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ABSTRACT The reliability of remote identity-proofing systems (i.e., electronic Know Your Customer,
or eKYC, systems) is challenged by the development of deepfake generation tools, which can be used
to create fake videos that are difficult to detect using existing deepfake detection models and are
indistinguishable by facial recognition systems. This poses a serious threat to eKYC systems and a danger to
individuals’ personal information and property. Existing deepfake datasets are not particularly appropriate
for developing and evaluating eKYC systems, which require specific motions, such as head movement,
for liveness detection. Furthermore, they do not contain ID information or protocols for facial verification
evaluation, which is vital for eKYC. We found that eKYC systems without the ability to detect deepfakes
can be easily compromised. We have thus created a large-scale collection of high-quality fake videos (more
than 228,000 videos) that are diverse in terms of age, gender, and ethnicity, plus a corresponding facial
image subset. The videos include a variety of head movements and facial expressions. This large collection
of high-quality diverse videos is well-suited for developing and evaluating various tasks related to eKYC
systems. Furthermore, we provide protocols for traditional deepfake detection and facial verification, which
are widely used in eKYC systems. It is worth mentioning that systematic evaluation of facial recognition
systems on deepfake detection has not been reported. The entire eKYC-DF dataset, evaluation toolkit, and
trained models are open access to researchers on GitHub: https://github.com/hichemfelouat/eKYC-DF.

INDEX TERMS Deepfake detection, electronic Know Your Customer, eKYC, facial verification, face
swapping, face recognition.

I. INTRODUCTION presenting physical documents such as a driver’s license or

Identity proofing is the process of verifying an individual’s
identity and is a crucial aspect of many online transactions
and processes. It is essential in cases where sensitive informa-
tion or assets are accessed or transferred. In the past, identity
proofing was typically done in person, with individuals
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passport to prove their identity. However, with the increasing
prevalence of remote work and online interactions, there is a
growing need for remote identity-proofing systems [2], [3].
Remote identity proofing, or electronic Know Your
Customer (eKYC), refers to verifying an individual’s identity
remotely; it is often used in online transactions, account
creation, access to various services, and other scenarios where
verifying an individual’s identity is necessary. This type of
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FIGURE 1. Illustrative image of contribution provided by our eKYC-DF
dataset: careful selection of source and target datasets and
face-swapping methods enable the attainment of high-quality and
realistic results that can fool deepfake detection models and facial
recognition systems. It demonstrates that without deepfake detection or
with a bad deepfake detector, eKYC systems can be easily compromised,
and facial recognition systems are susceptible to high-quality deepfakes.
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FIGURE 2. Distribution of subjects in eKYC-DF dataset across age, gender,
and ethnicity. The dataset is balanced in terms of gender and has high
diversity in terms of age and ethnicity. These statistics were calculated
using facebook’S DeepFace software [1].

identity proofing is becoming increasingly common due to its
convenience and flexibility.! It enables individuals to prove
their identity from anywhere at any time, without needing to
present documents or travel to a specific location physically.
Various remote identity-proofing methods exist, including
electronic document submission, biometric authentication,
and identity verification [3], [4], [5]. Each method has
advantages and disadvantages, and the most appropriate
method depends on the specific needs and requirements of
the organization or process in question.

Remote identity-proofing systems rely heavily on per-
sonal information and credentials, which are often stored
and transmitted electronically, rendering them vulnerable
to cyberattack and exploitation. The rapid advancement
of enabling technologies has both positive and negative
implications. While technological progress improves remote
identity-proofing systems, it also provides fraudsters with
tools and knowledge to manipulate these systems [3]. Identity
fraud remains a widespread and concerning issue in today’s
digital era, encompassing the unauthorized acquisition and
misuse of someone else’s personal and financial data for

1 https://www.enisa.europa.eu/publications/enisa-report-remote-id-
proofing
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fraudulent purposes. It can have serious consequences for an
individual whose identity has been stolen or the organization
that has been targeted. With the emergence of remote
identity systems, the risk of identity fraud has surged,
presenting substantial threats to individuals, businesses, and
even governmental entities.

Deepfake attacks on video-based identity-proofing sys-
tems primarily exploit two entry points: direct presentation to
the camera (physical attacks) or injection into the camera feed
(logical attacks, e.g., using a virtual camera or modifying the
output of a physical camera) [4]. Recent advancements enable
the real-time generation of deepfake videos and interactive
puppets [6]. Attackers can use their own cameras to capture
video, promptly apply methods to overlay the target’s face,
and submit the modified content to the system. These
attacks represent a huge problem for remote identity-proofing
methods and their application. The section II contains further
details about common steps in commercial eKYC solutions,
deepfake generation, deepfake detection, and spoofing eKYC
systems with deepfakes.

In this paper, we introduce the eKYC-DF dataset, a novel
dataset designed to tackle the challenge of preventing identity
fraud in eKYC systems. The dataset consists of real and
synthetic facial videos that can be used to develop and
evaluate eKYC systems in terms of deepfake detection and
facial recognition systems (Figure 1). Additionally, this paper
introduces five key contributions.

First, we present a comprehensive study of several critical
concepts and methods related to common steps in commercial
eKYC solutions, deepfake generation and detection, common
datasets in deepfake detection, and spoofing eKYC with
deepfakes. We offer a valuable resource for researchers and
developers who aim to counter the increasing risk of deep-
fakes in the eKYC process by examining and analyzing these
crucial areas. Our study brings together a wealth of informa-
tion and insights into these complex topics, providing a solid
foundation for future research and development in this field.

Second, our dataset is larger than others commonly used in
deep learning applications, which makes it more effective for
pattern recognition and generalization (see Table 1). Its scale
enables robust model training by capturing data distribution
complexity, enhancing performance on diverse tasks, and
mitigating overfitting concerns.

Third, the diversity of our dataset in terms of age, gender,
and ethnicity (Figure 2) ensures robust deep learning model
training and bias minimization, thereby enhancing prediction
accuracy across diverse individuals. Furthermore, the videos
contain complex head movements and different camera
poses with various facial expressions. It captures group
complexity by encompassing various demographics, ensuring
generalization beyond specific subsets. This diversity aids
in identifying and rectifying biases, fostering a fair and
equitable model for all.

Fourth, our dataset contains high-quality images and
videos (Figure 13), which greatly enhance the training of
deep learning models. They enable models to learn more
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complex subject features, resulting in more accurate and
reliable output. Including diverse and high-quality images
and videos ensures that the models generalize well to new and
unseen data, thereby enhancing the robustness of deepfake
detection models and face recognition systems.

Fifth, the paper also introduces a benchmark for assess-
ing the dataset’s effectiveness in detecting deepfakes and
matching faces. A thorough and comprehensive evaluation
against the most recent deepfake detection and face-matching
models in various scenarios demonstrated that the eKYC-
DF dataset is a valuable resource for enhancing deepfake
detection models and face recognition systems. We will
provide open access to the entire dataset, evaluation toolkit,
and trained models upon acceptance of this paper.

Il. RELATED WORK

Recent significant advancements in computer vision and
image generation using generative adversarial networks and
diffusion models combined with their malicious use for
manipulating faces in images, spreading fake news, and
hacking remote identity-proofing systems that rely on a user’s
face for proofing have created an urgent need for methods
that can reliably detect face manipulation [3]. Many efforts
have been devoted to creating face forgery detection datasets
to train deep learning models [7] to address this need.

A. COMMON STEPS IN COMMERCIAL eKYC SOLUTIONS
Commercial electronic Know Your Customer (eKYC) solu-
tions typically involve several steps to verify an individual’s
identity remotely. The most common steps include ID
verification, face matching, and liveness detection,? as shown
in figure 3.
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FIGURE 3. A generic proofing method diagram in eKYC systems. The
applicant is physically present with the device and ID at the front end.
The back end performs a high confidence match between the
liveness-proven photo or video evidence and the face shown on the ID
document or in the NFC chip to prove the identity.

ID Verification: The first step is to verify the customer’s
identity by validating the provided identity documents, such
as a passport, national ID, and/or driver’s license. This can
be done using various methods such as optical character
recognition (OCR), barcode scanning, or manual entry. The
system checks the authenticity of the documents and ensures
that they have not been altered.

2https://www.enisa.europa.eu/publications/enisa—report—remote—id—
proofing
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Face Matching: Once the ID has been verified, the
customer is asked to take a selfie image or video, which is
then compared with the photo on the ID to ensure that the
person presenting the ID is the same person in the image. This
is typically done using facial recognition technology. The
system analyzes the customer’s facial features and compares
them to the photo on the ID document to ensure they are the
same person.

Liveness Detection: Liveness detection is used to ensure
that the person is physically present and not using a photo
or video of someone else. This involves asking the person to
perform a series of actions or movements, such as blinking
or smiling, to demonstrate that they are a live human being
and not a digital artifact. This is done using computer vision
and machine learning algorithms that can detect the subtle
movements and expressions of the person in the video.

These steps are designed to provide high security and accu-
racy in remote identity verification. By combining different
types of technology, such as OCR, facial recognition, and
liveness detection, eKYC solutions ensure that the customer
is who they claim to be and that they are physically present
during the verification process. This helps businesses comply
with regulatory requirements while providing a streamlined
and convenient customer onboarding experience.

B. DEEPFAKE GENERATION

Facial manipulation refers to a range of techniques used to
alter the appearance of a person’s face. These techniques are
becoming increasingly used due to technological advances
and the increased use of social media platforms. Facial
manipulation can be used for various purposes, including
entertainment, research, and forensics. Different types of
facial manipulation methods are available (Figure 4), and we
discuss several common ones in this section.

Face synthesis involves creating an entirely new synthetic
face from scratch, often by using GANSs or diffusion models
such as the stable diffusion approach [9], in which a robust
diffusion model is typically used. This type of manipulation
can generate a wholly new identity or create a likeness of
an existing person [10]. The process involves training a deep
learning model on a large dataset of faces and then using the
model to generate a new face. This technique can be used to
create a new identity for use in video games or movies or
to create an avatar for virtual reality environments; however,
it can also be misused, such as for creating highly convincing
fake profiles on social networks to spread disinformation.

Face replacement involves replacing one person’s face
with another’s face. This can be done in two ways: Transfer
involves replacing a source person’s facial features with a
target person’s facial features while retaining the source
person’s facial expressions and movements [11] [12]).
Identity swap involves replacing a source person’s entire
identity with a target person’s identity [13]. This type of
manipulation is commonly used in movies and television to

VOLUME 12, 2024
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FIGURE 4. Examples of different face manipulations. The first row shows original samples, and the second row shows manipulated samples [8].

create visual effects and can also be used to create fake videos
for malicious purposes.

Facial editing and attribute manipulation involve modi-
fying specific facial features, such as the nose’s shape, the
hair’s color, and the skin’s color, or the individual’s attributes,
such as age, gender, and ethnicity [14]. Facial editing and
attribute manipulation have become increasingly popular,
particularly in the beauty industry. They enable customers
to visualize how they would look with different hair colors,
hairstyles, and makeup [15]. This type of manipulation
can be used to alter a person’s appearance in a video or
image for artistic or malicious purposes [16]. For example,
a deepfake video could be created to make a person appear
to be wearing different clothing or appear to be of another
ethnicity. The manipulation process is commonly carried out
using a generative adversarial network (GAN), such as a
StarGAN [17], STGAN [18], or InstructPix2Pix [19].

Facial reenactment involves creating a digital version of
a person’s face that can be used to mimic their facial
expressions and movements [20]. This type of manipulation
can make it appear as though a person is saying or doing
something they did not say or do. The process involves
training a deep learning model on a large dataset of facial
expressions and movements and then using the model to
generate new facial expressions and gestures for a person
in a video. This type of manipulation can be used for mali-
cious purposes, such as creating fake videos of politicians
or celebrities [16]. There have been several outstanding
developments in this field, including MegaPortraits [21],
MetaPortrait [22], and PV3D [23].

C. DEEPFAKE DETECTION

Deepfake detection is an evolving challenge due to the
increasing sophistication of fake videos, which are often dif-
ficult to distinguish from authentic ones. Binary classification
is the most common method used to distinguish real and fake
videos; an extensive dataset of training samples is required to
develop accurate classification models. This section presents
a comprehensive survey of methods for detecting deepfakes,
focusing on video-based ones, notwithstanding that there are
also methods that use images for detecting deepfakes [24],
[25]. We group the video-based methods into two main
categories: features-based and deep learning-based.

VOLUME 12, 2024

1) FEATURES-BASED METHODS

Features-based methods use the visual features of a video
to distinguish real and fake videos. These methods rely on
deepfake videos with unique features that distinguish them
from real videos. According to Zhang [25], these features can
be classified as biometric, model, or media.

In the context of deepfake detection, biometric features
refer to the physical and behavioral characteristics that can
be analyzed to determine an image’s or video’s authenticity.
These features include eye blinking, lip-syncing, facial and
head movements, head pose, color, texture, and shape. Each
feature can be used to detect a deepfake video in different
ways. Eye blinking is a key biometric feature that can be used
to detect deepfake videos. People in deepfakes typically blink
less frequently than those in untampered videos. A healthy
adult human normally blinks somewhere between every
2 to 10 s, and each blink lasts 0.1 to 0.4 s. Lip-syncing
is another important biometric feature that can be used to
detect deepfake videos. In natural videos, the movement of
the lips is synchronized with the spoken words, whereas in
deepfake videos, the movement of the lips may not match
the words being spoken, or there may be a delay between
the two. This is a sign that the video is a deepfake. Facial
expressions, head movements, and head poses are also critical
biometric features that can be used to detect deepfake videos.
Facial expressions, head movements, and head poses are
synchronized and consistent with spoken words in natural
videos. In contrast, in deepfake videos, the facial expressions,
head movements, and head poses may not match the spoken
words or may be inconsistent with the speaker’s tone or
emotion. Deepfake detection algorithms can identify whether
the actions depicted in a video are consistent with those
of the depicted person. The face’s color, texture, and shape
consistently follow the speaker’s movements in natural
videos, whereas in deepfake videos, these characteristics can
be manipulated, leading to an artificial appearance. This can
serve as a means of distinguishing between real and fake
videos.

Model features in deep fake detection refer to the specific
characteristics or patterns that a model left in the generated
data. The most common deepfake generation methods rely
on deep learning techniques, particularly GANSs, to produce
convincing fake images and videos. However, these fake
media still contain model features that can be used to identify
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them. In GAN-generated media, specific model fingerprints
are present, which can be used to detect deepfake images and
videos created with GANs. For instance, GAN fingerprints
have been used to identify fake images and videos produced
using GAN-based methods [26]. These fingerprints include
unique patterns in the noise space of images generated by
GANSs [27] and convolutional traces generated during the
GAN generative process [28]. Therefore, deepfakes can be
detected by analyzing the model features present in the
generated media, effectively mitigating the risks associated
with deepfakes.

Certain media features, such as temporal information,
inconsistencies between frames, and noise artifacts, can
be used to identify deepfake media. Sabir et al. used the
temporal information available in media streams to detect
face manipulation in videos [29]. They found that deepfakes
often exhibit unnatural changes in facial expressions that are
not typical of real faces. Similarly, Li and Lyu used face-
warping artifacts resulting from inconsistent illumination
between frames to detect fake videos [30]. They discovered
that deepfakes exhibit unnatural lighting changes within and
across scenes. These media features can provide valuable
clues for detecting deepfakes and mitigating their potential
harm.

2) DEEP LEARNING-BASED METHODS

Deepfake videos have limited resolution, so an affine face-
warping approach is required to match their configuration
to that of the original one. The creation process involves
scaling, rotation, and shearing of the face area, which can
leave artifacts that deep learning models can detect, Figure 5.
Deep learning-based detection methods typically involve
training a deep neural network on a dataset of real and
deepfake videos and then evaluating its performance on a
separate test set. Deep learning methods are widely used for
deepfake detection because they can automatically extract
high-level features that are difficult to define manually.
Moreover, deep learning methods can learn from large
amounts of data, improving their generalization ability.
Deep learning-based detection methods are also robust to
noise and distortion, which are common in real-world
scenarios.

Low-quality synthesized faces Color contrast in the face mask § Visible boundaries in the face mask

FIGURE 5. Artifacts and weaknesses in fake images that limit their
naturalness and facilitate fake detection [31].
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Deep learning methods have shown promising results in
detecting deepfake videos. The most commonly used deep
learning architectures for deepfake detection include GANS.
Prajapati and Pollett presented a method called MRI-GAN
based on the GAN architecture, which is commonly used to
generate realistic images and videos [32]. However, instead of
generating new images or videos, MRI-GAN is used to learn
the distribution of real images and to detect deviations from
this distribution indicative of a deepfake.

Convolutional neural networks (CNNs) are commonly
used for image and video analysis and can be trained to
distinguish real and deepfake videos based on the presence
of artifacts. Zhao et al. [33] presented an exciting approach
based on a CNN. A multi-attentional network architecture
consisting of three main components is used to detect
deepfake videos. First, multiple spatial attention heads are
used to enable the network to focus on different local parts
of the input image. Second, a textural feature enhancement
block is used to zoom in on subtle artifacts in shallow
features. Finally, the low-level textural features and high-
level semantic features are combined using attention maps.
A method based on this approach outperformed state-of-
the-art deepfake detection methods on several benchmark
datasets.

Bonettini et al. presented an approach for detecting face
manipulation in videos by using an ensemble of CNNs [34].
Recurrent neural networks (RNNs) can be used to analyze
the temporal patterns in videos and to detect deepfake
videos with inconsistent motion or lip-syncing. Sabir et al.
proposed using recurrent RCNN’s to detect face manipulation
in videos by using a two-step approach [29]. The first
step involves detecting, cropping, and aligning faces in a
sequence of frames. The second step combines CNN and
RNNs to distinguish manipulated and real face images.
Their method is based on recurrent convolutional strategies
and improves the accuracy of face manipulation detection
in videos.

Vision transformers (ViTs) have also been proposed for
deepfake detection as they can learn global features from
videos and are less vulnerable to overfitting. Miao et al.
introduced a method for detecting manipulated faces that
enhances generalization and robustness through the use
of the bag-of-local features approach [35]. Their method
extends the transformer model by incorporating a bag-of-
features strategy that captures an image’s local characteristics
by dividing the image into smaller regions and extracting
features from each of them to learn local forgery features
without explicit supervision. Wang et al. presented the
Multi-modal Multi-scale Transformers (M2TR) method for
capturing subtle manipulation artifacts at different scales
using transformer models [36]. The M2TR model operates
on patches of different sizes to detect local inconsistencies
in images at different spatial levels. Using a cross-modality
fusion block, the model learns to detect forgery artifacts in the
frequency domain, which complements RGB information.
Their proposed method demonstrated promising results in
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detecting deepfake images, outperforming several state-of-
the-art methods.

D. SPOOFING eKYC WITH DEEPFAKES

The KYC systems used by organizations to electronically
verify the identity of customers rely on various methods
to authenticate the person’s identity, including identity
documents and face matching. However, these methods can
also be targeted by attackers who aim to exploit weaknesses in
the system to gain access to sensitive information or commit
fraud. There are various attack methods related to identity
documents and face matching.

1) ATTACK METHODS RELATED TO IDENTITY DOCUMENTS
Identity documents are important tools for verifying a
customer’s identity. However, they can also be targeted by
attackers who may attempt to use them for fraudulent or
illegal purposes. Attackers can use several methods to com-
promise eKYC systems by exploiting identity documents.?

Modify one or more parts of an authentic identity
document: In this attack, an attacker obtains a genuine
identity document (e.g., a passport or driver’s license) and
modifies one or more parts of it, such as the photo, name,
or expiration date. This enables the attacker to use the
document to impersonate someone else or to make an expired
document appear valid.

Produce a complete identity document for a real identity:
In this attack, an attacker creates a complete replica of
an existing identity document, including all of the infor-
mation it contains. This can be achieved through various
means, such as using sophisticated printing techniques or
stealing the personal information needed to create a fake
document.

Produce a complete identity document for a fictional
identity: In this attack, an attacker creates a completely
fictitious identity and produces a document to sup-
port it. This can be done by creating a false identity
from scratch and producing a corresponding identity
document.

Produce a complete identity document for a partially real,
partially fictional identity: In this attack, an attacker may
create a fake identity document that contains real information
(such as a correct name or date of birth) and false information
(such as an incorrect address or nationality).

Create a fantasy identity document from scratch: In this
attack, an attacker creates a fictitious identity document with
no basis in reality. This can be achieved through various
means, such as by creating a false identity from scratch and
producing a corresponding identity document.

2) ATTACK METHODS RELATED TO FACE MATCHING
Face matching has become an increasingly important tool
in the field of security, authentication, and identification.

3 https://www.enisa.europa.eu/publications/enisa-report-remote-id-
proofing
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However, the accuracy and reliability of face-matching sys-
tems can be compromised by various attack methods. There
are several types of attacks related to face-matching systems,
including photo attacks, video-of-user replay attacks, 3D
mask attacks, and deepfake attacks. Figure 6* illustrates
the distribution of different face-matching attacks observed
in real-world scenarios. As can be seen, the majority of
attacks fall under the category of 3D mask attack (38%)
and Deepfake attack (25%). The remaining attacks are
more evenly distributed, with Photo attack (13%) and
Video-of-user replay attack (13%). Notably, other attacks
represent the smallest category, accounting for only (11%) of
observed incidents that encompass a variety of unspecified
methods.

Photo attack: One of the simplest and most common
types of attacks related to face-matching systems is the
photo attack. In this type of attack, the attacker uses a
printed or digital photo of the target to bypass the face
recognition system [37]. This method is often effective as
many face-matching systems cannot distinguish between
a real face and a printed or digital photo of a face.
To carry out a photo attack, the attacker uses a high-
quality photograph of the target obtained from a social media
profile, an ID card, or other sources. The attacker then prints
out the photograph or displays it on a digital screen and
presents it to the face-matching system to gain unauthorized
access.

Video-of-user replay attack: Another type of attack related
to face-matching systems is the video-of-user replay attack.
In this type of attack, the attacker records a video of the
target person’s face and then replays the video in front of
the face recognition system [37]. This attack is similar to
the photo attack, but the video provides a more realistic
representation of the target’s face and may be more difficult
for the system to detect. To carry out such an attack, the
attacker uses a high-quality video of the target obtained from
a surveillance camera, social media profile, or other source.
The attacker then plays the video on a screen in front of the
face recognition system to gain unauthorized access.

3D mask attack: A 3D mask attack is a more sophis-
ticated attack method as it involves the creation of a
three-dimensional mask that resembles the target’s face.
The attacker creates a physical mask that is a realistic
representation of the target’s face by using 3D printing
technology or other method [38]. The attacker first obtains
a high-quality photograph or video of the target’s face.
The image data is then used to create a 3D model of the
target’s face, which is used to print out a physical mask that
matches the target’s facial features. The attacker can then
wear the mask and present it to the face-matching system for
unauthorized access.

Deepfake attack: A deepfake attack involves using arti-
ficial intelligence (AI) and machine learning technology to

4https ://[www.enisa.europa.eu/publications/enisa-report-remote-id-
proofing
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create highly realistic fake images and videos. The attacker
may use deep learning algorithms to generate images and
videos closely resembling the target’s face and movements.
The attacker first obtains a high-quality photograph or video
of the target’s face and then uses deep learning algorithms to
generate a highly realistic fake image or video of the target.
The attacker then performs a presentation (physical attack)
or logical attack using the deepfake image or video to gain
unauthorized access.

€

m 3D mask attack
Deepfake attack
Photo attack
Video-of-user replay attack

m Other attacks

FIGURE 6. Most effective types of face-matching attacks.

E. COMMON DATASETS IN DEEPFAKE DETECTION

Since there are no special datasets for detecting face
manipulation in remote identity-proofing systems, here we
review the existing fake video datasets in chronological
order of their introduction. We did not take into account the
popularity of each dataset among researchers.

The UADFV dataset [39] contains 49 real videos, while
49 fake videos are generated using a deepfake method.

The DF-TIMIT dataset [40], which was generated based
on the VIidTIMIT® dataset, contains 10 videos for each
of 43 subjects, who faced the camera and spoke short
predetermined phrases. From these 43 subjects, the authors
manually selected 16 subject pairs with comparable appear-
ances and generated 10 fake videos for each of the 32 subjects
using 2 versions of faceswap-GAN,® one for low-quality
and the other for high quality. A total of 640 videos were
generated.

The FaceForensics++ (FF++) dataset [7] contains fake
videos generated from 1000 real videos selected from
YouTube. They were used as pristine data to generate a large-
scale manipulation dataset. The fake videos were synthesized
by applying 4 face manipulation methods to the selected real
videos, resulting in 4,000 manipulated videos.

The Deepfake Detection Dataset by Google & Jigsaw is
a large-scale dataset of visual deepfakes that was created to
support deepfake detection research [41]. The dataset consists
of 3,068 fake videos generated from 363 videos of paid and
consenting actors.

The Celeb-DF dataset [42] is a large-scale deepfake video
dataset containing fake videos generated from 590 real

5 https://conradsanderson.id.au/vidtimit/
6https:// github.com/shaoanlu/faceswap-GAN
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videos selected from YouTube, which are in the form of
interviews of 59 celebrities with diverse distributions in terms
of age, gender, and ethnicity. The 5,639 high-quality celebrity
deepfake videos in this dataset were generated using an
enhanced synthesis process.

DeeperForensics-1.0 (DF-1.0) [43] is a large-scale dataset
for real-world face forgery detection. This dataset was
made more suitable for real-world fake face detection by
focusing on quality, scale, and diversity in its creation.
Source videos were carefully collected from 100 paid and
consenting actors from 26 countries; 1,000 target videos were
also collected from the FF+4+ dataset. One thousand fake
videos were generated using only one face-swapping method.
To compensate for using only one method, augmentation was
applied to both the real and fake videos, generating 50,000
real and 10,000 fake videos.

The DeepFake Detection Challenge (DFDC) dataset [44] is
one of the largest face-swap video datasets currently available
to the public. It is a collaborative project between Facebook
and other companies aimed at promoting competition among
deepfake detection researchers and publication of their find-
ings, as well as creating a large and useful dataset. It contains
more than 120,000 manipulated videos created from more
than 23,000 real videos of 960 volunteer subjects of different
ages, genders, and ethnicities in different environmental
settings. The manipulated videos were generated using eight
different methods.

The recently created WildDeepfake dataset [45] was
designed to help researchers develop deepfake detectors
and evaluate their performance against real-world deepfakes.
It comprises 7,314 face sequences from 707 deepfake videos
acquired entirely from the Internet. The creators started by
identifying the face region in each video frame; a pretrained
model was then used to extract features from each face region.
Next, a facial landmark was extracted and used to align the
faces in the frame sequence.

The Korean DeepFake Detection Dataset (KoDF) [46] is
a large-scale collection of real and fake videos focusing on
individuals of Korean ethnicity. It includes 403 subjects,
62,166 real videos, and 175,776 fake videos. All original
videos in the dataset were obtained from paid volunteers.
The creators controlled the distribution of the 403 participants
by age, gender, and recording site to maximize the diversity
of the dataset. Six methods were used to generate deepfake
videos. Finally, manual screening was performed to ensure
the quality of the videos; the eyes and ears were used to cross-
check each real and fake video for potential problems.

The recently created ForgeryNet dataset is an enormous
face forgery dataset that can be used for face forgery analysis
at both the image and video levels [47]. Fifteen manipulation
methods were used to produce both fake images and videos,
with 1,438,201 subjects for real images and 99,630 for real
videos, yielding 1,457,861 fake images and 121,617 fake
videos. The source data were chosen from four face datasets
to increase the variety in terms of identity, angle, expression,
scenario, and so on.
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The novel DeepFake MNIST+1 face animation
dataset [48] includes 10,000 source images selected as
frames from videos in the VoxCelebl dataset [49] and
driving videos used to animate face images with actions
were selected from the Amsterdam Dynamic Facial
Expression Set (ADFES) [50]. The first-order motion
model for image animation [51] was used to generate
videos. The total number of generated fake videos is
10,000; they portray 1 of 10 actions and depict various
emotions.

The recently released Fake AV Celeb audio-video deepfake
dataset [52] includes not only typical deepfake videos but
also lip-synced fake audio. Five hundred source videos were
selected from the VoxCeleb2 dataset [53]. They were equally
distributed in terms of age, gender, and ethnicity; the selection
was based on three requirements: the subject must be the
only person in the video, the face must be clear and in focus,
and a hat, glasses, mask, or other object must not obscure
the face. The source videos were used to generate around
20,000 deepfake videos by using four deepfake generation
methods.

OpenForensics dataset is a comprehensive collection
designed to present significant challenges, particularly in the
domain of face forgery detection and segmentation [54]. The
dataset incorporates detailed face-wise annotations, enhanc-
ing its potential for deepfake prevention and general human
face detection research. Furthermore, OpenForensics has
established a set of benchmarks for these tasks, thoroughly
evaluating cutting-edge instance detection and segmentation
methods across various scenarios.

An existing deepfake face can be swapped with another
face. This face-swapping process can be repeated multiple
times, leading to the development of highly advanced
deepfakes that effectively deceive deepfake detection meth-
ods. This problem was addressed by the development of
DeePhy [55], a deepfake phylogenetic dataset compris-
ing 5,040 deepfake videos generated from 100 source
videos using three distinct deepfake generation methods.
Specifically, it consists of 840 videos containing deepfakes
swapped once, 2,520 videos containing deepfakes swapped
twice, and 1,680 videos containing deepfakes swapped three
times.

The Glitch in the Matrix dataset is a large-scale audio-
visual deepfake dataset that contains 136,304 videos,
of which 36,431 are real and 99,873 are fake [56].
The dataset focuses on content-driven audio-visual forgery,
where the manipulations are guided by relevant words
in the video transcripts. Specifically, the manipulation
strategy is to replace strategic words with their antonyms,
which can significantly change the statement’s perceived
sentiment.

DF-Platter [57] is an extensive and meticulously annotated
dataset comprising low-resolution and high-resolution deep-
fake videos. These videos were generated from 764 source
videos using three distinct deepfake generation methods
and encompass single-subject as well as multiple-subject
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scenarios. The dataset encompasses diverse facial attributes,
including gender, age, skin tone, and occlusion. It is an
impressive collection of 133,260 videos.

The SWAN-DF dataset is a new public dataset of realistic
audio-visual deepfakes [58]. It is the first dataset of its kind
to include both face and voice deepfakes, and it is specifically
designed to assess the vulnerability of automatic identity
recognition systems to these types of attacks.

We quantitatively compared our eKYC-DF dataset
with these available datasets; the results are compared
in Table 1.

TABLE 1. Quantitative comparison of eKYC-DF dataset with existing
publicly available deepfake datasets.

Release  Real Fake Total Total

Dataset Year  Videos  Videos  Videos Subjects Methods
UADFV [30] 2018 Py Py 93 P T
DE-TIMIT [40] 2018 320 640 960 3 2
FE++ [7] 2019 1,000 4000 5,000 ; 4
GoogleDFD [41] 2019 363 3068 3431 363 1
CelebDF [42] 2019 500 5639 6229 59 1
DF-1.0 [43] 2020 50000 10,000 60,000 100 1
DFDC [44] 2020 23,654 104500 128,154 960 8
WildDeepfake [45] 2020 3,805 3,509 7,314 - -
KoDF [46] 2021 62166 175776 237.942 403 6
ForgeryNet[47] 2021 99,630 121,617 221247 5,400 15
MNIST+ [48] 2021 10,000 10,000 20,000 10,000 1
FakeAVCeleb [52] 2021 500 19500 20,000 500 4
DeePhy [55] 2022 100 5040 5140 - 3
LAV-DF [56] 2023 36431 99873 136304 153 1
DF-Platter [57] 2023 764 13249 133260 454 3
SWAN-DF [55] 2023 16 960 976 16 2
eKYC-DF 2023 760 228,000 228,760 100 3

Ill. eKYC-DF DATASET

The eKYC-DF dataset is developed to serve as a large public
deepfake dataset for developing and evaluating eKYC sys-
tems against deepfake attacks, Figure 7. In addition to being
large, it provides protocols for evaluating deepfake detection
models and facial recognition systems. The dataset is diverse
in terms of age, gender, and ethnicity, and the images and
videos are very high quality. Furthermore, the videos include
a variety of head movements and facial expressions. Existing
deepfake detection datasets are not necessarily useful for
developing and evaluating eKYC systems, which require
a specific motion, such as head movement, for liveness
detection, Figure 8. This section discusses the steps in
creating the dataset using face-swapping methods, as shown
in the flowchart in Figure 9. We also provide brief information
on the tools and datasets we used to create the eKYC-DF
dataset.

A. ASSUMPTIONS

We assume that attackers aim to bypass facial liveness
challenges despite facing resource constraints. They pri-
marily acquire victim portrait images from available online
sources, such as social media profiles, personal websites,
news articles, or ID documents. Obtaining portrait images is
generally considered easier than acquiring video recordings.
Additionally, attackers are assumed to possess the technical
skills necessary to perform a logical attack on the facial
liveness detection system using a virtual camera, but they
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FIGURE 7. This diagram illustrates the deepfake attack on an eKYC
system. The attacker uses a forged or stolen identity document of the
victim and then employs a deepfake model to create a synthetic video of
the victim, which is accomplished by either animating a still image of the
victim’s face or real-time swapping the victim’s face onto an attacker's
face. As a result, the attacker uses this video to impersonate the victim
and get unauthorized access to the eKYC system.

s

(a) (b) (c) (d)

FIGURE 8. Liveness detection results against different attacks: (a) real
face, (b) replay attack, (c) photo attack, and (d) 3D mask attack. Green
bounding boxes indicate real faces, while red bounding boxes indicate
fake faces.

lack deep expertise in machine learning and deep learning.
Since neural filters are widely used these days, it may be
worth mentioning that it is a reality that Victim images
can also be somewhat processed and enhanced by neural
filters.

B. VICTIM IMAGE

Many datasets are available for deepfake generation, i.e.,
face swapping. Our objective was to create a dataset with a
sufficient number of images with sufficient quality to train
state-of-the-art deep learning models on face-swap detection
tasks, especially those used in eKYC systems. We used the
VGGFace2-HQ dataset,” which is a high-resolution version
of the VGGFace?2 dataset developed for academic face edit-
ing [59]. The VGGFace2-HQ dataset was generated on the
basis of the GFPGAN method, which is used to restore high-
quality faces from counterparts with poor quality due to low
resolution, noise, blur, compression artifacts, etc. [60]. It uses

7https:// github.com/NNNNAI/VGGFace2-HQ.git
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InsightFace for data preprocessing, such as cropping the faces
and aligning them [61]. We selected 100 uncorrupted and
high-resolution images balanced between male and female,
with even distributions by age and ethnicity, as verified
manually using auxiliary tools. Example images are shown
in Figure 10.

C. ATTACKER DRIVEN VIDEO

During automatic authentication, the target person might be
asked to move their head, open their mouth, or close their
eyes. In addition, they can face the camera in different poses
with various facial expressions. Therefore, to create more
realistic fake videos, we must consider these movements
when choosing an appropriate dataset, i.e., which contains
various head and facial movements from which to select the
target input.

Among the available datasets, we found that the
DeeperForensics-1.0 dataset was the most suitable for our
objective. This large-scale dataset for real-world face forgery
detection has three important characteristics that make it
suitable as the source of our target data: good quality videos,
a large number of videos, and highly diverse videos; also,
the actors were asked to speak naturally to avoid excessive
frames showing a closed mouth. As described above, the
source videos in this dataset were carefully collected from
100 paid and consenting actors from 26 countries [43].
The example images in Figure 11 illustrate the diversity
of the images in terms of identity, pose, expression, and
illumination. To construct an input target, we selected only
one light position (light uniformity), eight expressions (anger,
contempt, disgust, fear, happy, neutral, sad, surprise), and one
camera position (camera front). Hence, the number of target
videos was 800 (100 actors x 1 light position x 8 expressions
x 1 camera position); however, several videos were
missing from the original dataset, so only 760 videos were
obtained.

D. PREPROCESSING

We used three algorithms related to face processing in the
preprocessing task to crop, align, and resize the face area to
the size required for each of the three face-swapping methods
we used (two require 512 x 512 pixels; one requires 224 x
224 pixels). This was done either from input images or input
videos (after extracting the target video frames). All three
face-swapping methods have ready-made functions for input
preprocessing.

E. FACE-SWAPPING METHODS

The face-swapping methods we used to build our dataset were
carefully selected based on reviewing the relevant literature
and considering three key factors. First, we chose open-
source methods to ensure accessibility and transparency.
Second, we focused on methods that can be used for
zero-shot inference, which enables face swapping without
requiring specific training data. Third, we evaluated each
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Face-swapping Result

Video Enhancement Result
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FIGURE 9. Steps in creating eKYC-DF dataset: 1) preprocessing of the victim image (images from VGGFace2-HQ dataset) and attacker-driven
video (videos from DeeperForensics-1.0 dataset); 2) swapping of faces between victim and attacker images; 3) postprocessing to enhance faces

in manipulated videos.

FIGURE 10. Example source images showing diversity for age, gender,
and ethnicity.

—

Expression Pose Identity

lllumination

FIGURE 11. Example target images showing diversity for identity, pose,
facial expression, and illumination [43].

method’s performance in terms of its ability to generate
realistic results appropriate for the type of images and videos
we needed to build our dataset. The evaluation process
involved manual observation and direct comparison of several
available methods. Table 2 presents a quantitative comparison
of identity retrieval and pose error on the Faceforensics++
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dataset with the existing state-of-the-art face swap models.
After careful consideration, we selected three that met
our selection criteria: SimSwap [11], FaceDancer [12], and
SberSwap [13]. Despite the existence of face animation-
based attacks, our search for open-source projects that met
our criteria (open-source models, zero-shot inference, and
the ability to generate realistic results) for constructing our
dataset was unsuccessful, as shown in Figure 12.

TABLE 2. Quantitative comparison with the existing SoTA face swap
models on Faceforensics++ dataset [7].

Method Identity retrieval T Pose error |
FaceSwap [62] 54.19 2.51
DeepFakes [63] 77.65 4.59
FaceShifter [64] 97.38 2.96
MegaFS [65] 90.83 2.64
FaceController [66]  98.27 2.65
HifiFace [67] 98.48 2.63
SberSwap [13] 98.67 3.00
SimSwap [11] 92.83 1.53
FaceDancer [12] 98.84 2.04

Victim Image Attacker Driven Video

F

Face-swapping Result

Face Animation Result

FIGURE 12. A visual illustration using the First-Order Motion Model
(FOMM) [51] highlights the occurrence of significant distortions and
artifacts in facial animation during complex head movements.
Consequently, the resulting output falls short of the high-quality
standards required for our dataset.
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SimSwap is an effective framework aimed at generalized
and high-resolution face swapping using a single trained
model; it can accomplish arbitrary face swapping on
images and videos [11]. Furthermore, it can maintain the
attributes of the target face while transferring the identity
of any arbitrary source face into any arbitrary target face,
unlike previous methods, which either lack the capacity
to generalize to arbitrary identities or fail to maintain
features such as facial expression and glance direction.
It overcomes these weaknesses in two ways. It transfers
the identity information of the source face into the target
face at the feature level by using a unique injection
module. Then, it uses the weak feature matching loss,
which implicitly helps the framework preserve the facial
attributes.

FaceDancer is a model for performing high-fidelity
face swapping, with the ability to consider pose and
occlusion [12]. FaceDancer enables one person’s face in
a video to be replaced with another person’s face while
preserving the pose and facial expression of the original
person (e.g., glasses, hats) of the original face, which makes
the resulting face swap even more realistic. This can be
useful for various applications, such as creating realistic
digital avatars or enabling deepfake videos. FaceDancer was
designed to be highly accurate and to produce results that are
difficult to distinguish from real video.

SberSwap is a face-swapping pipeline based on the
FaceShifter architecture with several enhancements to
improve the final result [13], and it fixes the problems
inherent in previous architectures [68], [69]. The model’s
architecture and other training elements have been the
subject of extensive research and testing by the developers.
The improvements in quality shown by evaluation are
attributed to the usage of a new special eye loss func-
tion, super-resolution block, and Gaussian-based face mask
generation.

F. POSTPROCESSING

All of the aforementioned methods produced manipulated
videos matched to the target input videos after inference,
with the faces in the target input videos being swapped
for the faces in the source input videos. Since manipulated
videos can suffer from unwanted artifacts and distortions,
enhancing them to remove distortions and improve resolution
is necessary. Three face restoration algorithms were thus
used to enhance the manipulated videos. We recommend
using one of them to enhance videos before using them in
research.

1) MAXIM

Multi-Axis MLP for Image Processing (MAXIM) is a generic
network for the restoration and enhancement of images.
It was inspired by current developments in transformer
and multi-layer perceptron (MLP) models, which produce
unique network architecture designs for computer vision

30886

applications [70]. Long-distance interactions are supported
by MAXIM, which uses a UNet-shaped hierarchical struc-
ture that can be used as a general-purpose vision back-
bone for image-processing tasks. It is both efficient and
adaptable.

2) GFPGAN

The GFPGAN method is a framework that uses rich and
diverse priors contained in StyleGAN2, as well as the
powerful generative face prior (GFP) and delicate designs
to restore facial details and enhance colors with only a
single forward pass while maintaining a good balance
between realism and fidelity [60]. The input to GFPGAN
is a face image suffering from unknown degradation; face
restoration aims to estimate a high-quality image as similar
as possible to the ground truth image in terms of reality and
fidelity.

3) DIFFACE

Blind Face Restoration with Diffused Error Contraction is
a method for restoring degraded or low-resolution facial
images [71]. DIFFACE uses a deep neural network to perform
the restoration; it can improve the resolution and quality
of images without the need for a high-resolution reference
image.

IV. EVALUATION

We evaluated the eKYC-DF dataset by focusing on our
primary objectives for this dataset as framed in three research
questions:

RQ1: Does the dataset offer high-quality deepfake content
representing a realistic and challenging scenario?

RQ2: To what extent do facial recognition systems
encounter difficulties in accurately distinguishing between
real and face-swapped images in the dataset?

RQ3: Does the dataset present novel challenges and
pose an effective benchmark for developing and evaluating
deepfake detection models?

A. EVALUATION DATASET

We used a scaled-down version of the eKYC-DF dataset due
to it being very large (the small version is over 700 GB),
so the process of enhancing and cropping faces is extremely
time-consuming. This scaled-down dataset consists of 6,000
fake videos (2,000 videos from each of the three face-
swapping methods we used) and an equal number of real
videos processed using the GFPGAN method to enhance
visual quality. The videos (fake and real) were provided
with three different compression levels (C0O, C23, and C40)
to match various real-world scenarios. To focus specifically
on facial analysis, we used MediaPipe [72] to crop the
faces from all videos accurately. To capture temporal
information and enable dynamic analysis, we extracted
60 consecutive frames from each video, resulting in a rich
and varied collection of facial expressions and movements for
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comprehensive evaluation. Furthermore, to facilitate robust
model training and evaluation, we divided the dataset into
three distinct sets (training, validation, and test), ensuring
mutual exclusivity among them. The validation set played a
crucial role in determining the error threshold (equal error
rate) for evaluating both deepfake detection models and
face recognition systems. Table 3 provides a comprehensive
overview of this scaled-down dataset.

TABLE 3. Comprehensive overview of subset created from eKYC-DF
dataset.

Real Fake CO C23 C40
Number of Videos 6,000 6,000
Selection Condition Video duration >= 2s
Training Set Frames 216,000 208,140 Vv v v
Val Set Frames 67,200 75,600 Vv v v
Test Set Frames 76,800 75,720 v v v

BRISQUE Score

30
20
10

0

FF++ CelebDF  DFDC Open DF-Platter eKYC-DF eKVC DF eKYC-DF eKYC-DH
Forensics c23 cao

FIGURE 13. BRISQUE scores (lower scores indicate better visual quality).
Blue bars show performance across the entire dataset. Other colors
represent BRISQUE scores for three compression levels of the eKYC-DF
dataset.

B. VISUAL QUALITY ASSESSMENT

The video frames in our dataset exhibited exceptional quality
(see Figure 14), achieved through the utilization of high-
quality sources and target datasets. To further enhance
the realism of the generated frames, we used carefully
selected face-swapping methods and applied postprocessing
image enhancement techniques, as illustrated in Figure 15.
This emphasis on generating images closely resembling
real images makes our dataset particularly challenging for
face recognition systems and deepfake detection models.
To assess the visual quality of our dataset, we used the
BRISQUE score [73], for which a lower value signifies
better visual quality. Our dataset demonstrated competitive
performance Figure 13, with a BRISQUE score of 30.83 on
set CO, outperforming other existing datasets (FF++ [7],
Celeb-DF [42], DFDC [44], OpenForensics [54], and DF-
Platter [57]). The BRISQUE scores for sets C23 and C40
were 42.61 and 49.38, respectively. The overall average
BRISQUE score for the entire dataset was 40.94, the second-
highest score among the evaluation datasets. This high rank
underscores the exceptional visual quality of our dataset
(answer RQ1). The BRISQUE scores for the other datasets
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were approximated from [54], and the DF-Platter score was
approximated from [57].

C. FACE RECOGNITION EVALUATION

To evaluate face recognition, we used three powerful
facial recognition models: ArcFace [74], Facenet, and
Facenet512 [75], along with pretrained versions of Deep-
face [1]. We first needed to determine the suitable threshold
for each model when analyzing real video frames. We did
this by extracting two frames from each real video, labeling
them as ‘“Matched’, and two frames from different real
videos labeled them as ‘“Non-matched”. This process
was carried out for the three compression levels: CO,
C23, and C40. The cosine similarities were normalized
using:

normalized_similarity = (I - cosine_similarity) / 2

By evaluating the false match rate (FMR) and false non-
match rate (FNMR) of the models, we identified the optimal
threshold for each. Then, we used this threshold to perform
binary classification of the real set and the rest of the other
sets.

We used another victim’s face image of the victim
himself in the face-swapping process for the fake frames,
matching it with a frame from the resulting fake video
(the output of face-swapping between the victim’s face
image and the attacker-driven video). For the other set,
we paired the victim’s face image with a different fake video
generated from another attacker’s video (different actor),
labeling these ‘“Non-matched”. This enabled us to construct
a comprehensive dataset for testing face recognition systems
under the three compression levels. The results, summarized
in Table 4 and Figure 16, demonstrate the models’ impressive
accuracy with real frames; on the other side, these same
models were unable to distinguish whether a face in an image
was real or swapped by one of the face-swapping methods,
indicating the high quality of the deepfakes in our eKYC-
DF dataset. Figure 1 illustrates a critical vulnerability of
face recognition systems to high-quality deepfakes. In this
experiment, we used a face recognition system to measure
the similarity between a fake victim’s face image generated
through deepfakes and a real victim’s face image. The
system’s inability to distinguish between the two images
demonstrates the potential for deepfakes to be misused for
deception and highlights the need for further research into
improving the robustness of face recognition systems against
such attacks. We obtained the same results in an additional
experiment that measured the similarity between the victim’s
face image and a fake video. Following the same data con-
struction process as previously described, we created a new
dataset for evaluating facial recognition systems on image-
video similarity. This dataset consisted of another victim’s
face image of the victim himself and ten frames extracted
from the resulting video of face swapping between an image
of the victim’s face and the attacker-driven video, as shown
in Figure 17.
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Victim Image Attacker Driven Video ~ SimSwap

FaceDancer SberSwap

FIGURE 14. Face-swapping results generated by SimSwap, FaceDancer, and SberSwap.

Original Results MAXIM GFPGAN DIFFACE

BRISQUE scores
(53.47 58.20
50.72 57.59)

(50.19 54.23
50.32 53.52)

(51.45 49.94
51.05 50.20)

(40.27 41.29
46.67 47.14)

FIGURE 15. Example images showing the importance of enhancement in
reducing artifacts and improving visual quality. Results of three
enhancement algorithms compared with original results. BRISQUE scores
(shown from top to bottom for each column) were improved when
enhancement was performed. Faces in images were swapped using
FaceDancer.

We can, therefore, conclude that, without deepfake detec-
tion, eKYC systems can be easily compromised (answer
RQ?2). This presents a significant challenge, as face recog-
nition systems need to be retrained and adjusted to keep
up with advancements in deepfake generation techniques.
The realistic and high-quality nature of the deepfakes
in our dataset underscores the necessity for continuous
development and enhancement of face recognition systems
to combat the proliferation of deceptive and sophisticated
deepfakes.
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TABLE 4. Results obtained from evaluating our dataset on face
recognition models (Acc in %; AUC in %; Thr = Threshold).

Face-Swapping  Face Recognition Model: Acc % — AUC %

Dataset Method ArcFace Facenet Facenet512
(Thr=16%)  (Thr=25%) (Thr = 27%)
Real / 92.00-96.00 91.00-97.00 95.00 - 99.00
SimSwap 92.00-97.00  96.00 — 98.00 98.00 — 99.00
Co SberSwap 92.00-96.00  94.00-98.00  97.00 - 100.00
FaceDancer 94.00-98.00 97.00-99.00  98.00 — 100.00
SimSwap 92.00-97.00  96.00 — 98.00 98.00 —99.00
C23 SberSwap 93.00-97.00  95.00 - 98.00 98.00 — 99.00
FaceDancer 94.00-97.00  96.00 -98.00  98.00 — 100.00
SimSwap 92.00-97.00 95.00-98.00 98.00 — 100.00
C40 SberSwap 93.00-97.00  95.00 - 98.00 97.00 - 99.00
FaceDancer 94.00-97.00  96.00 —98.00  98.00 — 100.00
Co All 93.00-97.00 95.00-98.00 98.00 — 100.00
C23 All 93.00-97.00  96.00-98.00  98.00 — 100.00
C40 All 93.00-97.00  95.00 — 98.00 98.00 — 99.00

TABLE 5. Results for deepfake detectors trained and tested on eKYC-DF
small version dataset (Accuracy in % and AUC in %). All detectors were
trained using a training set comprising samples from C0, €23, and C40.

Models (Acc % — AUC %)

Test Set XceptionNet EfficientNet (B4)  EfficientNet-v2 (B4)
C0,C23,C40  99.95-100.00  99.93 — 100.00 99.95 - 100.00
[¢1) 99.93 - 100.00  99.89 — 100.00 99.93 - 100.00
C23 99.93 - 100.00  99.89 — 100.00 99.97 - 100.00
C40 99.93 -100.00  99.89 — 100.00 99.95 — 100.00

D. DEEPFAKE DETECTION EVALUATION
To evaluate deepfake detection, we first assessed the per-
formance of deepfake detection models specifically trained
on our dataset and then investigated the generalization
capabilities of deepfake detection models pretrained on
external datasets when applied to ours. We also ascertained
whether our dataset presents new challenges not encountered
in prior datasets. By addressing these key aspects, we gained
valuable insights into the suitability of our dataset for
training robust deepfake detection models and its potential
contributions to advancing the field.

We used three advanced deepfake detection models:
XceptionNet [7], EfficientNet (B4) [76], and EfficientNet-
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FIGURE 16. ROC curves of different face recognition models (ArcFace, Facenet, and Facenet512) on our dataset.
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TABLE 6. Results of deepfake detector inference on various datasets (zero-shot inference): We report the AUC (%) on Celeb-DF-v2 (CDF) [42], DeepFake

Detection (DFD) [41], and DeeperForensics (DFo) [43], as well as AUC and Acc (%) on our dataset eKYC-DF.

eKYC-DF (Acc % — AUC %, Threshold = 0.5)

Model Trained on CDF DFD DFo 0 3 a0
XceptionNet [7] FF++[7] 73.70 - 84.50 45.89-40.33  42.36-36.87  40.87-33.89
CNN-generated [78]  FF++[7] 75.60 - 7440 50.00-48.20  48.70-47.83  32.84-32.50
Self-B-Img [79] FF++ (7] 93.18  97.87 - 51.25-50.72  55.17-55.66  49.07 —49.07
Self-B-Img [79] FF++¢23 [7] 92.87 98.16 - 57.25-5725 63.12-62.56 49.34-49.34
AltFreezing [80] FF++[7] 89.50 9850 99.30 48.88-48.88 50.15-50.15  51.05-51.05
HiFi-IFDL [81] HiFi-IFDL [81] - - - 4596 -50.00 49.83-50.00 49.83 —50.00
Facenet512 img-vid - ROC Curve dataset is suitable for training deepfake detection models.
10— However, these detectors failed to demonstrate generalization
o? when we tested them on other datasets, such as the FF4+-+
. :i dataset. This lack of generalization could be attributed to
s model limitations. Furthermore, certain models that demon-
;.% o strated strong generalization abilities on external datasets
% 04 — smsvecn sic-noos encountered difficulties when tested on the eKYC-DF
£ — ey dataset,
— g:j;;::pg;g;ﬁggiz . Table 6 provides a comprehensive overview of these
ot I Ao o results, illustrating instances where the models exhibited
L et high generalizability for other datasets but failed to perform
~ FlasePostiveRate effectively on the eKYC-DF dataset (answer RQ3). Deepfake
Facenet512 img-vid - DET Curve detection models primarily address artifacts that emerge
h during generation, which naturally differ depending on the
: synthesis technique. To create an ideal deepfake detection
oo dataset, it is crucial to use a diverse set of deepfake
% 0 methods and a wide array of real videos. Since no available
o deepfake dataset has achieved the desired level of generality,
g 0s — gmsnacy combining multiple datasets to achieve the desired generality
= o2 T Fecepencerct is a practical approach.
T Seerswavcas
L — e
L T i V. CONCLUSION
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FIGURE 17. ROC and DET curves of the Facenet512 face recognition
model on our dataset for image-video similarity.

v2 (B4) [77]. As shown in Table 5, all three models
achieved high accuracy when trained and tested on the eKYC-
DF small version dataset. This means that the eKYC-DF

VOLUME 12, 2024

Our large-scale eKYC-DF dataset is a valuable resource
for researchers working to develop and protect eKYC
systems as well as deepfake detection and facial recognition
systems. The dataset includes diverse videos created using
three deepfake methods and a range of real videos for
comparison, totaling 228,760 videos. Using this dataset,
researchers can develop and evaluate deep learning models
that can accurately identify deepfake videos and improve
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the reliability of eKYC systems. The results of experiments
using this dataset demonstrated that it is a valuable resource
for advancing state-of-the-art deepfake detection models and
face recognition systems.
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