuzz testing were manually guided and not
seamlessly integrated, our proposed framework represents a
significant advancement. The key challenge in previous work
was the inability to automatically apply these methods to
detect cybersecurity vulnerabilities. In contrast, our approach
establishes a positive feedback loop between formal verifi-
cation and fuzz testing, enabling automated and continuous
vulnerability detection. This innovative integration enhances
the efficiency and effectiveness of the entire vulnerability
detection process, addressing a longstanding challenge in
the field. By automating the interaction between formal
verification and fuzz testing, we achieve a dynamic and
self-improving system that can adapt to evolving threats
and system changes, ultimately providing a more robust
cybersecurity solution.

III. SYSTEM OVERVIEW
Aiming to provide auto-assurance for 5G and beyond
specifications to stack implementations, we present a vulner-
ability and unintended emergent behaviors detection system.
As shown in Fig. 1, the system leverages the amplification
and cross-validation of fuzz testing and formal verification.
Our proposed framework establishes a virtuous recursive loop
through the following steps:

A. PROTOCOL ABSTRACTION
Starting with the 3GPP technical specifications (TS) and
requirements (TR), we first convert natural language-based
specifications into unambiguous symbolic expressions
known as an authentication and authorization flow-graph
(AAF). This flow-graph is then transformed into a prop-
erties table, and a dependency graph is generated. The
dependency graph serves as a foundation for automatically
deriving formal analysis models. This approach frees the
formal analysis process from labor-intensive and expertise-
dependent tasks, enabling auto-formal verification. It also
facilitates incremental evolving verification by incorporating

VOLUME 12, 2024 29177

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

FIGURE 1. System components and connector view.

new 3GPP protocol releases into existing formal methods,
thus eliminating the need to restart the protocol abstraction
process for each new release.

B. FORMAL-BASED VULNERABILITY DETECTION AND
ATTACK MODELS
Utilizing the dependency graph, we apply formal methods via
the ProVerif platform to conduct a logical proof of security
properties and potential vulnerabilities. This enables a robust
and comprehensive evaluation of the system’s security
integrity. The formal methods applied to the abstracted
protocols not only detect vulnerabilities in protocol design
but also guide fuzz testing by providing space isolation.

C. SEARCH SPACE ISOLATION
The output of formal verification divides the search space
into three sets: no vulnerabilities, detected attack traces, and
uncertain areas needing further investigation. This division
effectively narrows down the uncertain regions and guides the
direction of fuzz testing.

D. FORMAL GUIDED FUZZ TESTING
With attack models detected through formal analysis,
we direct and generate a list for fuzz testing. Unlike formal
analysis, which focuses on specifications, initiated fuzz
testing is performed on runtime binary systems, particularly
targeting predefined uncertain areas and areas with identified
attack traces. This guided fuzz testing aims to identify
runtime vulnerabilities, complementing the detection of
vulnerabilities through logical proofs on protocols and
evaluating the impact of the formally detected attack models
and traces. It also serves as a stochastic approach for uncertain
areas that cannot be verified through formal methods.

E. FORTIFICATION OF PROTOCOL AND FORMAL
VERIFICATION
Based on the vulnerabilities and unintended emergent
behaviors detected by formal methods and guided fuzz

FIGURE 2. Experimental platform structure and setup [26].

testing, we develop solutions and fortifications to enhance
the protocol’s robustness and resilience or to narrow down
search spaces. By more precisely defining the space, formal
verification can be further optimized, thereby extending the
scope of the security assurance area.

In summary, to address the challenges related to
labor-intensive expertise and the computational complexity
inherent in state-of-the-art formal and fuzz testing, our
proposed system uses protocol abstraction and self-learnable
iterative formal verification. This approach significantly
reduces the burden of labor-intensive formal verification.
Additionally, we implement formal guided fuzzing to
effectively lessen the computational complexity associated
with traditional fuzz testing.

Our formal verification approach relies on the ProVerif,
a widely recognized and well-established formal verifica-
tion tool for cryptographic protocols. ProVerif, rooted in
formal methods, employs symbolic verification techniques
to assess the security properties of these protocols. Our
formal verification process involves modeling the targeted
5G protocol and defining the security properties to be
verified, encompassing communication structures, message
exchanges, and cryptographic operations. ProVerif conducts
a rigorous analysis to uncover potential security flaws and
attack paths. Beside formal verification, in fuzz testing,
we utilize both zeroMQ as a virtualized simulation plat-
form and the srsRAN framework as a real-world testbed,
providing a platform to assess vulnerabilities under real
network conditions. We further demonstrate the proposed
framework by leveraging our existing platform for fuzz
testing-based digital twins [26], [27], [28] in the context
of 5G cybersecurity, as illustrated in Fig. 2. Both over-the-
air (OTA) and zeroMQ modes in legitimate communications
are executed using srsRAN. By interfacing with our digital
twin platform, we enable mutation-based identifier fuzzing
(Bit-Level Fuzz Testing) and permutation-based command
fuzzing (Command-Level Fuzz Testing). These techniques
can be used for implementation-level verification, extending
formal discovery, and triggering search spaces guided by the
results of formal methods. Utilizing formal result analysis,
formal-guided fuzz testing, and subsequent fortification, our
proposed framework constructs a reinforcing loop to enhance
the system’s resilience.

29178 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

IV. PROTOCOL ABSTRACTION
A. PROTOCOL AND SYMBOLIC CONVERSION FOR
FORMAL ANALYSIS
The NSA 5G architecture can be divided into the legacy
LTE authentication process and the LTE-to-5G connection
reconfiguration. Compared to the Standard-Alone (SA) 5G
network architecture, theNSA5G architecture ismorewidely
adopted but also more vulnerable due to the cross-generation
of protocols, which introduces vulnerabilities from LTE.
Furthermore, data in the data-link layer during wireless
communication can be vulnerable to hacking and misuse if
data security is not established [29]. Therefore, we focus
on the pre-authentication process of LTE in the NSA 5G
architecture. As shown in Fig. 3, the LTE authentication in the
NSA architecture can be divided into the following four parts:

1) RRC Connection Setup: RRC connection setup pro-
cess aims to build up connections in RRC layer.
First, User Equipment (UE) sends the RRC Connection
Request command with UE-identity and establishment
cause to gNodeB (gNB). Then, gNB replays with radio
resource configuration to UE. If the setup process is
valid, UE will send RRC Connection Setup Complete
command with necessary identifiers to gNB and prepare
for the following Non-Access Stratum (NAS) security
setup. In the RRC connection setup process, we verify
the reliability, consistency, and stability of communica-
tions between UE and gNB. Confidentiality will not be
considered because the RRC connection setup process
is designed for a non-encrypted environment.

2) Mutual Authentication: UE and core network (CN)
adapt Evolved Packet System (EPS) AKA algorithm
as encryption and decryption tools to set up mutual
authentication. In our designed formal EPS algorithm,
there are four required identifiers to get the cor-
responding values, AUTN , RES, and KASME . Even
if we assume the EPS algorithm is impregnable,
the previous messages containing international mobile
subscriber identity (IMSI) and temporarily generated
rand_id are neither ciphered nor integrity protected. The
unencrypted mutual authentication process is vulnerable
to disclosing the user identity under man-in-the-middle
(MITM) attacks. Based on exploited vulnerabilities and
properties, we test the security impact of user identity by
formal verification and simulate theMITM attack mode.

3) NAS Security Setup: After mutual authentication, CN
needs to decide encryption algorithm and integrity
algorithm. To ensure the security of NAS communi-
cation setup, UE and CN communicate with integrity
protection to decide encryption and integrity algorithm,
and KASME , which is the top-level key to be used in
the access network. Then UE and CN can get the
corresponding session key for encryption and integrity
of following symmetric NAS communication.

4) AS Security Setup: NAS security setup shares KASME
between CN and UE. However, there is still necessary

to establish another channel for user status management,
like RRC. Therefore, CN generates a key KeNB for gNB
based on KASME and NAS up-link count and forward the
KeNB to evolved NodeBs (eNB) through the private net-
work. Same with NAS security setup, eNB and UE share
theKeNB and selected encryption and integrity algorithm
with integrity-protected communications. Then eNB
and UE use the generated RRC encryption key, KRRCenc,
integrity key, KRRCint , and generated User Plane (UP)
encryption key, KUPenc, to establish symmetric ciphered
and integrity protected RRC and UP communication.

B. PROPERTIES DEFINITION AND EXTRACTION
Following the flowgraph shown in Fig. 3, we further extract
four major security properties: confidentiality, integrity,
authentication, and accounting, from the 3GPP specifica-
tions, which are critical for formal analysis. These four
properties represent distinct aspects of security enhancement
in the specifications:
1) Confidentiality represents the ability to prevent private

information from leakage.
2) Integrity denotes the capability to keep the information

unmodified.
3) Authenticationmeans whether the receiver can identify

who and when to send the message.
4) Accounting is identifying whether the current message

follows the right order in session.
Based on the four security properties, we have generated

an identifier-based Properties Table (PT), as shown in
Table 1, to reflect the specifications in the control messages.
The value in the security property columns indicates the
identifier on which the current identifier depends (where
‘N’ signifies no dependency). From Note 1 in Table 1,
we can infer that the RRC connection setup process, which
includes three steps, is unprotected in terms of confidentiality,
integrity, authentication, and accounting. For identifiers that
are protected in some properties, we examine the critical
keywords/identifiers in each property. The properties of these
critical keywords/identifiers become the assumptions for
examining that property. For example, as shown in Note 2 of
Table 1, we consider the integrity of AUTNHSS under the
assumption of a safe random number (RAND) or a leaked
RAND.
The content of the Properties Table serves as the input

for assumptions and properties in the subsequent formal
analysis. The table reveals dependencies between rows,
which determine the flow-graph for each formal model used
in vulnerability detection.

C. DEPENDENCY GRAPH GENERATION
To further visualize the dependencies presented in the
Properties Table, we have generated a Dependency Graph
(DG) as shown in Fig.4. The Dependency Graph allows
us to extract the dependency trace of identifiers, evaluate
the chain effects along dependency relationships, and assess

VOLUME 12, 2024 29179

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

FIGURE 3. NSA and as authentication and authorization flowgraph.

multi-level security risks. For example, as also indicated
in Note 3 of Table1, KNASenc has a higher integrity
security level than NAS-MAC . This is because the integrity
of KNASenc is protected by NAS;Ciphering;Algorithm,
NAS; Integrity;Algorithm, and KSIAMSE , which in turn are
protected by KNASint . However, the integrity of NAS-MAC is
solely protected by KNASint . Based on the security risk levels,
we first verify the vulnerabilities of the low-risk identifiers
and then validate the security of high-risk identifiers, building
upon the proven assumptions of the low-risk identifiers.
Following the security property tracks provides guidance for
the testing target, which narrows down the target range and
enhances the efficiency of formal and fuzz testing.

Our security level evaluation system follows the
Depth-first search (DFS) principle and inherits the security
level from the parent node (dependency node). As shown
in Alg.1, the recursive algorithm adds the security level of
dependent property to their security level vector. Based on

different consideration and application scenarios, we use the
Hadamard product of weight vector and security level vector
in Equation 1 to determine the global security level. For
instance, we can set the weight vector to [1, 1, 0.5, 0.5] if
we prioritize confidentiality and integrity.

S = [αc, αi, αau, αac] · [c, i, au, ac]T (1)

D. DEPENDENCY ANALYSIS
Based on the defined dependency graph above, we use some
samples to illustrate the process mechanism of how to extract
the highest risk path to the special identifier.

1) RRC CONNECTION SETUP DEPENDENCY ANALYSIS
From Fig. 4, we conclude get that all identifiers in RRC
Connection Setup are not protected by encryption or integrity
check. We can conclude that the security level of identifiers
in RRC Connection Setup= [0, 0, 0, 0].

29180 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

TABLE 1. Properties table of protocol.

Algorithm 1 Security Level Evaluation
Data: r = Boolean vector of dependency relation.
procedure Security_Evaluation(node_v)
1: [c, i, au, ac] = [1, 1, 1, 1]
2: while no dependent node v′ exists do
3: [c, i, au, ac] += Security_Evaluation(v′) ⊙ r
4: end while
5: return [c, i, au, ac]

end procedure

2) KNASENC DEPENDENCY ANALYSIS
KNASenc is the most critical identifier in NAS authen-
tication process and responsible for the following NAS
communication encryption. To prove the security of KNASenc,
we extract a logical dependency graph of KNASenc, Fig. 5,

from the whole dependency graph of authentication graph,
Fig. 4. From Fig. 5, we can conclude that there are three
direct integrity-dependent identifiers and only one direct
authentication-dependent identifier. We discuss the security
level from two aspects of security properties:

1) Authentication: Based on theKASME derivation function,
attackers can derive the SNid from the KASME . However,
attackers can not generate the KASME from the KNASenc.
Based on the authentication conduction of these three
identifiers, the invertibility of the path is critical
for authentication tracking. The coexistence of the
authentication dependency relationship and inevitability
can prove the feasibility of invertible conduction from
bottom to up.

2) Integrity: The trustworthiness, consistency, and accu-
racy of the data throughout its life cycle is termed
as integrity. Based on the dependency relationship of

VOLUME 12, 2024 29181

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

FIGURE 4. Dependency graph of protocol.

KNASenc, as shown in Fig. 5, only with the ability to
modify three direct identifiers, secret attackers can mod-
ify KNASenc secretly. Furthermore, attackers can modify
three direct identifiers only when they can modify
all five second-level identifiers, which are directly
connected to three direct identifiers. We can conclude
that the minimum requirement of KNASenc modification
is 5 identifiers in 3 command, including Attach Request,
Authentication Request, and NAS Security Mode
Command.

From the above proof, we can get the security level of
KNASenc = [0, 5, 1, 0].

V. FORMAL-BASED VULNERABILITY DETECTION AND
ATTACK MODELS
Based on the 5G authentication and authorization specifi-
cation abstraction in Sec.IV, we deploy formal models and

analysis to describe the logical attack models and detect
potential attack traces. In the ensuing section, we present
four samples of vulnerabilities detection at disparate stages
of the NSA 5G authentication process and analyze the
mechanisms of the exploited attack traces: (1) User Cre-
dentials Disclosure; (2) Deny of Service (DoS) or Cutting
of Device using Authentication Request, Exposing KNASenc
and KNASint ; (3) Exposing KRRCenc, (4) KRRCint and KUPenc.
Our key findings are encapsulated in Table 3 in the result
Section IX-A.

A. USER CREDENTIALS DISCLOSURE
In this attack, the adversary can exploit the transparency
of RRC Connection Setup process to effortlessly access
critical user identity information, which includes but is not
limited to the UE identity and establishment cause. This
illicit access enables the adversary to acquire user information

29182 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

FIGURE 5. Dependency relationship of KNASenc .

and use the ensuing session key for nefarious activities
such as eavesdropping and manipulation of subsequent
communications.

1) ASSUMPTION
The adversary can exploit the transparency of RRC Connec-
tion Setup process to directly access any identifier within
the message. Furthermore, the adversary is also capable
of establish a fake UE or a MITM relay to eavesdrop
and manipulate the messages within the RRC Connection
Setup process. To verify the security properties of identifiers
within the RRC Connection Setup process, including aspects
such as confidentiality and consistency, we converted the
aforementioned assumptions into ProVerif code.

2) VULNERABILITY
As depicted in Fig. 3, the UE initiates the process by
sending an RRC connection request to the CN. Upon
receiving this request, the CN responds by transmitting the
radioResourceConfigDedicated back to the UE. The UE,
in turn, obtains authentication from the CN and responds with
the RRC − TransactionIdentifier , selectedPLMN − Identity
and dedicatedInfoNAS to finalize the RRC connection setup.
Nevertheless, this process presents an exploitable vulnerabil-
ity as an adversary can access all message identifiers. Such
unprotected identifiers run the risk of being eavesdropped
upon and modified, potentially enabling the adversary to
orchestrate a MITM relay attack.

3) ATTACK TRACE DESCRIPTION
Employing formal verification, we analyzed the confidential-
ity of identifiers within the RRC Connection Setup process.
Through this methodical investigation, we identified two
categories of identifiers with themost significant impact: user

FIGURE 6. User credentials disclosure.

identities and RRC configuration identifiers. As illustrated
in Fig. 6, an attacker can access the identifiers marked in
red, delineating the pathway of the attack. In the initial
scenario, an adversary with the access to the user identity,
like UE − identity, is capable of launch DoS attack with real
UE − identity. Contrary to traditional DoS attacks, which
aim to overwhelm a system’s capacity, an UE − identity-
based DoS attack efficiently disrupts the CN verification
mechanism through repeated use of the same UE − identity,
leading to authentication confusion. And in second case,
with computationally derived RRC − TransactionIdentifier ,
the adversary can establish a fake base station or perform a
MITM relay attack by manipulating these identifiers. In the
latter case, the adversary positions between the UE and the
CN, intercepting and modifying communications in real-
time. Consequently, this attack model presents a severe
threat to the security and integrity of the mobile network’s
communication.

B. DOS OR CUTTING OF DEVICE USING AUTHENTICATION
REQUEST
In the mutual authentication process, not only Attach Request
command sent from UE is neither ciphered nor integrity
protected, but the Authentication Request command sent
from CN is also. Attackers can directly record and replay
commands to cut off UE.

1) ASSUMPTION
After CN receives the Attach Request command sent from
UE, CN replies Authentication Request command to confirm
whether UE is going to attach to the network and share the
session key. However, because the Authentication Request
command is neither ciphered nor integrity protected, UE will
be hard to verify who and when send the command.

2) VULNERABILITY
Due to the non-confidentiality of the Authentication Request
command, attackers can repeat the authentication request
command to multi UEs, as shown in Fig. 7. It is hard
for UE to identify which authentication request command
is valid. Multi-times of authentication request command
broadcasting can lead to DoS attacks or cutting of UE.
Compared to the User Credentials Disclosure, the formal
model for ‘‘DoS or Cutting of Device using Authentication

VOLUME 12, 2024 29183

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

FIGURE 7. DoS attack.

Request’’ is significantlymore complicated. Thus, we present
the formal proof of cutting off connection result shown in
Fig. 8 about the interaction between 5G RAN, real-UE and
fake-UE.

C. EXPOSING KNASENC AND KNASINT
NAS security establishment is only protected with integrity
but not encryption, which allows attackers to access all the
information but not to modify them. Attackers can fake as
UE or base station with enough information of authentication
process.

1) ASSUMPTION
Commands of the security authentication process in NAS
security setup is only protected by KNASenc, a key generated
based on the identifiers of the first command.

2) VULNERABILITY
Because commands of NAS security mode setup are not
ciphered, attackers can access the necessary identifiers and
generate the corresponding session key for the following
communications based on the corresponding key derivation
function (KDF). Then, attackers can pretend to be a base
station to communicate with victim UE, as shown in Fig. 9.
With proof of formal verification, attackers can block the
communication from UE to gNB and continue the NAS
security setup process as the base station.

D. EXPOSING KRRCENC , KRRCINT AND KUPENC
Similar to NAS security setup process, Access Stratum
(AS) security setup process is only integrity protected.
All necessary identifiers of the following RRC and UP
communications are transparent to attackers.

1) ASSUMPTION
Similar to NAS security setup process, all commands of AS
security setup process are only integrity protected without
encryption. Attackers can generate RRC and UP session keys
based on eavesdropped identifiers, like Fig. 10.

2) VULNERABILITY
Based on the eavesdropped KRRCenc, KRRCint and KUPenc,
attackers can monitor, hijack, and modify the commands
between UE and CN.

VI. SEARCH SPACE ISOLATION
The output of formal verification divides the search space
into three sets: no vulnerabilities, attack trace detected, and
uncertain areas that need further investigation. The division
of the search space effectively narrows down the uncertain
regions and enables the scalability of vulnerability detection.
Fig. 11 is the visual representation of the vulnerability space.
The blue area indicates the formal converted areas. Based on
the conclusion from formal analysis, some traces are formally
provable secure, represented by green sets in Fig. 11, and
some traces are provable attacks, characterized by dark purple
sets, and there is attack variance, represented by yellow sets,
which are not provable by formal methods. In addition, large
spaces cannot be converted by the formal method, including
implementation errors and non-logical describable areas,
or spaces that could be more labor-intensive and impractical
to perform formal analysis.

Thus, we introduce fuzz testing to connect with and be
guided by the formal result. The formal guided fuzz testings
function for two purposes:

• Compensate for areas that remain uncovered by formal
verification.

• Evaluate the potential risks and impacts of the formal
provable attack sets.

• Detect identifier level unintended emergent behaviors.

VII. METHODOLOGY OF FORMAL GUIDED FUZZ TESTING
As detailed in Section V, formal verification divided the
system’s security landscape into three zones: safe, non-safe,
and unprovable. While the safe area necessitates no further
scrutiny, the non-safe and unprovable areas warrant further
investigation using fuzz testing. Specifically, we leverage
fuzz testing to evaluate the risks of impact of the non-safe
areas within implementation stacks, as well as to ascertain
the security level within the regions previously undetermined.
By leveraging our previously developed viFuzzing plat-
form [27], [28], [30] that enables bit-level and command-level
fuzz testing for 5G and Beyond protocols and implementation
stacks, we effectively perform formal guided fuzz testing
and demonstrate in the range described in Fig.11. In this
session, we present two sets of bit-level fuzzing and nine sets
of command-level fuzzing to illustrate the operation of our
formally guided fuzzing framework.

We set up a relay attack mechanism interfacing our
developed platform viFuzzing and srsRAN [31] following
the attack traces detected by formal verification. The detailed
description can be referred to [32]. Fig. 12 demonstrates the
setup. We have set up the srsRAN as the UE to manage
the USRP B210 device, enabling communication with the
Amarisoft Call Box. This call box serves as both the gNB
and the CN. For a more open and customizable Radio Access
Network (RAN) and Core Network, the Amarisoft Call Box
can be substituted with srsRAN [32].

The overview structure of the framework that implements
formal guided fuzz testing is shown in Fig. 13, which
illustrates the dependency and flowgraph between formal

29184 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

FIGURE 8. MITM in mutual authentication.

FIGURE 9. Exposure of NAS.

verification detections and fuzz testing results. We further
present the formal guided fuzz testing cases that addressed the
four detected vulnerabilities using formal analysis in Sec.V.

A. MODIFICATION OF ESTABLISHMENTCAUSE
Based on the proved result of formal verification, we fix
the value of C-RNTI and replay the RRC connection
request commands with different values of identifier

FIGURE 10. Exposure of AS.

EstablishmentCause. Through the fuzzing result from
Table. 2, modification of EstablishmentCause can lead
to the expected result from formal verification, but the
modification of UE-Identity can not affect the connection

VOLUME 12, 2024 29185

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

FIGURE 11. Definition of vulnerability region.

FIGURE 12. OTA mode experimental setup and configuration [32].

FIGURE 13. Integrated solution of formal and fuzz testing.

as expected. We prove that the implementation of the
srsRAN [31] platform prevent some vulnerabilities of NSA
5G communication protocol.

Besides bit-level fuzzing, we also use command-level
fuzzing to test the vulnerability of incarceration with rrcreject
and rrcrelease [3]. When we fixed the C-RNTI, we found the
reply with rrcreject and rrcrelease can lead to disconnection and
repeat rrcreject and rrcrelease can lead to failed connections.

TABLE 2. Fuzzing result of establishmentCause modification.

B. REPEAT AUTHENTICATION REQUEST COMMAND
Based on Section V-B, the attacker can disconnect multi
UEs with the repeat of Authentication Request. Therefore,
in our fuzzing attack model, the attacker can record the
Authentication Request command from one UE and forward
the recorded Authentication Request command to other UEs.
To verify the performance of the fuzzing framework, we set
up three following scenarios:
1) Only attacker can send command to UE. In this case,

UE replies authentication response and try to establish a
connection, which proves what we found in Section V-B
by the formal method.

2) One CN and multi attackers compete to send same
command to UE. Even if UE gets confused by
multi-times of authentication requests, UE still has the
ability to reply by sending an authentication response to
CN.

3) One CN and multi attackers compete to send
different command to UE. In this scenario, while
attackers use different RAND and disclosure IMSI to
generate different Authentication Request commands
and forward different commands to UE, UE is more
likely to reply to the attackers’ requests.

C. EXPOSURE OF KNASENC AND KNASINT
From Section V-C, we can conclude that the attacker in the
MITM relay model has the ability to act as either UE or
CN. Compared to complex initial steps in the traditional
fuzz testing model, our proposed fuzzing framework only
needs a few steps to prove the feasibility and detect the
implementation vulnerabilities. We illustrate the detailed
fuzzing implementation based on formal assumptions in the
following:

29186 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

1) MITM attack as fake base station. Unlike the tradi-
tional fuzz testing approach, our framework can do fuzz
testing with only access to communicated commands.
The following steps illustrate the process flow of our
novel proposed framework:

• First, our framework records normal communication
commands.

• Then, our framework forwards the commands
between UE and CN as normal until mutual
authentication establishment with fixed same IMSI
and RAND.

• After mutual authentication is established, our frame-
work intercepts the commands from UE and reply
with corresponding commands based on the record
communication history.

The result proves that attackers have the ability to deploy
MITM attack as the fake base station.

2) Cutting the connection between UE and CN. Besides
fuzz testing of the fake station with blocked signals,
our framework can verify the feasibility of signal
competition. The detailed process is listed as follows:

• First, our framework records multi-times of normal
communication commands with different IMSI and
RAND.

• Then, our framework establishs mutual authentication
with another IMSI and RAND.

• Unlike the previous fuzz testing case, our framework
replies with corresponding commands and forwards
the commands from CN, which simulates the DoS
attack.

Most DoS attacks cut off the connection between UE
and CN. The result proves the vulnerabilities of NAS
security setup process. We can conclude the multi NAS
security mode commands attack is an efficient attack
model.

D. EXPOSURE OF KRRCENC , KRRCINT AND KUPENC
Similar to fuzz testing on NAS security setup, we design two
kinds of fuzzing strategies:

1) MITM attack as fake base station. Same with NAS
fuzzing case, attackers can successfully fake as a base
station when blocking the signals from CN.

2) Cutting the connection between UE and CN. DoS
attacks with multi times of AS security mode commands
have a high probability of cutting off the connection
between UE and CN.

VIII. CASE STUDY FOR FORMAL GUIDED FUZZ TESTING
Based on the results from formal analysis and guided fuzz
testing, vulnerabilities detected by fuzz testing are feedback
to the formal result and search space, which lead to the
fortification of protocol and formal verification. This is
a crucial component in improving the resilience of 3GPP
specifications.

A. USER CREDENTIALS DISCLOSURE
The adversary can exploit the transparency of RRC Connec-
tion Setup process to effortlessly access critical user identity
information, which includes but is not limited to the UE
identity and establishment cause. This illicit access enables
the adversary to acquire user information and use the ensuing
session key for nefarious activities such as eavesdropping and
manipulation of subsequent communications.

Given the significance and susceptibility of identifiers
within the RRC Connection Setup process, it is imper-
ative to implement integrity protection measures for the
RRC − TransactionIdentifier . Additionally, adopting a hash
value approach can assist in preventing the disclosure of UE
identity, further reinforcing security measures in this critical
process.

B. DOS OR CUTTING OF DEVICE USING AUTHENTICATION
REQUEST
In the mutual authentication process, not only Attach Request
command sent from UE is neither ciphered nor integrity
protected, but the Authentication Request command sent
from CN is also. Attackers can directly record and replay
commands to cut off UE.

Based on the analysis of detected vulnerabilities, it is
necessary to develop a verification mechanism to identify
the validation of commands. The encryption or integrity
protection of Authentication Requests becomes necessary
for mutual authentication to guarantee the security of initial
identifiers for the security establishment process. Based on
the principle of minimum change of the current protocol,
we propose the following three solutions:

• Ensured confidentiality Authentication and Key
agreement (EC-AKA) [33]. EC-AKA proposed new
asymmetric encryption to enhance user confidentiality
before symmetric encryption is determined. However,
this solution increases the cost of stations like public key
broadcasting.

• Hash value to represent IMSI [34]. This approach
can prevent attackers from getting the users’ identities.
However, attackers can still modify or deploy DoS
attacks.

• Hash value with integrity protection [35]. Khan et al.
proposed a combined solution, which uses hash values
to represent IMSI and adds checksum value to protect
integrity. Furthermore, the following commands in the
LTE security setup process can be encrypted by original
IMSI, which is invisible to the attacker but known to
UE and CN. Hash value with integrity protection is an
optimal solution that can provide enough security for
user identity at a low cost.

C. EXPOSING KNASENC AND KNASINT
NAS security establishment is only protected with integrity
but not encryption, which allows attackers to access all the
information but not to modify them. Attackers can fake as

VOLUME 12, 2024 29187

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

UE or base station with enough information of authentication
process.

Same with Section VIII-B, there are two encryption
methods to protect the NAS security setup:
1) Broadcasting asymmetric public key from gNB can be

applied to encrypt the commands.
2) NAS security setup process can encrypt with original

IMSI as symmetric key, while the hashed IMSI is used
for RRC connection setup.

D. EXPOSING KRRCENC , KRRCINT AND KUPENC
Similar to NAS security setup process, AS security setup
process is only integrity protected. All necessary identifiers of
the following RRC and UP communications are transparent
to attackers.

As proposed in previous sections, we can use asymmetric
encryption to cipher the communicated commands between
UE and gNB. And we also can use hashed IMSI as the
symmetric key to encrypt the commands.

IX. RESULT ANALYSIS
A. VULNERABILITY FINDINGS VIA FORMAL METHOD AND
GUIDED FUZZ TESTING
The detailed detected attack models and vulnerabilities
have been described in details in the previous sessions.
The summary of the vulnerabilities findings are listed in
Table 3. At the protocol level, 4 attack model categories,
including modification of Radio Resource Control (RRC)
connection, Denial of Service (DoS) or device disconnection
using Authentication Request, exposure of KNASenc and
KNASint , and exposure of KRRCenc, KRRCint , and KUPenc,
are extrapolated from the attack traces inferred through
formal verification. Following the proposed formal guided
fuzz testing framework shown in Fig.1. In bit-level guided
fuzzing, our system uncovers 8 vulnerabilities. In command-
level fuzzing, our framework detected 44 vulnerabilities.
Via the systematic approach, the list of vulnerabilities and
proposed solutions and fortifications significantly enhance
the resilience of the 3GPP specification and large-scale
implementations, like srsRAN in our demonstration. More
importantly, unlike the state-of-the-art by-piece vulnerabil-
ity detection, it addressed the foundations for achieving
assurance for Future G authentication and authorization in
providing the panoramic vision and examination of the to-
date 5G specifications.

B. SYSTEM ASSESSMENT OF COMPUTATION COMPLEXITY
IN FORMAL GUIDED BIT-LEVEL FUZZING
Fuzz testing is a systematic brute-force vulnerability detec-
tion approach that involves providing large amounts of
random data to find security vulnerabilities. However, it is not
computationally feasible to complete vulnerability detection
for the whole 5G NSA protocol, even for a single command.
State of the art rule-based bit-level fuzz testing strategy has
been proposed, such as [20], which narrows the scope of
fuzz testing to specific identifiers by following the protocol

rules. Although the rule-based mutation fuzz testing strategy
achieves an order of magnitude reduction in computational
complexity, there are still meaningless randomly generated
inputs. Our proposed formal-guided fuzz testing strategy
follows formal verification assumptions and generates three
sets of a few representative inputs: formal-based legal inputs,
formal-based illegal inputs, and randomly generated inputs.
Formal-based inputs must follow the protocol-defined rules
or format, but not randomly generated inputs.

One of the novelties and advances lies in the scalability of
our proposed system as the number of commands increases
in complex protocols. To verify complex protocols via formal
methods, formal analysis requires significant manpower
and computational power. Meanwhile, attempting to cover
the entire space via fuzz testing in the current state-of-
the-art methodology requires an enormous number of test
cases and impractical computation time, as the size of fuzz
testing in the brute fuzzing strategy exhibits exponential
growth. On the contrary, our presented formal-guided fuzz
testing approach maintains linear growth as the number
of commands increases. In this session, we perform a
quantitative comparison between brute force fuzz testing,
state of the art bit-level fuzzing, and the formal guide fuzz
testing.

As depicted in Eq. 2, the brute-force fuzzing strategy
indiscriminately flips bits within randomly selected com-
mand sets. Conversely, the rule-based fuzzing strategy [20],
as expressed in Equation 3, confines bit modifications to the
identifiers within randomly chosen command sets. In contrast
to these approaches, our formal-guided fuzz testing identifies
the bit-level fuzzing command first. Focusing on the target
commands and restricts alterations to various types of
identifiers, as elucidated in Eq. 4.

For the brute force fuzz testing complexity:

Nbrute_force = 2
∑K

k=0 |ck | (2)

where Nbrute_force denotes the number of fuzz testing cases
via Brute Force. C = [c1, c2, · · ·, cK] is the sets of potential
commands in the target procedures fuzz testing. K represents
the number of target commands in fuzz testing, whereas |ck |
is the number of bits in command k .
For state of the art rule-based fuzz testing complexity:

Nrule_based = 2
∑K

k=0 |c_Ik | (3)

where c_Ik,i ∈ [c_Ik,1, c_Ik,2, · · ·, c_Ik,i] represents the
identifier sets in command ck and |c_Ik,i| is the number of
bits in identifier i in command ck ,

∑Ik
i=1|c_Ik,i|≪ |ck | where

Ik is the number of identifiers in command ck .
For formal guided fuzz testing complexity:

Nformal_guided =

T∑
k=1

|ct_Ik |∑
j=1

type(ct_Ik,j) (4)

where T = |C_target| is the number of target commands,
whereas C_target = [ct1, ct2, · · ·, ctT]. It is to be noted that
C_target represents a subset of commands that were detected

29188 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

TABLE 3. Summary of vulnerability findings and comparison with existing exploits.

FIGURE 14. Comparison of different bit-level fuzzing strategy efficiency.

by a formal analysis as vulnerable commands that needed to
be tested with fuzzing, that is, C_target ⊆ [c1, c2, · · ·, cK].
|ct_Ik | denotes the number of identifiers in target command
ctk . ct_Ik,j is the identifier j of target command ctk , while
type(ct_Ik,j) is the number of logical types of identifier j in
target command ctk , including legal and valid value, legal and
invalid value, and illegal random value.

The comparison of computation complexity following
Eq. 4 with 4 fuzz strategies is shown in Fig. 14, in which
fuzzing strategies are selected based on various application
scenarios.

1) Connection Request command bit-level fuzzing:
Based on the guidance of formal verification in
Section V-A, the RRC Connection Request command,

which includes 40 bits of UE-Identity, 4 bits of
EstablishmentCause, and 1 bit of spare, is vulnerable
to DoS or MITM attacks. Traditional brute-force fuzz
testing generates more than 245 fuzzing cases, and
rule-based fuzzing generates 240 + 24 + 1 fuzzing cases
based on the defined identifiers. However, our formal
guided fuzzing strategy requires only 9 fuzzing cases,
including one legal UE-Identity case, one illegal UE-
Identity case, one random out-of-rule UE-Identity case,
2 legal/illegal EstablishmentCause cases, 1 random out-
of-rule EstablishmentCause case, one legal spare case,
one illegal spare case, and one out-of-rule spare case.

2) Authentication Request command bit-level fuzzing:
Formal verification proved the Authentication Request
command is the critical part for DoS or fake station
attacks. Inside the Authentication Request command,
there are 128 bits of RAND, 128 bits of AUTNHSS and
3 bits of KSIASME . Our proposed formal guided fuzzing
strategy generates 3×3 fuzzing cases, while brute-force
fuzzing generates 2259 cases and rule-based fuzzing
generates 2128 + 2128 + 23 cases.

3) NAS Security Mode command bit-level fuzzing: To
verify the formal assumptions in MITM and cutting of
the connection attacks, we make bit-level fuzzing on
NAS Security Mode command. NAS Security Mode
command has 3 bits of KSIAMSE , 4 octets of UE
capability, 4 bits of EEA1, 4 bits of EIA1, and 8 octets
of NAS − MAC . Brute force fuzzing needs all possible
permutations and random inputs, at least 2107 cases.
Rule-based fuzzing generates at least 23 + 232 + 24 +

24 + 264 cases. However, our proposed formal guided
fuzzing only needs 3 × 5 cases.

VOLUME 12, 2024 29189

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

4) AS Security Mode command bit-level fuzzing: To
verify the formal assumptions, AS Security Mode
command bit-level fuzzing is necessary. Similar to NAS
Security Mode command, AS Security Mode command
contains 4 bits of EEA1, 4 bits of EIA1, and 8 octets
of MAC-I. Like illustrated in NAS Security Mode com-
mand bit-level fuzzing, formal guided fuzzing generates
3× 3 cases. In contrast, brute force fuzzing generates at
least 272 cases, and rule-based fuzzing generates 24 +

24 + 264 cases.

Fig. 14 provides an intuitive visualization that compares
the effectiveness of different fuzzing strategies. The upper
and lower bounds of the pink area are represented by values of
‘‘c=1’’ and ‘‘c=4’’ in Fig. 14. Notably, it is evident that brute
force fuzzing and rule-based fuzzing exhibit exponential
growth patterns. In contrast, our proposed formal guided
fuzzing approach demonstrates linear growth, requiring
considerably less computational power for vulnerability
verification and localization. The superiority of our method in
terms of efficiency and scalability enables a realistic testing
and vulnerability detection across the entire specifications,
and provides the assurance and confidence in 5G system,
especially when applied to the critical infrastructures.

C. SYSTEM ASSESSMENT OF COMPUTATION COMPLEXITY
IN FORMAL GUIDED COMMAND-LEVEL FUZZING
In addition to detecting vulnerabilities at the bit level of a
command using fuzzing, it is also necessary to verify formal
attack traces through command-level fuzzing. Unlike bit-
level fuzzing, where no single representative case can cover
all out-of-rule scenarios, command-level fuzzing potentially
involves an unlimited number of cases. To efficiently locate
command-level vulnerabilities, we proposed a probability-
based command-level fuzzing framework in our previous
work [26]. Utilizing formal assumptions of RRC and
User Identity Disclosure attack, we fixed the C-RNTI and
IMSI on the srsRAN platform to simulate user identity
disclosure. This strategy reduced the number of fuzzing
cases to 3,080. Furthermore, leveraging the identity disclo-
sure assumption, we collected all different commands on
downlink channels and fuzzed all possible permutations.
As illustrated in Fig. 15, our proposed probability-based
framework requires only 36.5% of the number of fuzzing
cases compared to a random fuzzing strategy. The figure
also shows the number of cases needed to detect differ-
ent percentages of vulnerabilities. In comparison to the
conventional linear growth, computation-consuming random
fuzzing strategy, our developed probability-based fuzzing
approach demonstrates significantly improved performance
[26]. The incorporation of prior knowledge further enhances
the effectiveness of our method, leading to even greater
efficiency gains. Theoretically, our proposed approach has
the potential to complete millions of command-level fuzzing
iterations within a modest scope of five thousand test cases.
This significant reduction in the number of required test

FIGURE 15. Comparison of Benchmark random-based fuzzing and
probability-based fuzzing [26].

cases underscores the efficiency and effectiveness of our
methodology.

D. COMPARATIVE ANALYSIS WITH EXISTING METHODS
After evaluating the performance of our proposed system,
we create a table that examines our system and exist-
ing methods in various aspects, including effectiveness,
efficiency, and coverage. Table 4 offers a comprehensive
comparative analysis with existing methods. Table 4 becomes
clear that our system displays similar time complexity to
formal verification and provides similar effectiveness to other
existing fuzz testing approaches.

E. DISCUSSION OF INTEROPERABILITY IN REAL-WORLD
IMPLEMENTATION
Serving as critical infrastructure applied across various
verticals, ensuring interoperability among different vendors
implementing 5G and beyond technologies, while maintain-
ing security standards, is crucial. In our paper, we presented a
multi-dimensional, multi-layer protocol-independent fuzzing
framework aimed at detecting vulnerabilities and unintended
emergent behaviors in the rapidly evolving specifications of
5G and NextG, as well as large-scale open programmable
5G stacks. This framework is designed with the diversity of
vendor implementations in mind and is dedicated to extensive
testing across these variations.

Formal-model-based fuzz testing, which explores random
variations of a scenario guided by formal constraints, is used
for unintended emergent behavior assessment. It performs
fuzz testing in the out-of-assumption domains of formal
models on a pilot stack (e.g., srsRAN). The test cases and
models offer automation and scalability when applied to
other open-source 5G software available from the Linux
Foundation and existing 5G codebases from carriers in
national operation. In the testbed that we developed, HyFuzz,
we mixed srsRAN and Amarisoft as the vendors for
validation and proved the adaptation of it.

In implementation, we further address the concern for
interoperability by creating a positive feedback loop between

29190 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

TABLE 4. Comparative analysis with existing methods.

formal verification and fuzz testing within our framework.
This means that as vulnerabilities or interoperability issues
are discovered, they are fed back into the testing cycle, allow-
ing for iterative refinement and adaptation to a wide range of
vendor implementations and scenarios. This approach aims
to strike a balance between rigorous security standards and
the practical need for interoperability across different 5G
technologies.

In practice, implementing fuzz testing and formal analysis
for 5G vulnerability detection faces specific challenges:
formal verification might overlook practical issues, and fuzz
testing requires extensive resources. Our method uses formal
verification for initial high-risk vulnerability identification,
guiding subsequent, more expansive fuzz testing. This
strategy enhances precision and coverage of 5G security
assessments. The presented approach could be applied to var-
ious fifth-generation (5G) and beyond open programmable
platforms [38], [39], [40] or other cognitive/software-defined
communication systems [41]

X. CONCLUSION
Motivated by the limitations of state-of-the-art vulnerability
detection methods, which are highly computationally com-
plex in fuzz testing and labor-intensive formal verification,
we present a first-of-its-kind formal guided fuzz testing
approach in this paper for efficient and systematic 5G
vulnerability detection. Specifically, formal verification is
implemented in our proposed approach to detect attack
traces in 5G protocols, guiding subsequent fuzz testing.
Formal verification is employed to detect 4 attack models,
and then fuzz testing, following the detected high risk
area by formal verification, detects 61 vulnerabilities in
the 5G NSA authentication and authorization procedure.
All detected vulnerabilities, which includes both exploits
discussed in existing research and new findings that have
not been previously revealed, are verified via real-life
experiments using srsRAN. Our approach combines the
strengths and coverage of formal and fuzzing methods
to efficiently detect vulnerabilities across protocol logic
and implementation stacks in a hierarchical and interactive
manner. To close the loop, feedback from detected attack
models and vulnerabilities is incorporated to fortify system
designs and enhance resilience.

To provide an intuitive reflection in addressing the
computation complexity, we assess the complexity of our
approach with conventional fuzz testing results and the
state-of-the-art rule-based approaches. Conventional fuzz
testing would necessitate a staggering 9 × 1077 fuzzing
cases. However, under the formal assumption of RRC and
User Identity Disclosure attack, our framework reduces the
number of fuzzing cases to a manageable 3080, which is
further curtailed to 1027 through a probability-based fuzzing
strategy, showcasing the framework’s superior efficiency.
Beside the computation complexity, one significant advan-
tage of our approach is its scalability. Our approach can
be applied in diverse contexts by not being limited to
a single protocol and accommodating varying needs and
requirements across different systems and infrastructures.
This adaptability broadens its applicability, making it a valu-
able asset for researchers addressing cybersecurity challenges
in various domains. Additionally, our protocol-independent
approach promotes interoperability and compatibility with
existing infrastructure cybersecurity solutions. It seamlessly
integrates with different protocols and systems, simplifying
implementation and facilitating the adoption of enhanced
security measures. This promotion, in turn, contributes to a
more resilient and secure cyber ecosystem, benefiting both
individual researchers and the broader community through
enhanced collaboration and knowledge-sharing.

XI. FUTURE WORK
In this paper, we emphasize the authentication process
is its crucial role in wireless communication. A secure
authentication process is essential for protecting subsequent
communications from potential threats, such as information
leakage or connection failures. By ensuring a strong authenti-
cation mechanism, we establish a solid foundation for secure
communication.

However, it is worth noting that post-authentication
communication is often most susceptible to efficiency-
related challenges, such as Signal-to-Noise Ratio (SNR)
issues. We plan to expand our efforts by developing more
comprehensive measurement approaches, including factors
like SNR and latency. This expansion will enable us to apply
our framework to broader areas of 5G and beyond systems,
including data-link layers.

VOLUME 12, 2024 29191

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

Furthermore, we plan to investigate how our approach can
be adapted to address emerging technologies and standards
evolving from 5G to 6G and beyond. This includes looking
into the integration of machine learning algorithms for
predictive analytics, the application in IoT environments, and
the enhancement of network slicing and edge computing
capabilities.

In addition, the limitation of our proposed approach
lies in the labor-intensive nature of formal verification.
While formal verification is a powerful tool for detecting
vulnerabilities, developing formal models and proofs often
requires significant expertise and manual effort. This can
be time-consuming and may not scale well, particularly
for complex protocols or large-scale systems. To address
this limitation, our research will focus on overcoming the
labor-intensive nature of formal verification by leveraging
advanced technologies such as Large Language Models
(LLMs) like GPT or LLAMA. Our goal is to automate
the generation of initialized formal code, making formal
verification more accessible and efficient. By achieving this
automation, we aim to develop a comprehensive automated
system for detecting vulnerabilities in network protocols.
This system can autonomously identify vulnerabilities when
provided with protocol specifications as only inputs. Addi-
tionally, the new model will consider a wider variety of
data, like log files and the state of the cache, to enable
multi-dimensional input and analysis. In addition to 5G
specifications, wewill expand the verification and vulnerabil-
ity detection to various specifications and implementations,
including IoT and other areas.

ACKNOWLEDGMENT
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

REFERENCES
[1] J. Alcaraz-Calero, I.-P. Belikaidis, C. J. B. Cano, P. Bisson, D. Bourse,

M. Bredel, D. Camps-Mur, T. Chen, X. Costa-Perez, P. Demestichas,
M. Doll, S. E. Elayoubi, A. Georgakopoulos, A. Mämmelä, H.-P. Mayer,
M. Payaro, B. Sayadi, M. S. Siddiqui, M. Tercero, and Q. Wang, ‘‘Leading
innovations towards 5G: Europe’s perspective in 5G infrastructure public-
private partnership (5G-PPP),’’ in Proc. IEEE 28th Annu. Int. Symp. Pers.,
Indoor, Mobile Radio Commun. (PIMRC), Oct. 2017, pp. 1–5.

[2] M. Shatnawi, H. Altaleb, and R. Zoltán, ‘‘The digital revolution
with NESAS assessment and evaluation,’’ in Proc. IEEE 10th Jubilee
Int. Conf. Comput. Cybern. Cyber-Medical Syst. (ICCC), Jul. 2022,
pp. 000099–000104.

[3] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
‘‘5GReasoner: A property-directed security and privacy analysis frame-
work for 5G cellular network protocol,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2019, pp. 669–684.

[4] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, ‘‘Evaluating fuzz
testing,’’ inProc. ACMSIGSACConf. Comput. Commun. Secur., Oct. 2018,
pp. 2123–2138.

[5] A. Souri and M. Norouzi, ‘‘A state-of-the-art survey on formal verification
of the Internet of Things applications,’’ J. Service Sci. Res., vol. 11, no. 1,
pp. 47–67, Jun. 2019.

[6] C. Beaman, M. Redbourne, J. D. Mummery, and S. Hakak, ‘‘Fuzzing vul-
nerability discovery techniques: Survey, challenges and future directions,’’
Comput. Secur., vol. 120, Sep. 2022, Art. no. 102813.

[7] Y. Wang, A. Gorski, and L. A. DaSilva, ‘‘AI-powered real-time channel
awareness and 5G NR radio access network scheduling optimization,’’ in
Proc. 17th Int. Conf. Des. Reliable Commun. Netw., 2021, pp. 1–7.

[8] Y. Wang, S. Jere, S. Banerjee, L. Liu, S. Shetty, and S. Dayekh,
‘‘Anonymous jamming detection in 5G with Bayesian network model
based inference analysis,’’ in Proc. IEEE 23rd Int. Conf. High Perform.
Switching Routing (HPSR), Jun. 2022, pp. 151–156.

[9] S. Meier, B. Schmidt, C. Cremers, and D. Basin, ‘‘The TAMARIN prover
for the symbolic analysis of security protocols,’’ in Proc. 25th Int. Conf.,
(CAV), vol. 8044, 2013, pp. 696–701.

[10] C. Cremers and M. Dehnel-Wild, Component-Based Formal Analysis of
5G-AKA: Channel Assumptions and Session Confusion. Reston, VA, USA:
Internet Society, 2019.

[11] A. Peltonen, R. Sasse, and D. Basin, ‘‘A comprehensive formal analysis of
5G handover,’’ in Proc. 14th ACM Conf. Secur. Privacy Wireless Mobile
Netw., Jun. 2021, pp. 1–12.

[12] M. Labib, V. Marojevic, J. H. Reed, and A. I. Zaghloul, ‘‘Enhancing the
robustness of LTE systems: Analysis and evolution of the cell selection
process,’’ IEEE Commun. Mag., vol. 55, no. 2, pp. 208–215, Feb. 2017.

[13] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, ‘‘Breaking LTE on layer
two,’’ inProc. IEEE Symp. Secur. Privacy (SP), May 2019, pp. 1121–1136.

[14] A. Shaik, R. Borgaonkar, N. Asokan, V. Niemi, and J.-P. Seifert,
Practical Attacks Against Privacy and Availability in 4G/LTE Mobile
Communication Systems. Reston, VA, USA: Internet Society, 2017.

[15] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
‘‘A formal analysis of 5G authentication,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2018, pp. 1383–1396.

[16] H. Wang, B. Cui, W. Yang, J. Cui, L. Su, and L. Sun, ‘‘An automated
vulnerability detectionmethod for the 5GRRCprotocol based on fuzzing,’’
in Proc. 4th Int. Conf. Adv. Comput. Technol. Inf. Sci. Commun. (CTISC),
Apr. 2022, pp. 1–7.

[17] F. He, W. Yang, B. Cui, and J. Cui, ‘‘Intelligent fuzzing algorithm for
5G NAS protocol based on predefined rules,’’ in Proc. Int. Conf. Comput.
Commun. Netw. (ICCCN), Jul. 2022, pp. 1–7.

[18] L. J. Moukahal, M. Zulkernine, and M. Soukup, ‘‘Vulnerability-oriented
fuzz testing for connected autonomous vehicle systems,’’ IEEE Trans. Rel.,
vol. 70, no. 4, pp. 1422–1437, Dec. 2021.

[19] X. Han, Q. Wen, and Z. Zhang, ‘‘A mutation-based fuzz testing approach
for network protocol vulnerability detection,’’ in Proc. 2nd Int. Conf.
Comput. Sci. Netw. Technol., Dec. 2012, pp. 1018–1022.

[20] Z. Salazar, H. N. Nguyen, W. Mallouli, A. R. Cavalli, and
E. Montes de Oca, ‘‘5Greplay: A 5G network traffic fuzzer–application
to attack injection,’’ in Proc. 16th Int. Conf. Availability, Rel. Secur.,
Aug. 2021, pp. 1–8.

[21] S. Sheikhi, E. Kim, P. S. Duggirala, and S. Bak, ‘‘Coverage-guided fuzz
testing for cyber-physical systems,’’ in Proc. ACM/IEEE 13th Int. Conf.
Cyber-Phys. Syst. (ICCPS), May 2022, pp. 24–33.

[22] M. Ammann, L. Hirschi, and S. Kremer, ‘‘Dy fuzzing: Formal dolev-yao
models meet protocol fuzz testing,’’ Cryptol. ePrint Arch., 2023.

[23] R. Ma, S. Ren, K. Ma, C. Hu, and J. Xue, ‘‘Semi-valid fuzz testing case
generation for stateful network protocol,’’ Tsinghua Sci. Technol., vol. 22,
no. 5, pp. 458–468, Sep. 2017.

[24] S. Bratus, A. Hansen, and A. Shubina, ‘‘Lzfuzz: A fast compression-based
fuzzer for poorly documented protocols,’’ Tech. Rep., 2008.

[25] N. Osborne and C. Pascutto, ‘‘Leveraging formal specifications to generate
fuzzing suites,’’ in Proc. OCaml Users Developers Workshop, Co-Located
26th ACM SIGPLAN Int. Conf. Funct. Program., 2021, pp. 1–3.

[26] J. Yang, Y. Wang, Y. Pan, and T. X. Tran, ‘‘Systematic meets unintended:
Prior knowledge adaptive 5G vulnerability detection via multi-fuzzing,’’
2023, arXiv:2305.08039.

[27] J. Yang, Y. Wang, T. X. Tran, and Y. Pan, ‘‘5G RRC protocol and stack
vulnerabilities detection via listen-and-learn,’’ inProc. IEEE 20th Consum.
Commun. Netw. Conf. (CCNC), Jan. 2023, pp. 236–241.

[28] D. Dauphinais, M. Zylka, H. Spahic, F. Shaik, J. Yang, I. Cruz, J. Gibson,
and Y. Wang, ‘‘Automated vulnerability testing and detection digital
twin framework for 5G systems,’’ in Proc. IEEE 9th Int. Conf. Netw.
Softwarization (NetSoft), Jun. 2023, pp. 308–310.

[29] M. Krichen, M. Lahami, O. Cheikhrouhou, R. Alroobaea, and A. J. Maâlej,
‘‘Security testing of Internet of Things for smart city applications: A formal
approach,’’ Smart Infrastruct. Appl., Found., Smarter Cities Societies,
pp. 629–653, 2020.

29192 VOLUME 12, 2024

J. Yang et al.: Formal-Guided Fuzz Testing: Targeting Security Assurance

[30] J. Yang, Y. Wang, Y. Pan, and T. X. Tran, ‘‘Systematic and scalable
vulnerability detection for 5G specifications and implementations,’’ IEEE
J. Sel. Areas Commun., 2023.

[31] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano,
and D. J. Leith, ‘‘SrsLTE: An open-source platform for LTE evolution
and experimentation,’’ in Proc. 10th ACM Int. Workshop Wireless Netw.
Testbeds, Experim. Eval., Characterization, Oct. 2016, pp. 25–32.

[32] J. Yang and Y. Wang, ‘‘A nextg hybrid testing platform for multi-step deep
fuzzing and performance assessment from virtualization to over-the-air,’’
IEEE Cloudnet, 2023.

[33] J. B. Bou Abdo, H. Chaouchi, and M. Aoude, ‘‘Ensured confidentiality
authentication and key agreement protocol for EPS,’’ in Proc. Symp.
Broadband Netw. Fast Internet (RELABIRA), May 2012, pp. 73–77.

[34] 3GPP, Universal Mobile Telecommunications System (UMTS); LTE;
Mobility Management Entity (MME) Visitor Location Register (VLR) SGs
Interface Specification, Version 8.5.0 Standard TS 29.118, 3rd Gener.
Partnership Project (3GPP), 2015.

[35] M. Khan, P. Ginzboorg, K. Järvinen, and V. Niemi, ‘‘Defeating the
downgrade attack on identity privacy in 5G,’’ in Proc. Int. Conf. Res. Secur.
Standardisation. Springer, 2018, pp. 95–119.

[36] J.-K. Tsay and S. F. Mjølsnes, ‘‘A vulnerability in the umts and LTE
authentication and key agreement protocols,’’ in Proc. Comput. Netw.
Secur., 6th Int. Conf. Math. Methods, Models Architectures Comput. Netw.
Secur., MMM-ACNS. Springer, 2012, pp. 65–76.

[37] M. T. Raza, F. M. Anwar, and S. Lu, ‘‘Exposing lte security weaknesses at
protocol inter-layer, and inter-radio interactions,’’ in Proc. Secur. Privacy
Commun. Netw. 13th Int. Conf., Niagara Falls, ON, Canada. Springer,
2017, pp. 312–338.

[38] O-RAN: Towards an Open and Smart RAN, O-RAN Alliance, Oct. 2018.
[39] SrsRAN is a 4G/5G Software Radio Suite Developed By SRS, Softw. Radio

Syst., Dublin, Dublin, Ireland, 2021.
[40] Y. Wang, A. Gorski, and A. P. da Silva, ‘‘Development of a data-driven

mobile 5G testbed: Platform for experimental research,’’ in Proc. IEEE
Int. Medit. Conf. Commun. Netw. (MeditCom), Sep. 2021, pp. 324–329.

[41] Y. Wang and C. W. Bostian, ‘‘Dynamic cellular cognitive system,’’
U.S. Patent 8 610 094, Jan. 10, 2012.

JINGDA YANG (Graduate Student Member,
IEEE) received the B.E. degree in software engi-
neering from Shandong University and the M.Sc.
degree in computer science from The George
Washington University. He is currently pursuing
the Ph.D. degree with the School of System and
Enterprises, Stevens Institute of Technology. His
research interests include formal verification and
vulnerability detection of wireless protocol in 5G.

SUDHANSHU ARYA (Member, IEEE) received
the M.Tech. degree in communications and net-
works from the National Institute of Technol-
ogy, Rourkela, India, in 2017, and the Ph.D.
degree from Pukyong National University, Busan,
South Korea, in 2022. He was a Research Fellow
with the Department of Artificial Intelligence
Convergence, Pukyong National University. He is
currently a Research Fellow with the School
of System and Enterprises, Stevens Institute of

Technology, Hoboken, NJ, USA. His research interests include wireless
communications and digital signal processing, with a focus on free-space
optical communications, optical scattering communications, optical spec-
trum sensing, computational game theory, and artificial intelligence.
He received the Best Paper Award from ICGHIT 2018 and the Early Career
Researcher Award from Pukyong National University, in 2020.

YING WANG (Member, IEEE) received the B.E.
degree in information engineering from Beijing
University of Posts and Telecommunications, the
M.S. degree in electrical engineering from the
University of Cincinnati, and the Ph.D. degree in
electrical engineering from Virginia Polytechnic
Institute and State University. She is currently an
Associate Professor with the School of System and
Enterprises, Stevens Institute of Technology. Her
research interests include cybersecurity, wireless

AI, edge computing, health informatics, and software engineering.

VOLUME 12, 2024 29193

