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ABSTRACT Conventional strategies are not effective in addressing the complex protection challenges in
medium-voltage DC distribution networks (MVDCDN). The main challenge in MVDCDN is the high-rising
DC fault current, requiring a robust and fast protection strategy. This paper proposes the use of an Extended
Kalman filter (EKF) to detect various types of DC faults using only the current signal in the MVDCDN.
In the first stage, current signals from the positive and negative poles corresponding bus are obtained.
The EKF is then applied to the measured DC-current signals to generate two fault detection indices. The
first index is the cumulative residuals (CR), calculated using the EKF iterative differencing process with
updated current estimated state and noisy measurement. The second index is the modified DC version of
total harmonic distortion, known as DC distortion factor (DCDF). The fault classification/zone identification
(FCZI) unit is activated if changes in CR and DCDF are detected within the observation window of the
relay. In the second stage, the FCZI unit calculates the Extended Kalman filter-based predicted energy
(EKFBPE) for the faulty DC line section at both ends. The polarity of EKFBPE is used for fault classification
and localization decisions. The proposed protection strategy requires low-band wireless communication
capability in the smart grid. Extensive simulations using MATLAB ®Simulink 2022b are conducted on
a ±2.5 kV MVDCDN with three feeders, considering various fault scenarios. The results demonstrate that
the proposed scheme achieves 99.9% accuracy, under radial, looped, and meshed topology and is highly
resilient to different types of faults with time of operation 1 msec. The scalability of proposed method and
its effectiveness in handling higher voltage levels and associated fault uncertainty will investigate in future
research.

INDEX TERMS Fault detection, fault zone identification, DC distribution networks, DC microgrids,
extended Kalman filters.

I. INTRODUCTION
A. MOTIVATION AND PROBLEM STATEMENT
The incorporation of renewable energy sources into DC dis-
tribution networks represents an innovative development in
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modern power systems [1]. This integration intends to facil-
itate the shift to more sustainable and efficient electricity
distribution with the help of solar or wind power. MVDCDNs
have various benefits over conventional AC distribution net-
works [2]. However, the MVDCDN faces a number of issues
in terms of protection and control [3]. More specifically,
when a fault arises in an MVDCDN, the high fault current
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rush to the fault’s location may cause considerable hazards
to network components, which could lead to damage or the
entire system loss if not addressed swiftly [4]. Furthermore,
diagnosing a negative pole-to-ground (NP-G) fault in an
MVDCDNmight be difficult because to low fault current and
the absence of zero crossing [5]. As a result, a rapid protection
approach is required to identify and mitigate the impact of
faults in MVDCDN [6]. To avoid equipment damage and
maintain network dependability, the protection scheme must
respond to problems in milliseconds [7].

B. LITERATURE REVIEW
The existing literature review includes numerous protec-
tion methods for DC distribution networks. A quick DC
microgrid fault diagnosis technique was suggested in [8],
involving mathematical modeling and multi-objective opti-
mization for fault identification/localization, while fault
location is calculated by means of a genetic algorithm.
Likewise, the authors in [9] offered a high-speed protec-
tion method employing mathematical morphology (MM).
Which process energy signals from voltage and current mea-
surements in a DC distribution line to speedily detect and
classify faults based on polarity changes. Similarly, a local
current-based fast HIF detection scheme for DC microgrid
clusters using the MM was proposed in [10], employing two
MM-based components: erosion filtering and regional max-
ima, providing reliable, cost-effective fault detection without
communication channels. The authors in [11] presented a
new scheme centered on fault-propagating traveling waves
(TWs) to identify, categorize, and localize diverse DC fault
types within MVDC distribution network. Other authors
in [12] presented a new TW-based protection for hybrid DC
transmission networks by analyzing TW propagation in the
system. Reference [13] introduced a fault detection method
for DC microgrids with electric vehicles and energy storage,
combining dynamic mode decomposition and instantaneous
frequency calculation using voltage and current signals to
minimize transient effects. Similarly, authors in [14] sug-
gested a fault detection technique for DCmicrogrids, merging
dynamic mode decomposition and instantaneous frequency
calculation from voltage and current signals to reduce tran-
sient impacts. Reference [15] presented a fault detection
technique based on Teager energy on DC current signal at
line ends. Moreover, the least square algorithm was used
for fault location estimation by distinguishing internal and
external faults in a simulated DC microgrid. A centralized
distance protection unit with a two-stage relay process for
fault detection and location was proposed in [16], utilizing the
LoRaWANprotocol for relay communication. Reference [17]
presented a local current-based algorithm for fault detection
in a DC microgrid, using polarity and a central controller
for backup operations during communication failure. A novel
protection method for DC microgrids was presented in [18]
based on Shannon entropy to evaluate current waveform
information. The proposed method detected faults accurately
despite noise and communication delays.

Some intelligent methods were also reported in previous
work [19], [20]. Reference [21] introduced a fast-tripping
protection scheme for DC microgrids, employing TWs and
discrete wavelet transform (DWT) to detect high-frequency
components of fault currents. Furthermore, it utilized a
Support Vector Machine for fault type identification and
Gaussian Process regression for fault location estimation.
Reference [22] suggested a fault localization technique for
DC microgrids via a pseudo-data-driven algorithm utiliz-
ing an analytical approach and model-based neural network.
The [23] proposed an Online fault protection method for
low-voltage DC microgrids using a transfer learning-based
convolution neural network, achieving 99.78% accuracy in
fault detection. A fault detection technique for DC micro-
grids using Wavelet transform on branch current measure-
ments, employing Artificial Neural Networks was proposed
in [24]. Reference [25] proposed a fault detection scheme for
high-power loads in all-electric warships using wavelet trans-
form and machine learning. Also enabling the identification
of abnormal disturbances in load current profiles and validat-
ing the proposed scheme through real-time implementation
on a Texas Instruments DSP, focusing on fault detection with
potential for isolation once faults are diagnosed.

C. CONTRIBUTIONS
This research paper suggests the utilization of an Extended
Kalman filter to detect different types of DC faults in the
MVDCDN solely based on the current signal. The first step
involves acquiring the current signals from the positive and
negative poles associated with the bus. These signals are then
subjected to the EKF, which generates two fault detection
indices. The first index, known as CR, is calculated using
the iterative differencing process of the EKF with updated
current estimates and noisy measurements. The second index
is a modified DC version of total harmonic distortion called
DCDF. The FCZI unit is activated when changes in CR and
DCDF are detected within the observation window of the
relay. In the second stage, the FCZI unit computes the EKF-
BPE for the faulty DC line section at both ends. The polarity
of EKFBPE is used to make decisions regarding fault classifi-
cation and localization. Extensive simulations are conducted
using MATLAB® Simulink 2022b on a ±2.5 kVMVDCDN
with three feeders, considering various fault scenarios. The
results indicate that the proposed scheme achieves a 99.9%
accuracy rate with fast operation under radial, looped, and
meshed topology and demonstrates high resilience against
different fault types. Some remarkable value additions are as
follows.
1. First-time novel utilization of EKF in MVDCDN for

fault detection, classification, and localization in the time
domain.

2. Only the current signal is utilized to generate novel CR,
DCDF and EKFBPE indices. These indices are indepen-
dent of fault type, and location.

3. The suggested protection strategy has the capability to
identify high-resistance faults up to 50 ohms.
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D. MANUSCRIPT ARRANGEMENT
The manuscript is further arranged in the following sections:
Section II provides a detailed description of the utilized
radial MVDCDN testbed. Basic mathematical modeling of
the proposed scheme is mentioned in section III. Section IV
elaborates the adapted methodology of the proposed scheme.
Extensive results cases are illustrated in section V. Finally,
the paper is concluded in section VI.

II. THE MVDCDN TEST-BED
The MVDCDN testbed utilized for fault analysis in the pro-
posed technique is designed on MATLAB/Simulink 2022b.
The single-line diagram of the MVDCDN is shown in
FIGURE 1. Furthermore, four feeders; feeder-A, feeder-B,
feeder-C, and feeder-D are connected to the main bus B0. The
testbed comprises a total of eight buses B0 to B8. An IGBT-
based three-level voltage source converter (VSC) is applied
to connect the MVDCDN with the main AC grid at bus B0.
At feeder-C and feeder-D, two photovoltaic (PV) distributed
generation units of 2 MW each are linked through a DC/DC
boost converter. The system operates at a voltage level of
±2.5 kV regulated by the VSC. The MVDCDN had two
switches; switch-1 and switch-2 to obtain looped and meshed
topological structure. Three DC loads are linked to buses B1,
B2, and B8 via DC/DC buck converters, while two AC loads
are connected at B5 and B6 utilizing an inverter. The DC
line is represented by an RLmodel, disregarding capacitance.
The DC line parameters include a resistance of 0.0273 �/km
and an inductance of 0.0009337 �/km, with each section
of the customized span. For fault detection, location, and
classification, the designed relays are positioned at both ends
of each DC line section.

III. BASIC MATHEMATICAL MODELING OF THE
PROPOSED TECHNIQUE
The proposed method utilized an EKF for the detection clas-
sification and localization of different faults in MVDCDN.
Therefore, this section mainly focused on the basic mathe-
matical model for the designed EKF-based scheme.

A. OVERVIEW OF DC-CURRENT CHARACTERISTICS IN
MVDCDN
Many research studies in the literature have focused on
analyzing short-circuit scenarios in medium-voltage DC
Distribution Networks. These studies align on the critical
necessity of isolating the faulty section precisely during the
capacitor discharging phase. This measure is vital to protect
costly diodes and maintain the overall integrity of the distri-
bution network. Moreover, the proposed protection scheme
is reliant on CR, DCDF, and EKFBPE signal processing.
Therefore, this section focuses on defining the basic current
signal model involved in the computation of CR, DCDF,
and EKFBPE. Eqs (1) and (2) provided below elucidate the
swift rise in fault current and the simultaneous decline in

voltage signal.

ik = e−ω1t Ik
/
W1L + sinωk (1)

And similarly,

vk = e−ω1tVkwk
/
w1Lline + sin (ωk + β) (2)

where, ik depicts the discrete value of current at k th sample,
while vk depicts the discrete value of the voltage at k th

sample. Measured DC voltage and current signals during
faulty conditions are presented in FIGURE 2.We know that
in the proposed protection method we utilized the current
signal only to extract the desired future for fault detection,
classification, and localization.

Therefore, if a fault occurs at any line section of the MVD-
CDN, the fault current can be calculated using the eq (1)
meanwhile this current contained some measurement noise
‘‘ℵ’’and the eq (1) is re-equated as follows.

ik = e−ω1t Ik
/
W1L + sinωk + ℵ (3)

B. BACKGROUND AND PRINCIPLES OF EKF
In the proposed method the EKF was engaged for fault
detection, phase identification and localization inMVDCDN.
By utilizing the measurements from theMVDCDN buses and
incorporating them into the filter’s estimation algorithm. The
step-by-step pseudo code of the EKF algorithm is mentioned
in TABLE 1. The EKF has the ability to handle nonlinear
systems and process measurements makes it a viable tool for
the fault detection in DC distribution networks. The Extended
Kalman Filter expands upon the traditional Kalman Filter to
handle nonlinear systems. It focuses on estimating the state of
a dynamic system during noisy measurements. This method
involves two primary steps:
1. prediction and
2. update.
Initially, it estimates the system’s state based on dynamics
and the previous state estimate, followed by refining, and
correcting this estimate using measurements. The EKF finds
application across diverse fields such as signal processing,
control systems, and navigation owing to its proficiency in
handling nonlinear systems and accurately estimating states,
even in the presence of uncertainties and noise. However, the
discrete nonlinear noisy state-space current can be modeled
as follows.

ŷ(k) = H
(
x(k)

) (
i(k)

)
= p(k) + a(k) + i(k) (4)

The measurement equation is depicted as.

x(k+1) = f(x(k)) + G(x(k))(u(k)) + wk (5)

These equations with some specialized initial states and
parameterization are utilized by EKF for processing mea-
sured DC current signals in a utilized medium-voltage DC
distribution network. Therefore, after the implementation of
EKF pseudo code on the input eq (3), the estimated current
obtained is as follow.

îk = Îk + e (6)
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FIGURE 1. The MVDCDN testbed for fault analysis of the proposed scheme.

FIGURE 2. Measured current/voltage signal.

where, the îk dipict the estimated current signal having Îk
magnitude,and random error e.FIGURE3 illustrates the esti-
mated current signature of EKF. Please note that this method
provides an approximation of the integral and assumes a
discrete representation of the continuous current signal over
time. The rationale behind the choice of the EKF for fault
detection in MVDCDN lies in its ability to effectively handle
nonlinear and time-varying dynamic systems, characteris-
tics often inherent in complex power distribution networks.
Unlike traditional Kalman filters [26] [27], the extended
version accommodates nonlinearities by linearizing system
dynamics around an estimate, making it suitable for modeling
the diverse behaviors of MVDCDN components under vary-
ing operating conditions and fault scenarios. Maintaining the
stability and dependability of theMVDCDN relies heavily on
the EKF’s real-time fault identification, a recursive estimating
technique critical for rapidly mitigating faults. In the pres-
ence of uncertainty, EKF’s ability to offer accurate estimates
and flexibility to dynamic situations make it an appealing
alternative in MVDCDN for fault detection. This eventually
improves system resilience and operating efficiency [28].

TABLE 1. Pseudo code of EKF.

C. FAULT DETECTION INDICES CALCULATION
Minimize downtime, maintain electrical network integrity,
and allow for quick fault responsewith fault detection indices,
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FIGURE 3. Comparision of the estimated and the measured current signal
using EKF.

key decision-making tools. The occurrence of a fault in any
DC line section of theMVDCDN causes transitory anomalies
in current and voltage signals. Detecting these transient pat-
terns reliably indicates the presence of a fault in any DC line
section. Two indexes are computed in the proposed scheme
for robust, reliable, and rapid responses to fault events.
i.) CR and,
ii.) DCDF
Both of these fault detection indexes are computed as follows:
i.) CR index calculations

The EKF predicts the expected measurement based on the
current state estimate and the measurement model from
eqs (4) (5), and (6):

îk (t) = H (x̂k , ∅k ) (7)

where îk (t) is the state estimate at time ‘‘t’’ represents any
parameters, andH (.) is the measurement model function. The
cumulative residual for the k th sample of measurement is
computed as the difference between the predicted and actual
measurements:

CRk (t) = îk (t) − ik (t) (8)

where is the ik (t) actual measurement at time ‘‘t’’. Moreover,
the detailed steps involved in the computation of CR are as
follows.

In first step, the residual covariancematrix Sk (t) represents
the uncertainty associated with the residual:

Sk (t) = Hk (t)PkHT
k + Rk (t) (9)

where the Hk (t) is the Jacobian matrix of the measurement
model at time ‘‘t’’. Pk is the error covariance matrix of the
state estimate at time ‘‘t’’. Rk (t) is the measurement noise
covariance matrix at time ‘‘t’’.

Then, the Kalman Gain KGk (t) determines the weight of
the residual in updating the state estimate:

KGk (t) = Pk (HT
k )(Sk (t))−1 (10)

In 2nd step, the state estimate x̂k is corrected using the residual
and Kalman Gain:

x̂k = x̂k + KGk (t) ∗ CRk (t) (11)

In 3rd step, update the error covariance matrix using the
Kalman Gain and residual:

Pk = (I − KGk (t)Hk )Pk (12)

where ‘‘I ‘‘is the identity matrix. These steps represent the
iterative process within the EKF, where the residuals are piv-
otal in refining the state estimate and improving the accuracy
of the filtering process. The equations are repeatedly applied
at each time step to update the state estimate based on new
measurements.

Ultimately, the cumulative residual used for fault detection
in the proposed technique is calculated and illustrated as
shown below.

CRk (t) = îk (t) − ik (t) (13)

ii.) DCDF index calculations
DCDF estimates the ratio or percentage of harmonic compo-
nents of a DC signal relative to its fundamental component.
It assesses distortion by examining higher-frequency com-
ponents that differ from the ideal pure DC waveform. The
DCDF formula is similar to the one used to calculate THD.

DCDFk (t) =

√
i2 (t) , i3(̂t) , i5 (t) . . . . . .

i1 (t)
× 100% (14)

The suggested protection technique identifies faults by mon-
itoring changes in the CR, DCDF, or both indices. When the
preset threshold value is exceeded, the scheme initiates the
fault categorization and localization steps.

D. EKFBPE CALCULATION
To ensure the reliability and efficiency of network operation
in the MVDCDN, the fault zone identification index plays
a crucial role. Our presented strategy applies EKFBPE as
the footing for fault classification and zone identification.
By employing an extended Kalman filter, the EKFBPE com-
putation examines the discrepancy between the anticipated
and real conditions of the system. This analysis enables the
algorithm to ascertain the degree of uncertainty or deviation
in the prediction of EKFBPE. The proposed EKF technique
utilizes the current signal to predict energy flow within the
MVDCDN.

At first, the algorithm takes a look at the incoming current
signal, which tells us about the power flow in the network.
The EKF adjusts its estimation of the current as it goes along,
taking into account both the dynamics of the system and any
errors in the measurements. Using this calculation, the EKF
makes predictions about how energy will flow in the MVD-
CDN in the future. As more data about the current signal
comes in, these predictions keep getting updated, giving us
a precise and up-to-the-minute estimate of energy flow.

In general, the EKFBPE algorithm functions as a reliable
and effective method for estimating and predicting energy
flow in the MVDCDN.

The calculation of EKFBPE involves integrating the cur-
rent signal over time using the EKF. Now, let’s delve into
the steps involved in a detailed examination of the EKFBPE
computation. In 1st step assume discrete time intervals ‘‘1t’’
for numerical integration.

EKFBPEk= Epridicted (t0) = 0 (15)
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For each time step ti (where i ranges from 0 to n) obtain the
current signal I (ti) at time ti. In the second step, calculate
the change in electrical energy during this interval using the
trapezoidal rule for numerical integration:

1Ek =
1
2

(I (ti − 1) + I (ti)) ∗ 1tk (16)

It computes the area of the trapezoidal transformed of the
current signal I (ti − 1) and I (ti) over the time interval ‘‘1t’’.
Next, in 3rd step, revise the predicted electrical energy by
incorporating the deviation in energy:

Epridicted (ti) = Epridicted (ti − 1) + 1tk (17)

Proceed to the next time step and repeat the process until the
final time point tn is reached. Finally, the predicted electrical
energy at the final time tn is the accumulated sum obtained
through the iterative process. The three-stage integration of
eq (17) at îk (t) results in the final mathematical relationship
index used for fault classification and localization.

EKFBPEk =

∫∫∫
îk (t) (ti − 1) 1tk (18)

The numerical integration approach, using the trapezoidal
rule, approximates the area under the curve of the current
signal over discrete time intervals to estimate the predicted
EKFBPE at each time step. Conclusively, the polarity of the
EKFBPE, whether it is positive or negative, is then utilized
for fault classification and localization decisions. This means
that depending on the polarity, the algorithm can determine
the type and location of the fault.

E. THRESHOLD CHOICE
The accuracy and effectiveness of any protection strategy
heavily hinge upon the selection of threshold values. Inad-
equate threshold settings can result in failure to detect faults
or may trigger operations during transient conditions. Con-
sequently, in the proposed EKF-based strategy, extensive
simulations under severe network conditions were conducted
across multiple case studies. Firstly, a threshold constant
value of 5 emerged as the optimal choice for current residuals,
ensuring optimal performance and reliability. Secondly, the
EKFBPE is opposite on both ends for Positive Pole to Ground
faults, and negative on both ends for negative Pole to Ground
faults, but for Pole-to-Pole faults EKFBPE is negative on one
end while zero on another end.

IV. METHODOLOGY STEPS OF THE PROPOSED SCHEME
This section provides a step-by-step methodology of the pro-
posed protection method. The outlined approach comprises
five sequential steps. The initial step involves the measured
current signal, while the second step is the initial processing
of current and also emphasizes the state estimation of these
signals using EKF. Subsequently, the Third step details the
procedure for calculating fault detection indices named CR,
DCDF. In the fourth step fault classification and localization
index EKFBPE is discussed in detail. Finally, the fifth step

elucidates the decision unit. A schematic diagram illustrating
the EKF-based strategy is presented to offer a visual repre-
sentation of the methodology in FIGURE 4.

A. MEASURMENT UNIT
Measurement for any relay unit is a fundamental aspect of
ensuring the reliable and correct tripping decision. Proposed
protection relays use current transformers (CTs) to mea-
sure electrical currents flowing through DC distribution lines
in the adapted MVDCDN. Initially, the DC current signal
measured from the respective faulty bus contains inherent
measurement noise and incidental errors. These current sig-
nals are analog by nature while the proposed algorithm needs
discreate data to process for accurate and precise decision.

B. INITIAL-PROCESSING UNIT
Then, two tasks are performed by this unit. Firstly, the
measured analog signals undergo conversion to digital for-
mat using a 12-bit analog-to-digital converter operating at
a sampling frequency of 3.6 kHz. Subsequently, the con-
verted current signal is subjected to processing through a
second-order low-pass Bessel filter with a cut-off frequency
of 1600 Hz. The primary aim of employing the Butterworth
filter is to mitigate aliasing effects in the signals. Secondly,
the discrete current signal obtained is fed into the Extended
Kalman Filter. The EKF undertakes two key tasks: (i). Fil-
tering out noise within the acquired current signal, whether
it’s measurement noise or arbitrary noise. (ii). Estimating the
features within the discrete current signal on a sample-by-
sample basis. The estimated discrete DC current signals are
then provided to the next stage for index generation.

C. FAULT DETECTION INDEX GENERATION UNIT
In any protection method, the fault detection unit is very
crucial for successful operation by avoiding false tripping and
blinding issues. In the proposed scheme the current signal is
used for generation of robust fault detection indexes. After
successful state estimation of the measured current signal,
fault detection indexes are generated. The CR is generated
through eq (13) by subtracting measured discrete current
from estimated/filtered EKF. The detailed step by step cal-
culation of EKF based CR is mentioned in eq (7) to (13).
These steps represent the iterative process within the EKF,
where the residual is pivotal in refining the state estimate
and improving the accuracy of the filtering process. The
equations are repeatedly applied at each time step to update
the state estimate based on new measurements to generate
CR. Secondly, another index namedDCDF is computed using
eq (14). It is just similar to conventional total harmonic
distortion. If the value of CR&DCDF is more than 5 constant
threshold value, it enables the fault classification and zone
identification unit.

D. FAULT CLASSIFICATION AND ZONE IDENTIFICATION
After there, when a fault is successfully detected then the fault
classification and zone identification unit start its operation
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FIGURE 4. Schematic diagram of the proposed protection scheme.

in two stages. In the 1st stage the polarity of EKFBPE is
identified. Then, in the 2nd stage the relays positioned at both
ends of a faulty pole register the polarities and communicate
with their corresponding relays. The EKFBPE for a PP-G
fault on any DC Line Section, relays on the corresponding
pole (either positive or negative) exhibit opposite polarities,
while those on the NP-G pole display negative polarities on
both ends. Conversely, in a pole-to-pole fault scenario on any
section similar polarities on both ends or no change in any
one end.

E. DECISION UNIT
Ultimately, once the determination is made regarding which
fault has occurred within the MVDCDN in which section,
this information is transmitted to the tripping circuitry. This
transmission prompts the tripping circuitry to take action,
specifically activating the relevant circuit breaker (CB) in the
section of the network affected by the fault. This deliberate
action aims to isolate and clear the fault, ensuring the overall
stability and safety of the MVDCDN.

V. SIMULATION RESULTS
This section focusses on the simulation results examining
of several DC fault situations that were simulated within
the MVDCDN test bed. The tested simulations of faults are
categorized into three types: positive pole to ground (PP-G),
negative pole to ground (NP-G), and pole to pole (P-P) under
radial, looped and meshed conditions. Moreover, No-fault
and transient conditions were also tested. Effect of resis-
tance and scheme effect on voltage is also examined. Hence,
through extensive simulation it is examined that proposed
scheme performed well.

A. POSITIVE POLE TO GROUND
A PP-G fault in an MVDCDN happens once the positive
conductor/pole of the DC line comes into contact with the
grounding. This failure scenario can cause serious prob-
lems inside the MVDCDN and requires immediate response
to guarantee system safety and stability. Therefore, several
PP-G faults were simulated in different test conditions to
validate the performance of the proposed method.
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Several PP-G faults results of different scenarios are men-
tioned in TABLE 2. However, due to space constraints and for
reader convenience, a singular case study is visualized here
as an example. A PP-G fault hit the DC line section 14 at
2o km away from relay 777 at a time instant of 0.1 ms. The
relay 777 reads the current measurements, CR, and DCDF as
depicted inFIGURE 5. It is shown that the CR andDCDF are
more than the predefined threshold level at the fault inception
time stamp. It illustrates that the corresponding PP-G fault is
successfully detected by the proposed method. Moreover, the
opposite polarity on both Relay 777 and Relay 888 indicates
that the PP-G fault occurred in DC line section 14.

B. NEGATIVE POLE TO GROUND
Anegative pole-to-ground fault in anMVDCDNoccurs when
the negative conductor or pole of the DC network comes into
contact with the grounding or earth reference. NP-G faults
are very challenging to detect because of low fault current
magnitude, and lack of zero crossing. Hence, multiple NP-G
faults were simulated across various test conditions to assess
and confirm the effectiveness of the proposed methodology
or approach.

Several NP-G faults results of different scenarios are men-
tioned in TABLE 2. However, due to space constraints and for
reader convenience, a singular case study is visualized here
as an example. An NP-G fault occurred at DC line section 18
5 km away from relay 515 at a time instant of 0.1 ms. The
relay 515 reads the current measurements, CR, and DCDF as
depicted in FIGURE 6. It is shown that the CR fails to detect
the corresponding fault while the DCDF is more than the
predefined threshold level at fault inception time. It illustrates
that the corresponding NP-G fault is successfully detected by
the dual index of the proposed method. Moreover, the similar
polarity on both Relay 515 and Relay 616 indicates that the
NP-G fault occurred in DC line section 18.

C. POLE TO POLE
Pole-to-pole faults in an MVDCDN occur when there’s a
direct short circuit between the positive and negative poles or
conductors of the DC network. Consequently, numerous sim-
ulations of pole-to-pole faults were conducted under diverse
test conditions to evaluate and validate the efficiency of the
proposed methodology.

Several P-P faults results of different scenarios are men-
tioned in TABLE 2. However, due to space limitations and for
the reader’s convenience, a single case study is presented here
as an illustrative example. A P-P fault hit the DC line section
15 at 10 km away from relay 999 at a time instant of 0.2 ms.
Relay 999 reads the current measurements, CR, and DCDF
as depicted in FIGURE 7. It is shown that the CR is more
than the predefined threshold level at the fault inception time
stamp. However, DCDF fails to detect P-P fault conditions.
Conclusively, it is illustrated that the corresponding P-P fault
is successfully detected by the proposed method because of
the novel dual index. Moreover, the polarity on Relay 999 is
negative while the polarity on Relay 000 is zero/ no change.

Hence, it indicates that the P-P fault occurred in DC line
section 15.

D. EFFECT OF FAULT RESISTANCE
The impact of fault resistance is crucial for designing effec-
tive protective schemes, ensuring system reliability, and
minimizing the potential risks associated with fault condi-
tions. Protective devices and system designs must account
for varying fault resistances to effectively detect and mit-
igate faults while maintaining the stability and safety of
the MVDCDN. Subsequently, various simulations involving
faults characterized by different resistance values were exe-
cuted across a range of test scenarios to assess and affirm the
effectiveness of the proposed methodology.

Several fault scenarios with different resistances are men-
tioned in TABLE 3. Conclusively, it is observed from detailed
fault analysis on different resistances, that more than a
50-ohm scheme fails to detect faults. As mentioned in
TABLE 3 the fault scenarios whose resistance is more than
50 ohm their fault detection and classification indices are
zero. However, in consideration of space constraints and to
ensure reader accessibility, a singular case study is visualized
here as an illustrative example. A P-P fault hit the DC line
section 11 at 13 km away from relay 111 at a time instant of
0.25 ms. CR and DCDF computed at Relay 111 are depicted
in FIGURE 8. It is shown that the CR and DCDF up to
the resistance value of 48 ohms is more than the predefined
threshold level at fault inception time stamp 0.25.

To validate the performance and robustness of proposed
method during high impedance faults. Therefore, we had
included a case study with the resistance 50 ohm. An NP-G
fault occurred at DC line section 11, 35 km away from
relay 111 at a time instant of 0.25 ms. The relay 111 reads
the current measurements, CR, and DCDF as depicted in
FIGURE 9. It is shown that the CR fails to detect the cor-
responding fault while the DCDF is more than the predefined
threshold level at fault inception time. It illustrates that the
corresponding NP-G fault at 50 ohms is successfully detected
by the dual index of the proposed method. Moreover, the
similar polarity on both Relay 111 and Relay 222 indicates
that the NP-G fault occurred in DC line section 11.

E. MESHED MVDCDN TOPOLOGY CASE STUDY
In this section, we present the results of case studies
conducted on looped and meshed medium voltage DC distri-
bution systems. These cases aim to assess the performance
and reliability of these systems under various topological
structures. Simulations on several such cases were performed
but due to space limitations and ease of readers understanding
only one such case is presented here.

A PP-G fault occurred at DC line section 16, 15 km away
from relay 121 at a time instant of 0.15 ms. Moreover, the
Switch-1 and switch-2 are closed to generate looped and
meshed topology. The relay 121 reads the current measure-
ments, CR, and DCDF as depicted in FIGURE 10. It is
shown that the during meshed topology both the CR and
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TABLE 2. Multiple DC faults at various conditions and locations in MVDCDN.

FIGURE 5. PP-G fault at 0.1 ms in DC line section 14. (a) current signature measured/estimated. (b) fault detection indexes CR &
DCDF. (c) EKFBPE polarity signature.

DCDF are more than the predefined threshold level at fault
inception time. It illustrates that the corresponding PP-G fault
is successfully detected by the dual index of the proposed
method during meshed and looped condition. Moreover, the
opposite polarity on both Relay 121 and Relay 212 indicates
that the PP-G fault occurred in DC line section 16.

F. NO FAULT/TRANSIENT CASE STUDY
In order to illustrate the concept of no-fault or transient cases,
several cases were simulated but due to space constraint a
singular case study is presented here.

An AC load switching on bus 5 occurs at 0.3 ms to gen-
erate a transient/ switching condition. The relay 444 reads
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FIGURE 6. NP-G fault at 0.3 ms in DC line section 18. (a) current signature mesured/estimated. (b) fault detection indexes CR &
DCDF. (c) EKFBPE polarity signature.

TABLE 3. Multiple DC faults at various resistances in the MVDCDN.

the current measurements, CR, and DCDF as depicted in
FIGURE 11. It is shown that during the transient/ switching
event both the CR and DCDF are less than the predefined
threshold level. It indicates that the proposed scheme does not
maloperation during no-fault transient/ switching condition
and successfully operate.

G. TIME OF ACTION AND SCHEME EFFECT ON VOLTAGE
CASES
In analyzing the impact of the protection scheme operation
on voltage stability, it is crucial to consider the time of
action of the scheme in response to various fault scenarios.
The effectiveness of the protection scheme in mitigating
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FIGURE 7. P-P fault at 0.2 ms in DC line section 15. (a) current signature measured/estimated. (b) fault detection indexes CR &
DCDF. (c) EKFBPE polarity signature.

FIGURE 8. Fault detection indexes CR & DCDF of fault resistance effect on proposed scheme case simulation at DC line
section 11.

voltage fluctuations depends on how quickly it detects and
responds to faults within the MVDCDN. Through compre-
hensive voltage analysis, the scheme’s performance can be
assessed, enabling improvements to be made to enhance

grid resilience and optimize operational efficiency. Several
cases are simulated but due to space constraint on such case
is presented here to depict the performance of proposed
scheme.
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FIGURE 9. NP-G fault at 0.25 ms in DC line section 11. (a) current signature mesured/estimated. (b) fault detection indexes
CR & DCDF. (c) EKFBPE polarity signature.

TABLE 4. Comparitive analysis of proposed scheme with excisting benchmark schemes.

A P-P fault occurred at DC line section 13, 45 km away
from relay 555 at a time instant of 0.25 ms. Moreover, the
Switch-1 is open, and the switch-2 is closed to generate

looped topology. Relay 555 reads the current measurements,
voltage measurements, as depicted in FIGURE 12. It is
shown that the fault is cleared swiftly by the proposed scheme
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FIGURE 10. PP-G fault at 0.15 ms in DC line section 16. (a) current signature mesured/estimated. (b) fault detection indexes CR & DCDF.
(c) EKFBPE polarity signature.

in less than 1 ms. The voltage sag appears during the fault
condition, but the voltage is restored after the successful
operation of Relay 555.

Hence, it’s proved that the scheme detects, classify, and
locate the faults successfully in less than 1 msec, additionally
4 cycle is needed by CB for tripping.

VI. COMPARATIVE ANALYSIS
In comparison to the existing benchmark schemes including
Mathematical morphology-based scheme [9], Pseudo-data-
driven-based scheme [22], ANN-based scheme [29], and
Entropy-based scheme [18]. It is shown in TABLE 4 that
the proposed scheme demonstrates significant improvements

in accuracy, computational burden, and operation time. The
accuracy of the proposed scheme outperforms the bench-
mark method through its advanced algorithms and enhanced
data processing techniques. Additionally, the computational
burden is significantly reduced in the proposed scheme due
to the implementation of efficient algorithms that optimize
resource utilization. This reduction in computational burden
not only improves system performance but also enhances
scalability for handling larger datasets. Moreover, the opera-
tion time is greatly reduced in the new scheme as it leverages
state-of-the-art technologies, allowing for faster data process-
ing and decision-making. Moreover, the proposed scheme
shows resilience to different kind of DC faults, during its
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FIGURE 11. Load switching event at 0.3 ms in DC line section 12. (a) current signature mesured/estimated. (b) fault detection
indexes CR & DCDF.

FIGURE 12. Time of action, and voltage stability anlysis.

operation in radial, looped and meshed network topology.
It’s the additional feature of the scheme that it deals with

noisy measurements. Overall, the proposed scheme sur-
passes the existing benchmark method in terms of accuracy,
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computational burden, and operation time, providing a more
efficient and effective solution for the intended application.

VII. CONCLUSION
This paper presented an innovative approach utilizing the
Extended Kalman filter to detect diverse DC faults exclu-
sively from current signals in theMVDCDN. Initially, current
signals from corresponding positive and negative poles were
processed by the EKF, generating cumulative residuals and
DC distortion factor as fault detection indices. Activation of
the fault classification/zone identification unit was triggered
by changes detected in CR and DCDF within the relay’s
observation window. Subsequently, the FCZI unit computed
Extended Kalman filter-based predicted energy for faulted
DC line sections, enabling fault classification and localiza-
tion. This protection strategy necessitated low-band wireless
communication within the smart grid. Through extensive
simulations on a ±2.5 kV MVDCDN with three feeders
utilizing MATLAB® Simulink 2022b, the proposed scheme
demonstrated 99.9% accuracy, swift operation under radial,
looped, and meshed topology, and robust resilience against
various fault types.
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