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ABSTRACT As the electric vehicle industry continues to grow on a large scale, the challenges related
to the locating and sizing of charging stations are becoming more apparent. This paper utilizes floating
car data from Urumqi, considering factors such as battery SoC, usage time, and the diverse preferences
of electric vehicle drivers when making charging decisions. Through this approach, this paper predicts
the charging demands of electric vehicles and formulates a model for optimal locating and sizing based
on these predicted needs. The research findings indicate that by simulating charging decisions made by
electric vehicle drivers, a total of 10,766 charging demands were identified. In comparison, there were 14,759
parking events extracted from the floating car data. This approach reduced redundancy in charging demand
predictions compared to directly using the floating car data for extracting parking events. When considering
the locating of charging stations, the strategy of exclusively installing fast-charging stations showed better
results than the approach involving a mix of fast and slow charging stations. When the decision of locating
prioritized minimizing unmet charging demands, it successfully addressed a minimum of 130 additional
charging demands. Similarly, whenminimizing the idle time for electric taxi drivers was the primary concern,
this approach led to a reduction of at least 109 hours in idle time; through a reallocating and sizing adjustment
of charging piles within the charging station based on the locating plan, it was possible to meet an additional
83 charging demands. This modification also significantly reduced the average idle time for users, decreasing
from an average of 4.26minutes to 2.63minutes.Moreover, the charging piles’ average usage time increased,
going up from 10.31 hours to 10.42 hours, thus improving the overall efficiency of the charging piles. These
findings provide valuable insights for the locating and sizing of charging stations tailored to urban electric
taxis.

INDEX TERMS Floating car, heterogeneity, location and capacity of charging station, multi-objective
planning, NSGA-II.

I. INTRODUCTION
Electric vehicles have gained widespread favor among gov-
ernments and populations globally due to their energy-saving,
environmentally friendly, and low-carbon attributes. With the
rapid growth of electric vehicle ownership in China, the
expansion of charging piles has significantly lagged behind
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the surge in electric vehicle numbers. Consequently, electric
vehicles are confronted with substantial charging pressures
according to [1] and [2]. Thus,the optimization of locating
and sizing of charging stations, aimed at achieving a bal-
ance between station revenue and user satisfaction, stands
as a pressing issue in this field as demonstrated in [3] and
[4]. Nonetheless, appropriate locating and sizing require
data regarding the distribution and capacity of parking lots,
an exploration of the road network and traffic flow within
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the planned regions, and meticulous planning of power grid
capacity. The absence of such data frequently results in
challenges such as suboptimal layouts and under utilization
of resources as mentioned in [5]. The maturation of data
collection via floating cars has effectively addressed the data
limitations that previously hindered the locating and sizing of
charging stations. Maciejewski et al. [6], presents research on
large-scale microscopic simulation of taxi services in Berlin
and Barcelona based on floating car data collected by local
taxi fleets. Therefore, using extensive floating car data can
now offer essential data support for developing a more ratio-
nal and efficient layout of charging stations.

Predicting charging demands plays a decisive role in deter-
mining the location and size of charging piles, serving as the
foundation for decisions regarding charging stations. In the
early stages of research, the trajectory data of electric vehicles
were scarce, and researchers relied on relevant statistical
data to project charging demands. Jia et al. [7], based on
electric vehicle ownership and driving statistics, calculated
the overall charging demands for electric vehicles. Similarly,
Tian et al. [8], utilizing data from the U.S. National House-
hold Travel Survey (NHTS), considered variables like the
onset of charging, daily travel distance, and charging power.
They combined these factors with the Monte Carlo method
to predict the power needs of charging for both individual
and multiple electric vehicles. Sadeghi-Barzani et al. [9],
employed an indirect approach by forecasting vehicle own-
ership to predict charging demands. These studies utilized
statistical data such as vehicle ownership, electricity load,
regional population figures, and more to estimate the charg-
ing demands. While statistical data is readily available, it is
worth noting that since charging demands originate from the
usage patterns of electric vehicles, predictions solely based
on statistical data might not authentically represent the actual
charging demands. Other researchers have proposed meth-
ods that leverage the traffic flow of road network charging
demand prediction. Gao et al. [10], considered energy con-
sumption along road segments as an indicator of charging
demand.Wang and Lin [11], used traffic flow at road intersec-
tions in combination with variables of energy consumption
rate to predict charging demand. He et al. [12], adopted
an Origin-Destination (O-D) approach to forecast charg-
ing demand within road networks. These methods consider
charging demand solely from a spatial perspective, overlook-
ing the impact of factors such as time, battery state of charge,
and drivers’ decisions on charging demand. This limitation
results in less precise predictions of charging demand. There-
fore, some researchers have taken a micro-level approach to
dynamically simulate travel patterns of electric vehicles for
charging demand prediction. Zhao et al. [13], based on the
theory of trip chain, achieve a refined simulation of users’
behavior patterns. They then analyze the charging demand
in different stopping areas based on two charging behaviors.
Similarly, Wen et al. [14], also leveraging the theory of
trip chain, simulate travel behavior to subsequently compute

charging demand for various functional zones. However,
in real-world scenarios, the travel destinations of electric
vehicles exhibit randomness, leading to a lack of precise
spatial information in these methods, resulting in suboptimal
charging demand predictions. With a matured technology
of floating car data, its accurate spatiotemporal information
provides data support for precise predictions of charging
demand. Extracting parking events from floating car data,
Hua et al. [15], consider them as charging demands, thereby
constructing a model for locating and sizing. Methods for
predicting charging demand of this nature rarely encompass
all three elements-spatial information, spatiotemporal infor-
mation, and battery SoC-in their predictions simultaneously.
Approaches that derive charging demand predictions from
the trajectory data of floating cars and incorporate accurate
spatiotemporal information represent a future research trend
according to [16], [17], and [18], Additionally, the diversity
in drivers’ charging decisions influences real-world charging
demand as demonstrated in [19]. In summary, we can only
achieve more precise predictions of charging demand by
concurrently considering spatial information, spatiotemporal
information, battery SoC, and diversity in driver decisions.

Based on the form of charging demand, classical models
for locating models can be categorized into point demand
locating and flow demand locating models. Point demand
locating traces its roots back to the P-Median model intro-
duced by Hakimi in 1960. In this model, the known parame-
ters include the positions and demands of specific points, the
locations of potential facilities, and the number of facilities
to be established. The goal is to formulate a locating model
that minimizes the sum of distances between each demand
point and its corresponding facility as mentioned in [20].
Flow demand locating, on the other hand, finds its origin
in the flow-capturing location-allocation model proposed by
Hodson in 1990. In this model, the parameters involve traffic
flow data for various road segments within a transportation
network. The objective is to strategically place multiple facil-
ities to ensure every potential route passes through at least
one of these locations, aiming to maximize the coverage of
services according to [21]. Point demand locating models
assume that electric vehicles charge either at their starting or
destination points. In contrast, flow demand locating models
assume that charging demand arises while vehicles are in
motion during their journey. However, due to the existing
technology limitations, the charging time for electric vehicles
is relatively long, and drivers typically prefer destination
charging over en-route charging as mentioned in [22]. Hence,
point demand locating is more suitable for arranging charging
piles within urban environments than flow demand locat-
ing. In early research, the focus primarily revolved around
single optimization objectives. Dong et al. [23], introduced
a variant of locating model based on the maximum cov-
erage model. Based on Cai’s work, Asamer et al. [24],
proposed a decision support system for the locating of charg-
ing stations, aiming to minimize the total travel distance,
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which electric vehicles cannot achieve. In practical scenar-
ios, however, multiple objectives often need to be balanced.
Single-objective locating models are inadequate for intri-
cate real-world situations. Subsequent researchers gradually
incorporatedmultiple optimization objectives into their locat-
ing models. Mi [25], presented a dual-objective optimal
locating strategy that seeks to minimize detour costs while
maximizing travel frequency. The aim is to ensure that the
limited charging stations in the road network cater to the high-
est number of demands possible. Chen et al. [26], proposed
a multi-objective locating and sizing model for charging sta-
tions. Their model encompasses comprehensive optimization
goals, including construction and operational expenses of
charging stations, charging time, and carbon emissions linked
to driving to these stations. Additionally, this model integrates
sizing (capacity planning) constraints of charging stations
while accounting for carbon emissions. Ficara et al. [27],
implemented an agent-based transport model for analyzing
traffic in the metropolitan city of Messina (Sicily, Italy).
Karaaslan et al. [28], investigated the various factors, both
the positive and negative factors associated with electric
vehicle adoption and the subsequent effects on pedestrian
traffic safety are investigated using an agent-based model-
ing approach, in which a traffic micro-simulation of a real
intersection is simulated in 3D using AnyLogic software.
Multi-objective functions are typically chosen from different
perspectives, including economic costs of construction and
operation [29], users’ time costs [30], demand satisfaction
[23], travel fulfillment [24], and environmental emission
reduction [31]. Optimization models for the layout of charg-
ing facilities commonly aim to find optimal solutions from a
systemic or user-oriented perspective. From a systemic stand-
point, these models are primarily established to minimize the
overall construction and operational expenses [32], [33], [34],
[35]. This perspective often represents the government or
investors in charging piles. While some researchers consider
the interests of electric vehicle users alongside the concerns of
construction stakeholders, very few studies focus exclusively
on the core objective of maximizing the benefits of users.
In summary, constructing multi-objective models with an
emphasis on the advantages for electric vehicle users aligns
more effectively with the evolving mainstream of locating
models [36].

Locating a charging station involves defining the types
of charging piles to be deployed (such as fast-charging sta-
tions or slow-charging stations) and the number of charging
units within the station. In the current research, the sizing of
charging stations is predominantly determined by eliminat-
ing redundant capacity from the total charging demand [37]
or by employing queuing theory to establish the sizing of
charging units within the station [38], [39], [40]. However,
both of these approaches overlook the temporal distribution
of charging demand, resulting in relatively short utilization
time for the charging piles. Establishing a charging facil-
ity network commonly considers multiple types of charging
piles, which aligns well with the prevailing characteristics

of current networks [24], [41], [42], [43]. Nevertheless, even
for operationally-focused vehicles like electric taxis, diverse
charging units can cater to their needs during operations. Fur-
thermore, while the cost of a single fast-charging unit ranges
from 40,000 to 70,000 yuan, a single slow-charging unit costs
only around 3,000 yuan. This substantial cost discrepancy
may hold latent optimization potential worthy of exploration.

In light of these considerations, this study extracts parking
events from floating car data and employs these events to
simulate the charging decisions made by electric taxi drivers.
Taking into account the temporal characteristics of charging
demand, battery SoC, and the heterogeneous influences on
charging decisions arising from factors like station proxim-
ity and preferred battery charge levels, the study predicts
charging demand. Subsequently, a dual-objective model of
locating and sizing is constructed using the results of the
charging demand predictions. This model aims to minimize
both the unmet charging demands and the idle time in electric
taxi drivers (the combined time spent accessing the station
and waiting in line). By employing this approach, the study
analyzes the optimal locating and sizing of charging stations.
Ultimately, this research provides valuable insights into the
locating and sizing of charging stations tailored to urban
electric taxi services.

II. CHARGING DEMAND ANALYSIS BASED ON FLOATING
CAR DATA
Accurately forecasting charging demand stands as a pivotal
factor in the locating and sizing of charging stations for
electric vehicles. This research, grounded in extensive float-
ing car data containing parking events, takes into account
two key facets: the inherent attributes of electric taxis and
the diverseness among electric taxi drivers. Through this
comprehensive approach, the study simulates the charging
decisions made by electric vehicle drivers. In relation to
electric vehicles, considerations encompass battery SoC and
temporal data. Concerning the individuality of taxi drivers,
factors like the maximum acceptable distance to a charging
station and the preferred battery charge level are factored
in to assess their influence on charging decisions. In effect,
this research manages to predict a distribution of charging
demand that faithfully mirrors real-world circumstances.

A. EXTRACTING PARKING VENTS
Floating car data (FCD) refers to data collected from moving
vehicles, where their information is systematically transmit-
ted to and aggregated by an information processing center.
This data is divided into high-frequency and low-frequency
categories, distinguished by a time interval of 30 seconds.
High-frequency FCDhas intervals less than 30 seconds, while
low-frequency FCD has intervals exceeding 30 seconds. FCD
typically includes details such as the date of collection,
time stamps, license plate IDs, vehicle identification number
(VIN), geographic coordinates, instantaneous driving speed,
and driving direction, among other attributes. The fundamen-
tal information encompassed by FCD is illustrated in Table 1.
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TABLE 1. The fundamental information encompassed by FCD.

In this study, the initial phase encompassed the prepro-
cessing of floating car data. Employing Matlab, the raw data
was structured to extract the daily trip chain for taxi vehicles
based on their date and license plate ID. Situations within
these trip chains, characterized by consecutive instances of
zero instantaneous speed, were identified as parking events.
Parking event data with durations surpassing 20minutes were
then isolated and set aside as supplementary data.

B. OTHER RECOMMENDATIONS PARAMETER
CHARACTERISTICS OF ELECTRIC TAXIS
In this study, the conversion of gas-powered taxis to electric
taxis is postulated. To maintain the operational behaviors
of taxi drivers, the charging activities for electric taxis are
planned to occur during their parking periods. Since the
historical statistics of the battery power of electric taxis in
Beijing are complete and valid, and there is no battery power
information in Urumqi, there is no relevant statistical data to
support the study for the time being, so the study is based on
the statistical data of the battery information of electric taxis
in the Beijing area, and allocates the battery power informa-
tion of electric taxis to the parking nodes of the parking time
in the parking events.

1) BATTERY SOC
The State of Charge (SoC) in an electric vehicle serves as
an indicator of the remaining battery capacity, Battery SoC
reflects the remaining capacity of electric vehicle batteries
and is expressed as a decimal between 0 and 1. A value closer
to 1 signifies a battery with a charge level near 100%, while
a value nearer to 0 indicates a nearly depleted battery that
requires immediate charging. Novosel et al. [44], modelled
the hourly distribution of the energy consumption of EVs and
use the calculated loacurves to test their impact on the Croat-
ian energy system. In this study, the methodology introduced
byChen et al. [45], is adopted, utilizing historical data derived
from the battery SoC of electric taxis in Beijing. The average
battery SoC of multiple electric taxis within each hour over a
24-hour time frame is taken as the representative information
for electric taxis during different hours. The distribution of
this information is depicted in Figure 1.

2) TEMPORAL INFORMATION
Temporal information has a direct impact on SoC data. Con-
sidering the two-hour time difference between Urumqi and

FIGURE 1. The distribution of battery power state over time.

FIGURE 2. The corrected battery power state over time conversion curve.

Beijing, adjustments were incorporated into the study by pro-
jecting the remaining battery SoC two hours ahead. Given the
sporadic occurrence of parking events throughout the day and
the discrete nature of existing historical data, a transformation
was needed to convert the information of battery SoC into
a continuous curve that evolves with time. To achieve this,
the curve fitting toolbox within Matlab R19b was employed,
as illustrated in Figure 2.

C. ANALYSIS OF CHARGING BEHAVIOR AMONG ELECTRIC
TAXI DRIVERS
This study treats taxi drivers as distinct individuals and intro-
duces two parameters: the maximum acceptable distance
to reach a charging station and the preferred battery SoC.
These parameters capture the behavior diversity in electric
taxi drivers. The maximum acceptable distance to a charging

VOLUME 12, 2024 30677



L. X. Wang et al.: Research on Location and Capacity of Electric Taxi Charging Station

station indicates that each driver will only charge within a
certain distance range when the need arises. The preferred
battery SoC, termed as the comfortable battery level, repre-
sents the electric taxi driver’s desire to maintain the battery
level above a specific threshold.

1) MAXIMUM ACCEPTABLE DISTANCE TO REACH
CHARGING STATIONS
Unlike traditional approaches used in prior studies to capture
charging demands at stations, this research introduces the
concept of the maximum acceptable distance that electric taxi
drivers are willing to travel to access a charging station. This
means that the taxi driver takes the point where the parking
event occurs as the centre of the circle and the distance to the
furthest acceptable visiting charging station, determined by
the size of the remaining battery power of the electric vehicle,
as the radius, and chooses a charging station by independent
decision. In this study, the acceptable distance range for elec-
tric taxi drivers to access charging stations is set between 2km
and 5km. These boundary values are drawn from the extreme
values corresponding to the radius settings of charging station
services previously established. The probability distribution
of charging station distances is based on the linear satisfaction
assumption proposed by Chu’s [46].

2) PREFERRED BATTERY SOC
The term ‘‘preferred battery SoC’’ refers to a specific battery
charge level that users find personally satisfactory. To draw
an analogy from everyday life, consider the preferred battery
SoC individuals have for their mobile phones. When the
battery SoC drops below this threshold, a need to charge
arises. This phenomenon holds true for the charging decisions
made by electric taxi drivers as well. In light of this, this study
extends this concept to the context of electric taxi drivers.
It posits the existence of a certain battery SoC that provides
a comfortable experience. When an electric taxi is parked for
an extended period (in this study, defined as 20 minutes or
longer), if the battery SoC falls below this specified level and
available charging piles are unoccupied, electric taxi drivers
will have a charging demand.

In this study, the preferred SoC is defined within the range
of [60%, 90%], and it follows a normal distribution with a
mean of 0.75 and a variance of 0.05. If a randomly generated
value falls beyond this range, it is adjusted to the nearest
boundary value. The lower limit of 60% is derived from
Pan’s research as demonstrated in [22], which analyzed the
probability distribution of electric vehicle drivers’ charging
behavior based on different levels of battery SoC. The find-
ings indicate a significant drop in the probability of drivers
choosing to charge when their battery SoC exceeds 60%, with
probabilities falling to less than 20%. The upper limit of 90%
is determined based onChen’s study [47], which recommends
maintaining an electric vehicle’s battery SoCwithin the range
of [10%, 90%]. Both excessive discharging and overcharging
can adversely affect battery longevity.

FIGURE 3. The process of generating charging demand.

D. CHARGING DEMAND FOR ELECTRIC TAXIS
Based on the time points at which parking events start, values
are assigned to electric taxis based on the curve depicting the
transformed SoC over time. This process involves assigning
SoC values to electric taxis during parking events, consider-
ing both the distribution of electric taxi drivers’ maximum
acceptable distance to charging stations and the distribution
function of users’ preferred SoC. After data processing, the
electric taxis involved in parking events possess informa-
tion regarding their parking location, duration, battery SoC,
as well as the driver’s maximum acceptable distance to charg-
ing stations and the preferred SoC. Built upon these factors,
the assessment of charging demand is carried out.

The data source for this study is floating vehicle data,
which captures charging demand through stopping events
of the floating vehicles. However, this data alone cannot
precisely determine the current state of charge of the vehicle.
Therefore, in this study, it is assumed that electric vehicle
(EV) drivers generate a charging demand when the remaining
battery power of the EV falls below the comfort battery
power level. The process of determining charging demand
is depicted in Figure 3. In other words, charging demand
is triggered when the remaining battery power of the EV is
less than the comfort battery power level. Conversely, if the
remaining battery power exceeds the comfort battery power
level, the EV driver does not generate a charging demand.

III. CONSTRUCTION OF THE LOCATING AND SIZING
MODEL FOR CHARGING STATIONS
This study aims to dynamically develop a dual-objective and
driver-centric locating model for charging stations, consid-
ering a fixed budget. The primary objectives are to minimize
both the number of unmet charging demands for electric taxis
and the idle time of electric taxi drivers (which includes the
time spent visiting charging stations and waiting in queues).
Furthermore, the sizing model for charging stations, built
upon the locating model, focuses on refining the algorithms
for determining the sizing of charging stations. Although
the charging reservation system will partially alleviate the
charging queuing phenomenon, if the charging station layout
is unreasonable and the charging facilities are insufficient,
it is the root cause of the queuing phenomenon, therefore the
location and capacity model in this study is also applicable to
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TABLE 2. Electric taxi related parameters.

the charging station location and capacity under the charging
reservation system.

A. ASSUMPTIONS FOR THE CHARGING STATION SITING
MODEL
1) CANDIDATE STATIONS
In the current research on the locating of charging stations,
the principle is to minimize construction costs while ensuring
suitable placement areas. In this study, existing gas stations
within the city are considered as potential candidate charging
stations.

2) ELECTRIC TAXI
Considering both price and driving range, this study assumes
the BYD E5 as the representative electric taxi model. And the
specific technical parameters are shown in Table 2.

3) OTHER ASSUMPTIONS
The charging decision is influenced by a variety of factors.
To streamline the model and facilitate solution processes, the
following assumptions are made:

Assumption 1: Traffic congestion is not taken into account;
the average vehicle speed is set at 50 km/h.

Assumption 2: Users have the capability to use a mobile
app to access information about the status of all charging piles
at charging stations within the research area, enabling direct
charging reservations.

Assumption 3: Queuing is only considered for fast charg-
ing stations; queues are not considered for slow charging
stations.

Assumption 4: If slow charging can restore a preferred
battery SoC, drivers prioritize slow charging (due to potential
obstacles and inconveniences caused by moving the vehicle
during charging).

Assumption 5: If a slow charging station nearby can fulfill
the demand, users opt for the closest one.

Assumption 6: When fast charging can meet the demand,
users choose the fast charging station with the highest charg-
ing capacity.

Assumption7: If both fast and slow chargers can meet the
demand, the slow chargers are preferred because the cost of
using slow chargers is lower.

Assumption 8: To avoid disrupting taxi operations, the
entire charging time is limited to less than or equal to the
duration of the parking event.

B. THE SIZING MODEL FOR CHARGING STATIONS
This study aims to develop a dual-objective dynamic locating
model while adhering to a fixed construction budget. The

primary objectives are twofold: first, to minimize the unmet
charging demands of electric taxis, and second, to minimize
the idle time experienced by electric taxi drivers. This idle
time comprises the duration spent accessing charging stations
and waiting in queues. The model is designed with a focus
on electric taxi drivers and operates within the constraint of
the total number of charging stations. In this context, the
objective function (2-1) aims to minimize the number of
unmet demands, while the objective function (2-2) aims to
minimize the idle time of electric taxi drivers. Constraint
(2-3) indicates that the number of charging stations con-
structed (P) and constraints (2-4) and (2-5) are represented
as binary variables (0-1).

Min
∑
i

fi (2-1)

Min
∑
i

∑
j

YjSijWij+
∑
i

∑
j

YjSij
Dijω

v
(2-2)

∑
j

Yj = P (2-3)

fi ∈ {0, 1} (2-4)

Yi ∈ {0, 1} (2-5)

where i represents the demand point, j represents the candi-
date station. fi is a binary variable, taking the value of 1 if
demand point i is not satisfied and 0 otherwise. Dij is the
distance from demand point i to charging station j. Sij is
a binary variable, taking the value of 1 if demand point i
charges at candidate station j and 0 otherwise. Yi represents
a decision, taking the value of 1 if a charging station is
established at candidate station j and 0 otherwise. Wij is the
waiting time for demand point i at candidate station j. w is
the coefficient of detour, set to 1.25. v is the average driving
speed, set to 50 km/h.

C. SIZING MODEL OF CHARGING STATIONS
The sizing model builds upon the locating model by focus-
ing on algorithmic improvements. The solving algorithm
continues to employ the NSGA-II method, ensuring that
each charging station houses a minimum of 3 charging
piles. Although the solving procedure remains consistent,
the encoding methodology undergoes a transformation. Real
number encoding is adopted, with gene values ranging
between 0 and 1 as decimals. During the decoding pro-
cess, these gene values are normalized and utilized to
allocate charging piles proportionally. This approach effec-
tively determines the locating and sizing of charging stations.

D. ALGORITHM DESIGN
The algorithm design in this study addresses the optimization
of the locating model with dual objectives: minimizing unmet
charging demands and idle time for electric taxi drivers.
These two objectives are inherently non-commensurable,
lacking a unified measurement standard. Hence, the direct
application of traditional linear weighting methods to
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FIGURE 4. The algorithm’s workflow.

normalize the objective functions proves challenging. Addi-
tionally, considering the extensive scale of the employed
floating car data, traditional main objective methods, and
layered sequencing techniques suffer from low computational
efficiency, repetitive and intricate calculations, and prolonged
processing times. The selected algorithm for this study offers
several advantages, including high operational efficiency,
well-distributed solution sets, strong convergence, and excel-
lent performance in low-dimensional optimization problems.
Consequently, this algorithm is the chosen approach for solv-
ing the locating model in this research.

The NSGA-II algorithm, also referred to as the Sec-
ond Generation Non-dominated Sorting Genetic Algorithm,
Deb et al. [48], introduced in 2000 as an advanced version
built upon the NSGA algorithm. It has gained popularity as
one of the most effective multi-objective algorithms. In com-
parison to the NSGA algorithm, NSGA-II offers superior
performance. In this study, distinct models and solutions are
developed for different scenarios, and the algorithm’s work-
flow is illustrated in Figure 4.

IV. CASE STUDY ANALYSIS
This study takes Urumqi as the research object for arithmetic
analysis based on the abovemethod. First, we obtain the float-
ing car data of gas taxis in Urumqi city, extract the parking
events, and use ArcGIS to draw the spatial distribution map
of charging demand, on this basis, we model and solve the
six working conditions with different ratios of fast charging
pile and slow charging pile, and finally obtain the optimal
charging station location and capacity model, and the flow of
the case study is shown in Figure 5.

A. CHARGING DEMAND PREDICTION
In this study, the floating car data from June 6, 2017, for
Urumqi city’s gas-powered taxis was utilized (comprising
8,011 taxis on that specific day). All the gas-powered taxis

FIGURE 5. Flow chart.

were treated as electric taxis for locating research. Initially,
parking events extracted from the floating car data were
processed using Python, and the spatial distribution map of
charging demands was generated using ArcGIS, as illustrated
in Figure 6. Themap clearly illustrates that charging demands
are predominantly concentrated in Urumqi’s four core areas
and around the vicinity of the international airport. A total
of 14,759 parking events were identified in the floating car
data. Based on parking events, battery SoC, time informa-
tion, and the influence of drivers’ heterogeneity on charging
decisions are factored in. Thus, a simulation of charging deci-
sions was executed. Consequently, a total of 10,766 charging
demands were ascertained, effectively mitigating redundan-
cies in charging demand predictions.

B. LOCATING FOR ELECTRIC TAXI CHARGING STATIONS
1) ANALYSIS OF CANDIDATE STATIONS
In current research on the locating of charging stations,
the prevailing principles aim to minimize construction.costs
while identifying appropriate locations. In this study,
we opted to consider refueling stations as potential candidates
for charging stations. Using the Amap platform, we gathered
data from 142 refueling stations within Urumqi city, and their
spatial distribution is illustrated in Figure 7.

According to national regulations that require a ratio of at
least 1:12 between public charging stations and electricve-
hicles in major cities, such as provincial capitals, on June
6th, 2017, there were a total of 8,011 taxis in the floating
car data. This would necessitate the installation of approx-
imately 668 charging stations. Referring to the Code for
Design of Electric Vehicle Charging Station (GB50966-2014)
as demonstrated in [49], which outlines general guidelines for
spatial layout, and considering the average land area occupied
by refueling stations, we have determined that each charging
station would contain a fixed quantity of 20 charging piles.
Consequently, the projected number of charging stations to
be established is approximately 34.

The construction cost of a charging station can be divided
into fixed costs and variable costs. Fixed costs include the
distribution system and monitoring system. Referring to esti-
mates from the Forward-looking Industry Research Institute,
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TABLE 3. The arrangement of charging stations and charging piles under various working conditions.

FIGURE 6. The spatial distribution map of charging demands.

FIGURE 7. The spatial distribution map of potential candidates for
charging stations.

the relevant costs are outlined in Table2, resulting in an
approximate total fixed cost of 2.1 million yuan for a sin-
gle charging station according to [50]. Variable costs are
directly proportional to the number of charging piles. If the
charging demand is entirely fulfilled by fast-charging piles,
the overall cost of constructing a charging station would be
around 98.6 million yuan. To investigate the optimal pro-
portion between fast-charging and slow-charging piles within
the same station, this study assumes a total construction cost
of 100 million yuan and performs analysis and solutions for
various scenarios, as listed in Table 3.

2) SELECTION OF CANDIDATE STATIONS
In this study, we formulated and solvedmodels for six distinct
scenarios. The NSGA-II algorithm was implemented within

theMatlab R19b environment, with a crossover probability of
0.8 and a mutation probability of 0.2. The initial population
size was set to 200. Using this configuration, we addressed
the locating model for electric taxis. After multiple iterations
with adjustments, it was determined that for five out of the
six scenarios, the convergence of the mean curves for both
objective functions was achieved within 100 iterations. How-
ever, in the case of Scenario 3, convergence was reached
after 160 iterations, and the convergence trends remained
consistent across all six scenarios.

Take scenario 1 as an example, where there are 34 charg-
ing stations with 20 fast-charging piles each and conducting
100 iterations in theMatlab R19b environment, as depicted in
Figure 8. The graph illustrates that both Objective Function 1
(unmet charging demands) and

Objective Function 2 (idle time of electric taxi drivers)
show relatively minor fluctuations and gradually converge
after around 40 iterations. As the number of iterations
increases, Objective Function 1 stabilizes within the range of
1200-1300, while Objective Function 2 stabilizes within the
range of 700-800.

The scatter plot for Scenario 1’s population is depicted in
Figure 9, illustrating a total of 42 solution sets corresponding
to 42 distinct layout approaches for charging stations. The
objective functions derived for each solution are presented in
Table 4. Solution 1 and Solution 42 represent two endpoints
of the spectrum. Solution 1’s layout scheme minimizes the
count of unmet demand points for the 34 fully equipped fast-
charging stations, leaving 1243 demand points unfulfilled.
However, the value of Objective Function 2 (idle time of
electric taxi drivers) reaches a peak at 982.8 hours. Con-
versely, Solution 42’s layout scheme yields the highest count
of unmet demand points among all solutions for the 34 full
fast-charging stations, with 2285 demand points unaddressed.
Nevertheless, its value of Objective Function 2, representing
drivers’ idle time, is minimized to 578.4 hours. The objective
function values of the other solutions fall within the spectrum
constructed between these two extreme solutions. For analy-
sis of results, this study selects the extreme solutions for each
scenario.

The spatial distribution of charging station layouts for
Solution 1 and Solution 42 of Scenario 1 is illustrated in
Figures 10 and 11, respectively. In these figures, the hor-
izontal and vertical axes represent the converted planar
coordinates of latitude and longitude. Black dots symbolize
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FIGURE 8. The mean value of the objective function of the optimal
solution set of condition 1 varies with the number of iterations.

charging demands, blue stars denote candidate charging sta-
tions, and red stars indicate the established charging stations
at those candidate sites. Solution 1 meets a greater number
of charging demands, with relatively larger spacing between
charging stations to accommodate more charging needs. Con-
versely, Solution 42 aims to minimize the time electric taxi
drivers spend visiting and queuing at charging stations, result-
ing in relatively smaller spacing between charging stations.
The layout is condensed within central areas of highly-densed
demands, leaving regions such as Diwobao International Air-
port and the Midong District, where charging demands are
relatively dense, without a charging station installed.

Extracting Solution 1 from each scenario for comparative
analysis, as depicted in Table 5. Objective Function 1, aiming
to minimize the number of unmet charging demands, exhibits
a fluctuating trend across scenario numbers, with an initial
increase, followed by a decrease, and then another increase.
This phenomenon stems from the discrepancy between the
charging demands captured through the addition of more
charging stations and the relatively fewer charging demands
addressed by slow charging stations. Regarding Objective
Function 1, in contrast to other scenarios, Solution 1 of
Scenario 1 caters to at least 130 more charging demands.
Solution 1 of Scenario 3 represents the layout with the fewest
unmet charging demands among all scenarios featuring slow
charging stations. However, it still slightly lags behind the
layout of Solution 1 in Scenario 1. Thus, the exclusive
utilization of fast charging stations proves more suitable.
In comparison to Solutions 2 through 6, Solution 1 of Sce-
nario 1 not only minimizes unmet charging demands but also
achieves the shortest idle time for electric taxi drivers.

Comparative analysis was conducted by extracting Solu-
tion 42 from each scenario, as presented in Table 6.
In scenarios 1 and 2, where the emphasis is on minimizing

unmet charging demands, Scenario 1 exhibited a 109-hour
reduction in idle time for electric taxi drivers compared to
Scenario 2. This underscores that when the ultimate decision
is to simultaneously minimize unmet charging demands and
reduce the idle time for electric taxi drivers, the exclusive
deployment of fast charging stations is more suitable.

FIGURE 9. The scatter plot for scenario 1’s population.

TABLE 4. The calculation results of condition 1.

Based on the comparative analysis of endpoint solutions
for each scenario, it is evident that whether the focus is on
minimizing the count of unmet charging demands or the idle
time for electric vehicle drivers, the layout strategy that exclu-
sively utilizes fast charging stations is more advantageous as
the ultimate locating decision

C. ELECTRIC TAXI CHARGING SET
Based on the floating car data and the NSGA-II algorithm,
we have obtained the layout scheme for electric taxi charging
stations in Urumqi. Building on this foundation, we further
investigate the initial number of charging piles within each
station, which is initially set at an average of 20. However,
this setting doesn’t accurately reflect the real-world scenario.
In areas with high charging demands, charging resources
become strained, leading to unmet charging demands. Con-
versely, in regions with low charging demand, charging
piles remain underutilized and inefficient. Taking the lay-
out scheme of Solution 1 in Scenario 1 as an example, the
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FIGURE 10. The spatial distribution of charging station layouts for
solution 1 of scenario 1.

FIGURE 11. The spatial distribution of charging station layouts for
solution 42 of Scenario 1.

TABLE 5. The solution of each working condition 1 objective function
value.

utilization of charging piles within Station 1 is depicted in
Figure 12, while the utilization of charging piles within Sta-
tion 14 is shown in Figure 13. In these figures, the horizontal
axis represents the time scale, and the vertical axis represents
the numbering of charging piles within each station. The
length of the small rectangles corresponds to the duration
of electric taxi charging, with different colors indicating dif-
ferent charging demands, The number of small rectangles
indicates the number of charging demands. In Figure 12,
for example, the charging pile numbered 20 within the
station fulfills 16 charging demands in a day, whereas in
Figure 13,the charging pile numbered 20 within the station
serves 7 charging demands throughout the day.

From Figures 12 and 13, it is evident that charging times
are concentrated within the time intervals of 0:00 to 6:00 am,
12:00 to 8:00 pm, and 9:00 pm to 0:00. Charging Station 1

TABLE 6. The other endpoint of each working condition solves the
objective function value.

FIGURE 12. The use of charging facilities of charging station numbered
1 in the location scheme of solution 1 of working condition 1.

experiences high demand, with each charging pile being
densely occupied. During peak charging hours, there is hardly
any idle time, indicating an intense distribution of charging
demands near Station 1. On the other hand, at Charging Sta-
tion 14, during the peak charging hours from 0:00 to 6:00 am,
many charging piles remain unused. Additionally, the distri-
bution of fulfilled charging demands from 12:00 to 8:00 pm
is relatively sparse. Given this scenario, the study aims to
reallocate the layout of charging piles within the selected
stations and optimize the sizing of charging stations. The goal
is to reduce both the number of unmet demand points and
the idle time for electric taxi drivers while simultaneously
enhancing the utilization of charging stations.

The reallocation of charging piles within the charging
stations is carried out based on the results obtained from
Scenario 1, where the locations of the charging stations
are already fixed. Taking Solution 1 of Scenario 1 as an
illustrative example, the NSGA-II algorithm is applied once
again for the optimization process. The fundamental proce-
dure of the algorithm remains unchanged; however, there
are modifications in the encoding approach. Real number
encoding is employed, with gene values ranging from 0 to
1 represented as decimals. During the decoding process,
gene values are normalized, and the distribution of charging
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TABLE 7. Charging pile distribution in charging station.

FIGURE 13. The use of charging facilities of charging station numbered
14 in the location scheme of solution 1 of working condition1.

FIGURE 14. The mean value of the objective function of the optimal
solution set varies with the number of iterations.

points is determined proportionally. With an initial popu-
lation of 200 and 100 iterations, both objective functions
exhibit minimal fluctuations and converge after approxi-
mately 65 iterations. The convergence pattern is visualized in
Figure 14, which provides insights into the fact that the aver-
age value of objective function 1 (unmet harging demand)

FIGURE 15. The Optimized population scatter plot.

hovers around 1170, while the average value of objective
function 2 (idle time for electric taxi drivers) centers around
820. The scatter plot depicting the population distribution
is presented in Figure 15. The allocation of charging piles
for each station is outlined in Table 5. Given that the study
utilizes the layout scheme featuring the minimum number
of unmet charging demands for sizing, a comparative anal-
ysis is conducted against the layout scheme characterized
by the minimum unmet charging demand, as highlighted in
Table 7.
From Table 8, it is evident that the sizing-constrained

solution after the reallocation of charging piles can accommo-
date an additional 83 charging demands while significantly
reducing the average idle time for users. This reduction
drops from an average of 4.26 minutes to 2.63 minutes.
Moreover, the average occupancy time for charging piles
increases from 10.31 hours to 10.42 hours. These results
underscore the successful achievement of the sizing opti-
mization. This includes reducing unmet charging demands,
shortening the time electric taxi drivers spend accessing
charging stations and queuing for charging services, and
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TABLE 8. The comparison of results.

simultaneously enhancing the utilization efficiency of charg-
ing piles.

V. CONCLUSION
This research is built upon the analysis of parking events
extracted from floating car data. It takes into account various
factors such as electric vehicles’ time information, battery
SoC, and the impact of heterogeneity among drivers on
charging decisions. This comprehensive approach allows for
the prediction of charging demands. Based on these demand
predictions, a dual-objective locating and sizing model is
constructed for charging stations. The objectives includemin-
imizing both the count of unmet charging demands and the
idle time for electric taxi drivers (the sum of time spent
accessing the charging station and waiting in queues). The
primary conclusions drawn from this analysis are as follows:

(1) In this study, we examine the influence of battery power
information, time data, and the inherent diversity among elec-
tric vehicle (EV) drivers on charging decisions. We propose a
method for predicting charging demand using floating vehicle
data, reducing redundancy in charging demand prediction and
enhancing its relevance to real-world scenarios.

(2) Our study places a primary focus on maximizing user
benefits. We establish a dual-objective model for location
and capacity to minimize unsatisfied charging demands and
unproductive downtime for electric taxi drivers. This research
provides a theoretical foundation for the placement and sizing
of electric taxi charging stations within urban areas. More-
over, it offers insights that can facilitate the adoption of
electric taxi charging stations in other cities, thus breaking
the cycle of the ‘‘chicken and egg’’ dilemma.

(3) It is important to acknowledge the limitations of this
study. We have primarily considered a single setting for elec-
tric vehicles, and all the EV models used in this study are
assumed to be identical. Future research should consider var-
ious EV models to provide a more comprehensive analysis.
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