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ABSTRACT Real-time Monte Carlo denoising aims to denoise a 1spp-rendered image with a limited time
budget. Many latest techniques for real-time Monte Carlo denoising utilize temporal accumulation (TA)
as a pre-processing to improve the temporal stability of successive frames and increase the effective spp.
However, existing techniques using TA used to suffer from significant performance degradation when TA
does not work well. In addition, they have the disadvantage of deteriorating performance in dynamic scenes
because pixel information of the current frame cannot be sufficiently utilized due to the pixel averaging
effect between temporally adjacent frames. To solve this problem, this paper proposes a framework that
utilizes both 1spp images and temporally accumulated 1spp (TA-1spp) images. First, the multi-scale kernel
prediction module estimates kernel maps for filtering Ispp images and TA-1spp images, respectively.
Then, the filtered images are properly fused so that the two advantages of 1spp and TA-1spp images can
create synergy. Also, the remaining noise is removed through the refinement module and fine details are
reconstructed to improve the model flexibility, beyond using only the kernel prediction module. As a result,
we achieve better quantitative and qualitative performance at 39% faster than state-of-the-art (SOTA) real-
time Monte Carlo denoisers.

INDEX TERMS Image processing, rendering, real-time de-noising.

I. INTRODUCTION

Ray tracing [1] is a typical global illumination algorithm for
rendering realistic graphic images. In particular, Monte Carlo
path tracing is a de facto standard in film and game pro-
duction [2]. In order to obtain a high-quality image through
Monte Carlo path tracing, a significantly large number of
samples per pixel (spp) is required, which causes a huge
computational cost. In other words, obtaining high-quality
images in real time through Monte Carlo path tracing is still
considered a difficult goal to achieve. There have been many
challenges in terms of hardware and software to achieve this
goal. First, with the rapid development of semiconductor
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technology, a lot of hardware-based techniques for ray tracing
on mobile CPUs and GPUs have been developed [3], [4].
However, as the refresh rate and resolution of displays rapidly
increase, the resolution of graphic images to be generated
also increases. This still remains a problem for real-time
rendering [5]. So, the practical spp budget for real-time
applications must be very limited.

As a solution to this, an approach that renders noisy images
generated with extremely low spp, e.g., 1-4 spp in real time,
and then applies denoising afterward, has emerged. Since this
approach can be implemented as a post-processing without
major changes to existing renderers, it is attracting attention
not only from industry but also from academia. If a low
spp is applied for real-time rendering, the tracing time can
be noticeably reduced. However, the intensity of noise is
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rather strong, so it becomes difficult to restore the rendered
images.

Convolutional neural networks (CNNs) can be applied to
remove noise effectively [5], [6], [7]. But, the application
of large-sized CNNs makes real-time rendering impossible
again. Therefore, some methods proposed to compensate
for insufficient capacity by using small CNNs with strong
inductive bias. For example, Meng et al. [2] proposed a
so-called neural bilateral grid denoiser that removes noise
in bilateral grid space by grafting a differentiable bilateral
grid to CNN architecture. Fan et al. [8] proposed a network
capable of real-time denoising by predicting the kernel map
of a single channel, reducing the overhead caused by kernel
prediction. In addition, they compensated for the lack of
performance by increasing the effective spp of low spp
images and improving temporal stability through temporal
accumulation (TA). However, this method still has room
for improvement in terms of performance and run-time.
Furthermore, in scenes with low temporal consistency, that
is, in cases where the light source changes rapidly, e.g., fast
animation, geometric changes and etc, TA may not respond
well to the rapid changes due to the pixel smoothing between
adjacent frames. In other words, TA may adversely affect
performance for dynamic scenes.

To solve the above-mentioned problem, we propose a
novel denoising framework that utilizes both 1spp images and
temporally accumulated images (TA-1spp). The proposed
framework uses the advantages of TA-1spp, i.e., the increase
in effective spp and the improvement in temporal stability,
and at the same time, increases the overall performance by
directly utilizing current pixel information even in scenes
with low temporal consistency. First, to effectively use 1spp
and TA-1spp images simultaneously, we adopt a light-weight
kernel prediction method [6]. Here, kernel prediction is to
predict the weights of pixels in the kxk kernel through
CNNs for effective restoration. Due to the straightforward
arrangement of the projected kernel, which involves a
weighted sum of adjacent pixels utilizing an optimized
configuration centered around the main pixel, rapid and
effective denoising becomes feasible.

Second, we propose a method to effectively filter and fuse
the Ispp and TA-1spp images by adopting the multi-scale
structure proposed by Vogels et al. [9]. Since the 1spp image
is more sparse than the TA-1spp image, a large receptive field
is required. So, 1spp images are filtered on a small scale,
and TA-1spp images having a high effective spp are filtered
on a large scale. The filtered 1spp and TA-1spp images are
input to a fusion module like unsharp masking. Then, a post-
processing module, i.e., a refinement module, is applied to
remove the survived noise in the fused image. Here, the
refinement module pursuing residue-based prediction can
remove residual noise from fused images even with low
capacity, and also restore fine details.

Finally, by cascading the kernel prediction module and
the refinement module, the lack of flexibility of the kernel
prediction dependent on neighboring pixels is mitigated.
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As a result, effective denoising is realized. According to
the experimental results, the proposed method not only
shows better visual quality than SOTA methods, but also
quantitatively provides 39% faster speed with PSNR as
high as 1.843dB. The contribution points of this paper are
summarized as follows.

o We propose the first framework that utilizes both 1spp
and TA-1spp images for Monte Carlo denoising. This
framework not only increases the effectiveness of TA by
improving the visual quality of the early frames, but is
also robust for scenes with rapid light source changes.

o The model flexibility is increased by combining the
kernel prediction module and the refinement module,
so 1spp path-traced images are denoised in real time.

o As a result, it shows better qualitative and quantitative
performance with 39% faster speed than SOTA methods
for real-time Monte Carlo denoising.

Il. RELATED WORKS

This section mainly describes deep learning and real-
time techniques, which are closely related to the proposed
denoising algorithm. Sections II-A and II-B focus on a
kernel-based and real-time approach similar to the proposed
method, and Section II-C describes other deep learning-based
approaches not covered in the Section II-A. Here, the research
trend on deep learning-based Monte Carlo denoising is
described by referring to Huo and Yoon [10].

A. DEEP LEARNING-BASED MONTE CARLO DENOISING
Kalantari et al. [11] introduced supervised learning for the
first time in Monte Carlo denoising. They observed the
complex relationship between the input noisy image and
the ideal filter parameters, and based on this observation,
predicted the optimal weights of a bilateral filter through a
multi-layer perceptron. In addition, various auxiliary features
such as world positions, shading normals, and texture values
were used as input to obtain high-quality images. Since
then, as CNNs have succeeded in solving many computer
vision and graphics problems, new Monte Carlo denoising
structures using CNNs and noise-free auxiliary feature
buffers have been studied more and more.

Bako et al. [6] proposed a CNN model with deep depth
to predict the kernel weights per pixel, and succeeded
in producing a complex yet generalized kernel. However,
estimating a kernel of such a large size takes a lot of
computation time and memory consumption. Conversely,
using a smaller kernel size results in lower quality. In other
words, this trade-off issue is still unsolved. To address
this problem, Vogels et al. [9] noted that filtering with a
small kernel at reduced resolution is almost equivalent to
filtering with a large receptive field at the original resolution,
and proposed the kernel prediction of a multi-resolution
architecture (MR-KP). However, MR-KP targets an image
rendered with at least 16spp, and is not suitable for real-time
Monte Carlo denoising as it was initially designed for offline
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applications. Back et al. [12] initially predicted kernels
using path traced images, images denoised with existing
denoisers [13], [14], and auxiliary features. Then, they
predicted a combination kernel using the two images (path
traced image and denoised image) and the predicted kernel,
and combined the two images. Zheng et al. [15] introduced
an optimization-based technique that combines multiple
individual Monte Carlo denoisers. In other words, the output
images from various denoisers are weighted and summed on a
per-pixel basis. What Back et al. [12], Zheng et al. [15], and
the proposed approach have in common is that they convert
two or more images into a weighted sum. However, the
combination kernel and ensemble-based denoiser leverages
existing denoisers for better denoising results. Therefore,
they are unsuitable for real-time applications. On the other
hand, the proposed approach achieves the fusion of Issp
and TA-1spp within a single denoiser. Notably, in contrast
to conventional methods, the proposed method accomplishes
real-time denoising with improved performance at a marginal
additional cost.

B. REAL-TIME MONTE CARLO DENOISING

Chaitanya et al. [5] first proposed an autoencoder (Optix
Neural Network denoiser, ONND) for denoising an image
rendered with 1spp. They directly predicted a pixel instead of
a kernel for noise removal, and added a recurrent connection
to the autoencoder structure to improve temporal stability.
Isik et al. [7] proposed a novel filtering that uses pairwise
affinity of per-pixel deep features learned from the raw
path-tracing samples to learn iteratively-applied 2D dilated
kernels. And they improved the temporal stability by using
a temporal aggregation mechanism based on the same
pairwise affinity. The previous methods have achieved up
to interactive speed, but are rather slow to be called real-
time yet. Schied et al. [16] used an extended hierarchical
filter (Spatio-temporal Variance-Guided Filtering; SVGF)
with a customized edge-stopping function to progressively
filter out TA frames. Koskela et al. [17] applied augmented
QR factorization and stochastic normalization to image
blocks for block-wise feature regression (BMFR). This helps
improve speed in GPU implementation. However, the above
techniques [16], [17] must depend on reprojected frame
accumulation [18] to get a higher effective spp. On the
other hand, some techniques utilize TA as a data pre-
processing. For instance, Meng et al. [2] proposed a neural
bilateral grid denoiser (NBGD) that applied a differential
bilateral grid to CNNs. They used a trained mapping function
to collect adjacent pixels in 3D bilateral gird space and
then removed noise on 3D space in real time. However,
bilateral grid-based approach has the disadvantage of higher
computational overhead than the kernel-based one [8].
Fan et al. [8] employed a kernel prediction network that is
called Weight Sharing Kernel Prediction Network (WSKPN).
In order to reduce the overhead incurred in per-pixel kernel
prediction, they encoded a single-channel kernel map, that
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is, predicted a weight sharing kernel map, and then unfolded
the predicted single-channel kernel map to construct a
kernel. Finally, they realized real-time denoising of 1spp
images. In addition, to shorten the run-time during inference,
a re-parameterization technique [19] was used.

Since TA of 1spp noisy images has the effect of increasing
the effective spp, it can be a solution for real-time denoising
of 1spp images. However, as described in Section V, we face
two problems: Visual quality deterioration in the early frames
when only TA-1spp is used, and color distortion due to pixel
averaging phenomenon in dynamic scenes with low temporal
consistency. Therefore, we propose a novel solution which
jointly utilizes pure 1spp images and TA-1spp images.

C. OTHER DEEP LEARNING-BASED TECHNIQUES

Unlike typical pixel-based Monte Carlo denoisers,
Gharbi et al. [20] proposed a sample-based kernel splatting
network. By estimating the contribution of Monte Carlo
samples through a kernel splatting structure, it showed
more natural and robust performance than pixel-based tech-
niques when denoising images with specific visual effects
(e.g., motion blur, depth of field). Munkberg and Hassel-
gren [21] extended Gharbi et al. [20]. They splatted samples
into multiple layers to convert sample-based to layer-based,
and then denoised the samples-splatted layers. This technique
maintains similar quality to previous per-sample techniques
even while using a fraction of the computational cost and
memory requirements. Hasselgren et al. [22] adopted the
multi-scale kernel prediction structure such as MR-KP [9]
to denoise adaptively re-sampled Monte Carlo images and
achieved interactive speed. However, these sample-based
denoising techniques not only increase memory cost linearly
in proportion to the number of samples (or samples-splatted
layers), but also have a disadvantage that is less accessible
than pixel-based denoisers.

In addition, Xu et al. [23] applied adversarial learning, and
proposed a novel conditioned auxiliary feature modulation
method to better utilize auxiliary features. Firmino et al. [24]
proposed a progressive denoising technique with Stein‘s
unbiased risk estimate (SURE). This allows denoising to be
used only when it is beneficial and to reduce the effect at large
sample numbers.

Ill. PROPOSED METHOD

This section describes the overall structure of the proposed
denoiser with a data pre-processing. As in Figure 1, the
proposed method consists of three modules: Multi-scale
kernel prediction, filtering and fusion, and refinement. The
multi-kernel prediction module receives 1spp images, TA-
Ispp images, and auxiliary features, and then predicts
kernel maps for filtering 1spp images and TA-1spp images,
respectively. The filtering and fusion module filters the 1spp
image and the TA-1spp image by multiplying the predicted
kernel map and the unfolded noisy image, and then fuses
them to combine the advantages of the two rendered images.
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1spp input

FIGURE 1. The overall framework of the proposed denoiser.

Finally, the refinement module removes noise remaining after
fusion, and restores fine details.

A. PRE-PROCESSING

Prior to denoising, we demodulate albedos from noisy images
as in Chaitanya et al. [5]. Demodulated images with most
complex textures removed enable efficient learning. Note that
we can modulate the albedo again to bring out texture details
without over-blurring. Next, TA-1spp images are generated
by applying TA as in [2], [8], and [17]. At this time, stable
learning may be difficult if a rendered image with a high
dynamic range is directly input into neural networks [6],
[25]. So, finally, we transform the rendered image into
a low dynamic range image through tone-mapping prior
to denoising. Here, shading normals and depth are scaled
linearly in the [0, 1] range.

B. MULTI-SCALE KERNEL PREDICTION

The multi-scale kernel prediction module predicts a per-pixel
kernel, i.e., a kernel map to effectively filter 1spp images and
TA-1spp images based on multi-scale architecture [9], as in
Figure 2 (a). Multi-scale architecture M has a light-weight
autoencoder structure for real-time operation. M receives
Ispp image r'PP, TA-1spp image r ™, and auxiliary features f
such as albedo, shading normal, and depth, and predicts two
kernel maps K 'SPP and K™ for r'sPP and r™ respectively:

Klspp’ KTA — M(rlspp’ I’TA, f) (])

KPP and KT are obtained by slicing feature maps of two
different scales of the decoder. Slicing is performed according
to the desired kernel size. In this paper, the kernel size k is set
to 7 for large receptive fields, in other words, 49 channels
are used. Since PP has more sparse pixels than ™4, we can
increase the effective spp by defining a smaller kernel map as
K 'sPP and applying K PP to the down-sampled r'$PP. On the
other hand, since r™ has higher effective spp, K™ is used
for filtering at the original scale of 2.

In summary, the proposed multi-scale kernel prediction
efficiently estimates the kernel map for denoising each
rendered image, and the estimated kernel maps are applied at
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a scale with a high effective spp to enable high-performance
denoising.

C. FILTERING AND FUSION

The next module filters and fuses 1spp images and TA-1spp
images with kernel maps predicted in the multi-scale kernel
prediction step. As described above, since the kernel map K
is implemented in the form of a k x k channel feature map,
the rendered image needs to be unfolded, which is represented
conceptually in Figure 2 (b). Here, k is set to 7. The process of
applying K to the unfolded rendered image is implemented in
a weighted sum way, and the filtering process for each color
channel c is expressed by

kxk
de = > K;- Unfold(r,)
j

@)

Note that we filter the non-tone-mapped HDR image to retain
the original HDR distribution here.

Next, in order to fuse the filtered 1spp image d'*PP and the
filtered TA-1spp image d ™, we appropriately transform the
scale-compositor module proposed by Vogels et al. [9] and
adopt it as a fusion module F. The structure of F is given
in Figure 2 (c), and the fused image i is obtained by

i= F(d"P, d™) = g™ — qUDd™ + oUd"P?  (3)
where o is the weight map of adaptive fusion estimated
by CNN. D and U denote the 2x down- and up-sampling
operators, which are implemented as average pooling and
nearest-neighbor interpolation, respectively.

The proposed fusion framework effectively combines the
advantages of two rendered images by injecting the dynamic
features of the Ispp image into the TA-1spp image. How
much performance is improved by our fusion framework is
demonstrated in Section V-A. As a result, high restoration
performance is achieved even with a small CNN having
minimal capacity. This means that we break through the
cost-performance trade-off of existing Monte Carlo denoising
algorithms.
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(c) Filtering & Fusion
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FIGURE 2. Details of each module of the proposed denoiser.
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D. REFINEMENT
Although the proposed filtering and fusion module signifi-
cantly removes the noise of the low-spp rendered image, there
is still a limit to effectively restoring even high-frequency
components such as fine details. Therefore, we overcome this
limitation with the refinement module of Figure 2 (d).

The refinement module R receives the fused image i and
auxiliary features f as input and outputs the final refined
image o:

o=1i+R(>UT) “)

R enhances fine details by removing noise that still
survives after kernel filtering with low capacity through
residual learning. In addition, R shows reliable denoising
performance by complementing the low flexibility of the
kernel prediction module. The performance improvement by
'R is proven in Section V-B.

To sum up, the proposed denoising framework succeeds in
taking advantage of both Ispp and TA-1spp images through
filtering and fusion based on multi-scale kernel prediction.
Furthermore, by attaching a residual learning-based refine-
ment module, the flexibility of the entire framework can be
improved even with low capacity. Therefore, we were able
to achieve high denoising performance in real time, and its
experimental proofs are given in the next section.

IV. EXPERIMENTS

This section first describes the dataset used for learning and
inference, as well as the training setup. Next, evaluation
metrics are depicted. Finally, the benchmarked techniques are
described and the comparison results with the conventional
techniques are presented.

A. DATASETS

There are few published examples of datasets for real-time
Monte Carlo denoising. So, we adopt the (virtually only)
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BMFR dataset used in Koskelaetal. [17]. The BMFR
dataset consists of 6 scenes with various rendering effects
(e.g., glossy reflection, soft shadow, diverse illumination).
Each scene contains 60 frames with smooth camera move-
ment where the noisy image was rendered at 1spp and the
reference image at 4096spp, respectively.

Also, to evaluate the generalization performance in high
spp, we additionally employ the high-quality Tungsten
dataset released by [2]. The Tungsten dataset consists of a
total of 8 publicly available Tungsten scenes [26] including
complex geometry information and lighting conditions. Each
scene is composed of 100 frames. Here, a noisy image is
rendered with 64spp and the reference image with 4096spp,
respectively. Since the noisy images are rendered in 64spp for
offline applications, the Tungsten dataset does not utilize TA.

Both datasets have a resolution of 1280 x 720. We use
albedo, shading normal, and camera-space depth as auxiliary
features. This setup is similar to those of Meng et al. [2] and
Fan et al. [8].
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B. TRAINING

As in Meng et al. [2] and Fan et al. [8], we adopt all other
scenes except the test scene as the training dataset. So,
the performance on the test data can be an indicator
of the generalization ability of the trained denoiser [2].
As suggested by Vogels et al. [9], we define the symmetric
mean absolute percentage error (SMAPE) as the loss function
for training:

! |0/ c tp c|
SMAPE(0, 1) = — e el g
W 22 el

where o' is the final output of the proposed denoiser
multiplied by albedo, 7 is the reference image, N is the
number of pixels in the image, and c is the color channel.
€ is set to 0.001 in this paper.
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TABLE 1. PSNR comparison for the BMFR dataset.

TABLE 3. RMSE comparison for the BMFR dataset.

Scene SVGF[16] ONND[5] BMFR[17] NBGD[2] WSKPN [8] Proposed method Scene SVGF[16] ONND[5] BMFR[17] NBGD[2] WSKPN [8] Proposed method
Classroom 25.034 27.312 28.965 31.519 32.827 Classroom 0.0561 0.0431 0.0356 0.0265 0.0229 0.0219
Living room 27.239 25.586 30.025 32294 33.245 33.725 Living room 0.0435 0.0526 0.0316 0.0227 0.0219 0.0206
San Miguel 18.736 20.172 20.969 23.650 24.268 24.771 San Miguel 0.1160 0.0982 0.0895 0.0644 0.0614 0.0578
Sponza 24.401 24.698 31111 33.188 33.561 35.643 Sponza 0.0661 0.0591 0.0282 0.0207 0.0214 0.0168
Sponza (glossy) 20917 23.460 25.005 29.548 28.686 31.089 Sponza (glossy) 0.0900 0.0671 0.0564 0.0318 0.0370 0.0280
Sponza (mov. light) 17.260 22.296 17.377 24.818 25323 30.525 Sponza (mov. light) 0.1418 0.0773 0.1450 0.0572 0.0553 0.0299
Average 22.264 23.920 25.575 29.170 29.652 31.495 Average 0.0856 0.0662 0.0644 0.0372 0.0366 0.0292

TABLE 2. SSIM comparison for the BMFR dataset.

Scene SVGF[16] ONND[5] BMFR[17] NBGD[2] WSKPN [8] Proposed method
Classroom 0.952 0.924 0.955 0.968 0.977 0.97:
Living room 0.950 0.953 0.965 0.968 0.975 0.978
San Miguel 0.790 0.744 0.789 0.820 0.849 0.868
Sponza 0.927 0.852 0.948 0.973 0.980 0.986
Sponza (glossy) 0.913 0.867 0.907 0.941 0.943 0.963
Sponza (mov. light) 0.876 0.811 0.858 0.946 0.955 0.970
Average 0.901 0.858 0.904 0.936 0.946 0.957

The proposed denoiser was implemented in PyTorch [27],
and its run-time was measured on Nvidia RTX 2080Ti.
In the training phase, input data was randomly cropped into
128 x 128, and random horizontal and vertical flipping were
applied for data augmentation. Also, in order to increase
robustness for color distortion, bright distortion with [0.8,
1.2] range was applied to each rendered image. The network
was trained for 300 epochs using Adam optimizer [28].
The batch size and learning rate were set to 16 and 0.001,
respectively.

C. EVALUATION METRICS

We adopt Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity (SSIM) [29], Root Mean Square Error (RMSE)
and Symmetric Mean Absolute Percentage Error (SMAPE)
as metrics to evaluate denoising performance.

First, PSNR is defined by Eq. 6, where MSE is the mean
squared error between o' multiplied by the albedo of the
proposed denoiser and the reference image ¢, and R indicates
the maximum pixel value. The higher the PSNR, the more
similar it is to the reference image.

R2
/

PSNR(0', ) = 101log MSE@. 1) (6)

SSIM is defined by Eq. 7, where w,, U, 0y, 0%,

and o,, stand for local means, standard deviations, and

cross-covariance for images o’ and ¢. And C; and C; are

constants defined by the dynamic range value, and for further

details, please refer to [29]. The closer the SSIM is to 1, the
more similar it is to the reference image.

2,y C1)Ro,, C
SSIM(O’,I) _ (2Mo ,ut2+ 1( G;)t;‘ 2)
(ﬂ(,/ +up + C])(GO,(T, + ()
RMSE indicates the square root of MSE, and SMAPE is

defined by Eq. 5. The smaller RMSE and SMAPE are, the
more similar they are to the reference image.

(N

D. ANALYSIS AND COMPARISON RESULTS

This subsection describes the benchmarked techniques, and
quantitatively compares our denoiser with the conventional
techniques on the BMFR and Tungsten datasets.
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TABLE 4. SMAPE comparison for the BMFR dataset.

Scene SVGF[16] ONND[5] BMFR[17] NBGD[2] WSKPN [8] Proposed method
Classroom 0.0405 0.0528 0.0261 0.0206 0.0190
Living room 0.0220 0.0418 0.0182 0.0140 0.0137 0.0136
San Miguel 0.1278 0.1425 0.1160 0.0982 0.1129 0.0905
Sponza 0.0530 0.0715 0.0314 0.0190 0.0210 0.0163
Sponza (glossy) 0.0759 0.0966 0.0730 0.0442 0.0488 0.0386
Sponza (mov. light) 0.1408 0.0882 0.1492 0.0593 0.0553 0.0343
Average 0.0767 0.0822 0.0690 0.0426 0.0456 0.0355

For the BMFR dataset of a real-time denoising purpose,
we compare the following real-time denoising algorithms
with the proposed method: ONND [5], SVGF [16],
BMFR [17], 2-layer 3-grid NBGD [2], and 3-layer
WSKPN [8].

Then, for the Tungsten dataset of the offline denoising
purpose, we designed large models such as 7-layer 3-grid
NBGD (NBGD-7) and MR denoiser of WSKPN
(WSKPN-MR). Also, since TA images are not used here,
we perform filtering and fusion by down-sampling 64 spp to
three scales. Refer to the Appendix. VII-A for our large model
structure. We compare the proposed method with ONND [5],
5-layer MR-KP [9], NBGD-7, and WSKPN-MR.

To make the comparison as fair as possible, we reused the
results shared by Meng et al. [2], where the codes provided
by the authors were used for experiments. WSKPN was
trained on the BMFR dataset by using the official code
released by Fan et al. [8] and we provided the results.

First, let’s look at the real-time denoising performance,
which is the main target of this paper. Tables 1, 2, 3 and 4
are PSNR, SSIM, RMSE and SMAPE results for the BMFR
dataset, respectively. The proposed denoiser shows 1.843dB
higher PSNR, 0.011 higher SSIM, 0.074 lower RMSE and
0.010 lower SMAPE than WSKPN, i.e., SOTA algorithm.

Especially, for the Sponza moving-light scene, our PSNR
was improved by as much as 5.202dB beyond SOTA. In the
Sponza moving-light scene, the camera is fixed and only
the light source changes, so the performance degradation
caused by TA is most prominent there. For this scene, while
other techniques show very low restoration performance, the
proposed method provides significant performance improve-
ment because it fully utilizes current pixel information from
Ispp images. As a result, the disadvantages of using
only TA-1spp can be overcome through the fusion of 1 spp
and TA-1spp images.

The following are quantitative results for Tungsten. Like
the previous studies, we choose 5 scenes, i.e., Bedroom,
Classroom, Dining-room, Kitchen, and White room, among
8 scenes, and then provide the results only for the five scenes.
Tables 5, 6, 7 and 8 show that the proposed method shows
comparable performance to other methods for the five scenes.
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TABLE 5. PSNR comparison for the Tungsten dataset.

Scene ONND [5] MR-KP[9] NBGD-7[2] WSKPN-MR [8] Proposed method (large)
Bedroom 34.438 36.738 35.983 36.340 36.566
Dining room 37.953 36.879 37.309 38.030 38.676
Kitchen 34.797 35.734 35.531 35.880 36.021
Classroom 32.874 32.535 32.119 32.820 33.298
‘White room 36.597 37.512 38.081 38.530 38.675

TABLE 6. SSIM comparison for the Tungsten dataset.

Scene ONND [5] MR-KP[9] NBGD-7[2] WSKPN-MR [8] Proposed method (large)
Bedroom 0.971 0.977 0.974 0.977 0.976
Dining room 0.970 0.981 0.979 0.981 0.983
Kitchen 0.973 0.974 0.974 0.976 0.978
Classroom 0.949 0.945 0.942 0.949 0.951
White room 0.973 0.977 0.977 0.979 0.979

TABLE 7. RMSE comparison for the Tungsten dataset.

Scene ONND [5] MR-KP[9] NBGD-7([2] WSKPN-MR [8] Proposed method (large)
Bedroom 0.0190 0.0157 0.0159 0.0154 0.0149
Classroom 0.0227 0.0230 0.0248 0.0234 0.0216
Dining-room 0.0128 0.0133 0.0137 0.0131 0.0117
Kitchen 0.0183 0.0159 0.0168 0.0167 0.0159
White room 0.0149 0.0129 0.0125 0.0122 0.1168

TABLE 8. SMAPE comparison for the Tungsten dataset.

Scene ONND [5] MR-KP[9] NBGD-7([2] WSKPN-MR [8] Proposed method (large)
Bedroom 0.0194 0.0146 0.0158 0.0150 0.0146
Classroom 0.0321 0.0280 0.0299 0.0284 0.0265
Dining-room 0.0467 0.0294 0.0268 0.0274 0.0234
Kitchen 0.0257 0.0202 0.0223 0.0214 0.0195
White room 0.0149 0.0116 0.0124 0.0117 0.111

This demonstrates the generalization ability of our denoiser
even for high spp input.

Table 9 shows the analysis of run-time. Here, run-time
means the time from video input to result output, and
each value in the table is an average of run-time per
frame of all scenes. With SOTA performance, the proposed
model guarantees real-time performance by achieving a
whopping 239 FPS at HD resolution. Even though the
proposed method has a run-time similar to SVGF [16],
it shows a higher PSNR by 9.231dB. Also, note that ours
shows better performance with only 71% and 39% lower
run-times than NBGD and WSKPN, respectively. On the
other hand, even in the model for the Tungsten dataset, our
run-time is 63% less than that of WSKPN-MR, i.e., SOTA in
this dataset.

Finally, we analyze the time required for each module of
our denoiser (see Table 10). Note that this paper aims at real-
time denoising. So, we designed a kernel prediction module
that takes only 1.46 ms using a light-weight autoencoder.
Then, after unfolding the input image, we presented a filtering
step in the form of simply multiplying the predicted kernel
map and summing it in the channel direction. We also utilized
Vogels et al. [9]’s scale-compositor, which can quickly and
effectively fuse two filtered images, namely filtered 1spp and
TA-1spp. As aresult, the time required for filtering and fusion
was only 1.64 ms. In the end, residual noise removal and fine
details enhancement were achieved with an additional time of
0.89 ms through a small residual-based refinement module.

In summary, the proposed method shows comparable or
higher denoising performance than existing methods with
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significantly lower run-time. In other words, the proposed
method breaks through the performance-cost trade-off.

E. QUALITATIVE RESULTS

Figure 3 illustrates the results for the BMFR dataset. First,
examining the results of the Classroom and Living room,
we can observe that our denoiser successfully restores
the structural features compared to other denoisers, while
also achieving a smoother and more natural restoration of
shadows. Looking at the early frames (e.g., 6th frame) of San
Miguel, the proposed method has a much better denoising
performance than other methods. Specifically, in the first row,
NBGD and WSKPN do not properly remove the noise of
early frames that have not been temporally accumulated yet.
And, in SVGF, ONND and BMFR, the chair shape and the
water bottle appear blurred. In the second row, NBGD and
WSKPN still do not completely remove noise, and SVGF
handles the bottom area regardless of the reference image.
Also, ONND and BMFR look blurry overall, and they do not
properly restore shadows. Observing the first row of Sponza,
our denoiser preserves edges with greater clarity compared
to NBGD and WSKPN. On the contrary, SVGF, ONND, and
BMFR exhibit an overall blur, resulting in indistinct edges
and inadequate texture restoration. Turning to the second row,
our denoiser best retains the wrinkles in the fabric and the
details of the patterns. In the case of the first row of Sponza
glossy, SVGF, ONND, and BMFR introduce color distortion
to the glossy regions. NBGD falls short in achieving sufficient
denoising, while WSKPN exhibits inadequate softness at the
boundary between glossy and non-glossy areas. Conversely,
our denoiser effectively restores glossy areas with softness
and without color distortion. Furthermore, it’s worth noting
the resemblance between the second row of Sponza glossy
and the second row of Sponza. In essence, our denoiser
accurately restores the detail of the wrinkles, showing a
similarity to the reference. Finally, in the first row of the
Sponza moving-light, our denoiser represents the light most
closely to the reference. Since NBGD and WSKPN use

TABLE 9. Run-time comparison at HD resolution.

Method Run-time (ms) Device
R SVGF [16] 4.40 Nvidia Titan X
£ BMEFR [17] 1.60 Nvidia RTX 2080
b NBGD [2] 16.46/13.97  Nvidia RTX 2080 /2080 Ti
E WSKPN [8] 6.58 Nvidia RTX 2080 Ti
Proposed method 3.99 Nvidia RTX 2080 Ti
ONND [5] 55.00 Nvidia Titan X
2 MR-KP [9] 39.53 Nvidia RTX 2080
= NBGD-7 [2] 84.99/50.28  Nvidia RTX 2080 /2080 Ti
o WSKPN-MR [8] 22.70 Nvidia RTX 2080 Ti
Proposed method (large) 8.34 Nvidia RTX 2080 Ti

TABLE 10. Run-time analysis of proposed denoiser at HD resolution.

Module Run-time (ms) Device
Proposed Kerr'lel Predictiqn 1.46 o ]
Filtering and Fusion 1.64 Nvidia RTX 2080 Ti
method >
Refinement 0.89
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FIGURE 3. Qualitative results on the BMFR dataset. Here, ‘Ref! indicate the reference image.

only TA-1spp images, they do not respond well to rapidly
changing pixels. In the second row, all techniques except
BMFR and ours do not properly restore the wrinkles of the
fabric. Although BMFR restores the wrinkles to some extent,
it does not properly restore the shadows and light behind the
fabric.

Figure 4 illustrates the results for the Tungsten dataset.
Beginning with the Bedroom scene, our denoiser excels at
restoring the shape of transparent objects compared to the
others. Furthermore, in the first row of the Dining room
scene, the proposed method effectively removes white noise

VOLUME 12, 2024

without introducing artifacts, surpassing the performance of
the other denoisers. Moving on to the second row of the
Dining room and the first row of the Kitchen, our denoiser
distinctly restores structural features with remarkable clarity.
Lastly, focusing on the second row of the Kitchen scene, our
denoiser successfully restores the details of the microwave
without any noticeable lumpiness

Thus, we claim that our denoiser succeeds in improving
performance from the early frames and is also robust against
rapid pixel changes because it utilizes both 1spp and TA-1spp
together. Furthermore, the results on the Tungsten dataset
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Dining room Bedroom

Kitchen

Classroom

White room

FIGURE 4. Qualitative results on the Tungsten dataset.

demonstrate that our denoiser effectively handles high spp
input.

V. ABLATION STUDY

This ablation study is to verify the effect of the key module of
our denoiser, i.e., the fusion and refinement. This experiment
is conducted only on the BMFR dataset, which is the main
target of this paper.

A. FUSION
The first experiment is designed to verify the fusion effect of
two rendered images with different effective spp, that is, 1spp
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Proposed
method

TABLE 11. Effects of fusion and refinement on the BMFR dataset.

Scene PSNR. . .
Ispponly TA-Tspponly Fusiononly  Fusion w/refine
Classroom 30.641 32275 33.153 33.216
Living room 30.589 32.982 33414 33.725
San Miguel 22.436 24.360 24.723 24.771
Sponza 33.840 33.668 35.580 35.643
Sponza (glossy) 27.548 30.153 30.819 31.089
Sponza (mov. light) 29.560 25.231 30.062 30.525
Average 29.102 29.778 31.292 31.495

and TA-1spp. Here, the proposed method is compared with
the case of using only one rendered image. The first, second,
and third columns of Table 11 and Figure 5 show quantitative
and qualitative results.
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FIGURE 6. PSNR change over time for the living room scene.

Since most BMFR scenes have only smooth camera motion
without light source change, using only TA-1spp images with
high effective spp shows 0.676dB higher PSNR than using
only 1spp images. On the other hand, in the case of Sponza
moving-light scene where the light source changes rapidly,
using only 1spp that utilizes pixel information of the current
frame provides better performance. From the experimental
result that the proposed fusion provides SOTA performance in
all scenes, it is proved that the proposed method successfully
takes the advantages of 1spp and TA-1spp.

To further analyze this trend, Figure 6 shows the restora-
tion performance for Living room scene on a time axis.
As described above, 1spp shows good performance in the
early frames, and TA-1spp is better in the latter frames when
TA is sufficiently progressed. Note that the proposed method,
i.e., ‘Fusion w/ refine’, which has the advantage of both
rendered images, always shows the best performance.
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B. REFINEMENT

Table 11 show that ‘Fusion w/ refine’ raises the PSNR
by 0.203dB from ‘Fusion only’. At this time, the run-time
increased by about 17%. As a result, the proposed refine-
ment module improves performance with low capacity.
Consequently, each component of the proposed approach
plays a role in effectively reducing the noise in Monte
Carlo rendered images in accordance with our objectives.
Additional qualitative results can be found in the third and
fourth columns of Figure 5.

V1. DISCUSSION

This paper presents a software solution to mitigate the
phenomenon that the displayed image is perceived as darker
than the source image due to our human visual system when
viewing the displayed image in an ambient light environment.
However, various distortions (e.g., noise) other than ambient
lighting issue can occur. Unfortunately, until now, we have
not been able to find a model that simulates those distortions.
If such a degradation model is available in the future,
a method for improving image quality adaptive to various
distortions can be devised.

Next, the degradation model we used here considers the
brightness (lux) of ambient light and the display specification
to simulate how the displayed image can be perceived at a
specific lux. Accordingly, we designed a model with only the
lux of the ambient light as a parameter, and used a lighting box
for experiments according to lux. That is, only artificial light
sources are considered in this paper. Therefore, the proposed
method has limitations in handling various cases (e.g., non-
uniform lighting, backlit scenarios, etc) that can occur in
natural light sources.
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FIGURE 7. Details of each module of the proposed denoiser (large).

Since the variability between natural light source and
artificial light source definitely exists, research on this will
be needed in the future.

VIl. CONCLUSION
This paper proposes a denoiser to obtain high-quality Monte
Carlo path traced images in real time. We observed the pros
and cons of each of the 1spp image and the TA-1spp image,
and devised a novel fusion and refinement framework that
could combine only the strengths of the two images. First,
kernel maps for filtering 1spp image and TA-1spp image are
estimated through multi-scale kernel prediction based on a
light-weight autoencoder. Then, the two separately filtered
images are fused. At this time, the fusion weight is adaptively
calculated depending on the input data. Finally, the residual
learning-based refinement module provides better model
flexibility than using only kernel prediction, and successfully
refines the fused images. Extensive experiments prove that
our denoiser not only shows better restoration performance
at 39% faster than the conventional real-time technique, but
also has good generalization performance even for high spp.
Nevertheless, the proposed method also has some lim-
itations. First, in scenes with high temporal consistency
(e.g., Living room), our denoiser encountered an issue where
features from unnecessary 1spp were incorporated, leading
to a degradation of temporal stability. Consequently, a trade-
off between the swift restoration of reference image pixels
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without color distortion and maintaining temporal stability
will require further discussion Second, the proposed method
basically requires TA images, so the additional cost for
obtaining TA images is unavoidable. Third, the performance
of the proposed method may be affected by the TA technique
adopted. To overcome these limitations, we need to develop
a new TA that can be used within our denoising pipeline or a

temporal filter for better temporal stability. This will be our
future works.

APPENDIX

A. NETWORK ARCHITECTURE FOR TUNGSTEN DATASET
This section describes the large architecture of the proposed
denoiser, which is represented in Fig. 7. The proposed
denoiser (large) predict 3 scales of 5 x 5 kernel maps, i.e.,
K', K2, K3. Next, each kernel is applied to the original and
down-scaled 64spp images, and filtered images are fused
progressively. Finally, large refinement modules are applied
to remove residual noise and improve fine details.
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