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ABSTRACT In this paper, we present an analog-mixed-signal 6T SRAM computing-in-memory (CIM)
macro. The macro uses dual-wordline 6T bitcells to reduce power consumption and write-disturb issues. The
macro also proposes an analog computation logic circuit for high precision, energy efficient charge-domain
computation. The bitcell structure combined with the analog computation logic circuit allows direct input of
signed activations and weights to the chip for full signed computation. The proposed macro consists of four
CIM blocks, each with four 32 x 8 compute blocks, a pulse generator, an analog computation logic circuit
and a SAR-ADC. Fabricated in a 55 nm process, our CIM macro test chip achieves an energy efficiency of
7.3 TOPS/W. A comprehensive computing test that encompasses the entire range of inputs and weights has
been conducted. The results show that the CIM macro test chip can achieve a precision of 79.51% in a 1-FE
error range of 71.88%. The target application of the proposed CIM macro is lightweight neural networks,
this is demonstrated by mapping a pre-trained network into the macro and achieving a recognition accuracy
of 92.28% on the CIFAR-10 dataset. The design surpasses existing designs in comprehensive consideration
of energy efficiency, technology and bit width.

INDEX TERMS Computing-in-memory, SRAM, dual-wordline, neural network, charge-domain, multiply-
and-accumulate.

I. INTRODUCTION

Over the last few years, SRAM-based CIM designs have
demonstrated their advantage in significantly improving
energy efficiency through reducing data movement, show-
ing potential application in deep learning (DL) based edge
computing devices [1], [2], [3], [4], [5], [6], [7], [8]. Recent
works show CIMs being implemented across a wide variety
of technologies and covering more novel application sce-
narios [9]. This indicates a transformation in the research
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direction of CIM, from solely pursuing energy efficiency to
pursuing a balance between performance and functionality.
Recent works [10], [11], [12], strengthen the relationship
between algorithm and CIM structure, thereby making CIM
designs more domain specific to enhance performance for
practical scenarios.

Analog-mixed-signal SRAM-based CIM designs have
unique advantages compared to other CIM categories, such
as high computation parallelism, significant shorter access
time, industrial maturity and relatively low energy cost
when performing signed bit and floating-point computing
operations [13]. However, analog-mixed-signal CIMs face
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FIGURE 1. Structure of proposed DW6T SRAM based CIM.

challenges including high ADC overhead and decreased pre-
cision caused by non-idealities. Apart from using design
techniques to overcome these problems, a meaningful topic
is to broaden the functions of analog-mixed-signal CIMs and
find suitable fields of application to leverage the advantages
of high computation speed without being affected by the
disadvantages of certain accuracy lost. Analog-mixed-signal
SRAM-based CIMs have become the preferred design for
simple image and speech recognition tasks when moderate
precision is required. The value of analog-mixed-signal inte-
grates sensing, storage and computing functions on a single
chip. In this situation, signals are sampled in the analog
domain [14] and computation speed is required to keep up
with the sensor sampling speed. Another field which shows
their advantage is sparse lightweight networks [15], [16],
a main category under neural networks. In contrast to digital
SRAM-based CIMs, which trade more area and computing
time for higher precision [17], [18], [19], [20], analog-mixed-
signal SRAM-based CIMs perform small kernel convolution
computations in a single cycle, significantly reducing compu-
tation time at the cost of minor recognition rate lost [21], [22],
[23]. The lightweight network’s high parallelism and energy
efficiency computing requirements when using small convo-
lution kernels, as well as its high tolerance for computational
accuracy, perfectly match the characteristics of analog in-
memory computing. However, application for analog-mixed-
signal SRAM-based CIM designs on lightweight networks
still need more research. The computing method and circuit
structure that can perform the most efficient computation in
the context of lightweight networks requires further discus-
sion. Additionally, how to meet the needs of specific applica-
tions, such as full signed multi-bit computation, also deserves
further research.

In this work, we introduce an analog-mixed-signal multi-
bit CIM based on a 4kb Dual-Wordline 6T SRAM (DW6T
SRAM) macro fabricated in 55 nm process. It supports full
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signed multi-bit computation for better recognition accuracy.
The overall structure is shown in Fig. 1. The CIM macro is
composed of four 1kb CIM blocks, with each CIM block
containing four 32 x 8 compute blocks to perform accumu-
lation of 16 multiplication results. The DW6T SRAM cells,
which are modified from compact 6T foundry bitcells with
no area increase, store the signed 4b weights for calculation.
Utilization of the dual-wordline structure reduces power con-
sumption and write-disturb issue [24] during the computation
process. The inputs for calculation are given in the timing
domain, produced by an on-chip simple and robust pulse
generator. The 3b input is indicated by the length of the
pulse and the symbol determines which wordline should be
activated. An analog computation logic circuit accumulates
the multiplication results on capacitors in the charge-domain,
which are subsequently sampled by a SAR-ADC to generate
signed 4b outputs. The CIM macro computes 128 multiply-
and-accumulate (MAC) operations in parallel, achieving a
total energy efficiency of 7.3 TOPS/W, using 16 signed
3b inputs and 64 signed 4b weights. The CIM macro is
tested using computation operations under various scenar-
ios for a direct result of the computation accuracy. Power
consumption and energy efficiency results are also obtained
in this process. Then a lightweight network is mapped onto
the macro to perform recognition tests using the CIFAR-
10 dataset. The analog-mixed-signal SRAM-based CIM
macro, featuring a full signed computation method, exceed-
ing energy efficiency and high precision, acts as a design
worthy of reference in similar sparse lightweight network
scenarios.

Il. COMPUTING-IN-MEMORY ARCHITECTURE AND
WORKING MECHANISM

A. COMPUTING-IN-MEMORY ARCHITECTURE

Fig. 2 presents the schematic and layout of the DW6T SRAM
cells. As shown, 2 bitcells store one signed bit, while a row
of 8 bitcells store a signed 4b weight. The SRAM bitcells are
modified from compact foundry bitcells, with a modification
that enables the transmission transistor to QB of the left bit-
cell to share the same wordline with the transmission transis-
tor to Q of the right bitcell, while the other two transmission
transistors share another wordline. Signed weight storage
can be achieved by utilizing convolutional SRAM write-in
method to store the values displayed in the first table in Fig. 2.
During the computation phase, a charge accumulation capac-
itor is shared by the two bitlines of a single SRAM bitcell for
the purpose of positive or negative result accumulation. The
activation of positive wordline (PWL) or negative wordline
(NWL) is determined by the input’s symbol, whereas the
charge current applied to the charge accumulation capacitor
will be determined by the value of Q or QB. Due to this
mechanism, two distinct storage methods can be used to store
the value ‘0’. Depending on the activated wordline and stored
weight, either the same amount of charge or no charge will
be accumulated on both the positive and negative capacitors
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FIGURE 2. DW6T SRAM schematic and layout. Table shows method for
storing signed bit in bitcells and the correspondence between storage
node and capacitor during computation process.
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FIGURE 3. Write margin comparison of conventional 6T SRAM and
dual-wordline 6T SRAM.

under both methods. Either way, they will neutralize when
positive and negative results accumulate.

Utilizing the dual-wordline 6T SRAM structure reduces
write-disturb issue during the computation process. We plot
the “butterfly curve” of the conventional 6T SRAM and
proposed dual-wordline 6T SRAM in Fig. 3 to compare
their write margins. As shown, the write margin of the
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dual-wordline 6T SRAM is smaller, reducing the likelihood
of cells getting overwritten during computation [25]. In dual-
wordline 6T SRAM, the flip voltage for ‘1’ to ‘0’ when
using 0.9 V and 1.2 V wordline voltage are 20 mV and
250 mV, respectively. In the analog computation logic circuit,
the discharge current generated by the bitcells is converted
into a charge current for the charge accumulation capacitors
through current mirrors. As a result, when activating 1-4 rows
simultaneously, the bitline voltages maintain at a stable level
far above the flip voltage from ‘1’ to ‘0’, solving the write-
disturb issue. Similarly, the state of the cell doesn’t flip from
‘0’ to ‘I’even when bitline voltage is 1.2 V.

B. FULL SIGNED MULTI-BIT COMPUTATION SCHEME

To accomplish the design objective of performing precise,
energy efficient full-signed multi-bit computation, our pro-
posed design is innovative in activation input method and
result accumulation method. Dual wordlines are used to dis-
tinguish the signed digit, while the pulse width varies to
signify the magnitude of activation. This activation input
method harnesses the benefits of both pulse width modulation
and multiple signal control to enhance accuracy. This makes
our method stand out from existing single measure method-
ologies such as: wordline pulse count or pulse width modula-
tion [4], [6], [18], analog input voltage on wordline [26], and
multiple input wordlines or signals [1], [27]. Our approach
for result accumulation also corresponds with our objective.
Charge sharing between charge accumulation capacitors real-
izes multi-bit computation and ““capacitor stacking” offers
fast speed power saving accumulation between positive and
negative results. This is different from [2] and [4] in that
they achieve multi-bit computation through charge averag-
ing, and from [28] and [29] in that they achieve multi-bit
computation through charge redistribution. The entire signed
multi-bit computation scheme is executed using the analog
computation logic circuit, and its workflow is divided into
four phases, controlled by signals CTRL1-CTRL4. The four
phases are introduced in detail below.

The first phase is the clear phase, and CTRL1 is activated.
The charge accumulation capacitors, namely the positive
capacitor (POS CAP) and the negative capacitor (NEG CAP)
are cleared to prepare for the new cycle of computing.

The computation phase, which is controlled by CTRL2,
is the second phase and is depicted in Fig. 4(a). As described
in the previous section, activation inputs are given row-wise,
in the form of a pulse. The length of the pulses corresponds
to the data, while the selection of PWL and NWL varies
depending on the symbol. The POS CAP and NEG CAP are
charged based on the amount drained by the weights using
a current mirror. The current mirror enhances the linearity
of analog compute results by stabilizing the voltage on the
bitlines throughout the computation phase. Modulating the
transistor size of the current mirrors allows for the retention
of small capacitor sizes, consequently reducing power con-
sumption. In practical application, four rows are activated
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FIGURE 4. Signed multi-bit computation scheme, showing the workflow
of the analog computation logic circuit. (a) Computation phase.

(b) Averaging process. (c) Mechanism of how the positive and negative
results accumulate. (d) ADC sampling process, the values on the positive
capacitors are averaged and sampled.

simultaneously to accumulate 4 multiplication results in a
computation unit. Charging of the capacitors finishes within
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FIGURE 5. Waveform of the signed multi-bit computation scheme. Signals
CTRL1-CTRL4 control the different phases of the scheme.

computation phase with CTRL?2 having the same duration as
the maximum input pulse.

The third phase is the averaging phase, where the posi-
tive and negative results of different digits are summed up
separately, shown in Fig. 4(b). Signal CTRL3 controls the
transistors for charge accumulation capacitor connection. The
charge accumulation capacitors of 8 adjacent columns which
form a 4b signed weight are geometric, with the biggest
capacitance being 8 times the size of the smallest. During the
averaging phase, bigger capacitance has a greater impact on
the final averaged voltage, reflecting digit difference.

The fourth phase is when the positive and negative results
accumulate, followed by ADC sampling, as illustrated in
Fig. 4(c) and Fig. 4(d). This is controlled by CTRL4. Dur-
ing POS-NEG accumulation, the connection between ground
and the bottom plates of POS CAP and NEG CAP is dis-
connected, whereas the connection between the two bottom
plates remains. In this way, the POS CAP is “stacked” on
top of NEG CAP. The voltage of NEG CAP top plate is then
pulled up by VFLUSH, and since the electrons of the node
connecting the two bottom plates are fixed, the voltage of
this node increases by an equal amount as the voltage of
NEG CAP top plate has been pulled up. Furthermore, due
to the equal capacitance of POS CAP and NEG CAP, the
voltage of POS CAP top plate (Vsyum[j]) increases the same
amount as VFLUSH has pulled up minus the difference of
the 2 capacitors, achieving the accumulation of positive and
negative results, as shown in (1).

Vsum [j]1 = VFLUSH + (Vpos — VNEG) (D

This POS-NEG accumulate process is only performed by the
analog computation logic circuit of the largest digit (with 8C;
POS CAP / NEG CAP) for faster accumulation and reduced
error caused by switches. Four of these results (Vsuyml[j]) are
then averaged for accumulation, and sent to a SAR-ADC
for ADC sampling which outputs 5b digital results. Due to
this distinct calculation method, bigger ADC output corre-
sponds to bigger positive calculation results, smaller ADC
output corresponds to bigger negative calculation results and
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TABLE 1. Impact of activating multiple wordlines on analog result
precision.

Wordlines Stored Bitline Voltage | Discharge Current
Activated Value (mV) (HA)
1 0 690 9.62
1 1 1200 0
2 0,0 638 18.6
2 0,1 693 9.58
2 1,1 1200 0
3 0,0,0 596 27.22
3 0,0,1 638 18.72
3 0,1,1 693 9.67
3 1,1,1 1200 0
4 0,0,0,0 565 35.26
4 0,0,0,1 598 27.09
4 0,0,1,1 638 18.61
4 0,1,1,1 694 9.67
4 1,1,1,1 1200 0

“2b’10000” represents the result of 0. The reference voltage
of the ADC is adjustable according to the maximum and min-
imum accumulated calculation results. For instance, when
the CIM macro is mapped as the last fully connected layer
and calculation results are relatively low, reference voltage
can be lowered for better distinction and enhance recognition
rate. Our CIM comprises four CIM blocks of the circuits
above, sharing the same inputs and different weights, a typical
scenario in CNN layers of deep learning networks. The wave-
form timing diagram for the full signed multi-bit computation
process is shown in Fig. 5 for overall examination. Changes of
voltage on the charge accumulation capacitors during differ-
ent phases are given as an example. During circuit design, the
size and position of the transistors and capacitors are adjusted
according to post-simulation results to reduce non-ideality
issues caused by parasitics.

Activation of multiple wordline has an impact on bitcell
storage stability and analog result precision. As analyzed in
Section II-A, the dual-wordline bitcell structure solves write-
disturb problems during computation. Table 1 lists the change
in bitline voltage and discharge current corresponding to the
difference in activated wordline number and stored value.
Results are acquired through simulation using a column of
32 bitcells under tt corner. Through calculation, the aver-
age integral nonlinearity (INL) of the discharge current is
0.05 least significant bit (LSB). Considering the small value,
the impact on precision is limited when only 4 rows are acti-
vated simultaneously, making it acceptable for applications
in targeted lightweight network scenarios.

Ill. STATISTIC ANALYSIS
Fig. 6 illustrates the setup of our test environment, using
our CIM macro for tests on accuracy, performance and
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recognition. The PC uses software tools Vivado and Vitis
to program the FPGA board, and it analyzes the calculation
results of the CIM macro. The FPGA is for data transfer
between the PC and the CIM macro and mode control of the
CIM macro. The CIM macro chip is packaged in the COB
matter on the test PCB board. A power management circuit
is also on the test PCB board to satisfy the different power
supply needs of the CIM macro, which includes digital power,
analog power, test circuit power, etc. The power analyzer
is used to acquire power efficiency results throughout the
performance test.

A. COMPUTATION ACCURACY AND PERFORMANCE TEST
The computation accuracy test analyzes the results of
500 computation operations under various computing sce-
narios, covering the entire computation range. Fiducial Error
(FE) is commonly used to express maximum errors coming
from limited instrument resolution or quantization during
analog-to-digital conversion [30].

AError Range

Fiducial E FE) = ———
iducial Error (FE) ADC Range

xX100% (2)
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By analyzing the value and probability of 1-FE, the influence
of the computation result error distribution on the final recog-
nition rate can be intuitively expressed. Using this method,
accuracy analyzation reveals that more than 25% of the
results have a 1-FE value of 100% (exactly correct), while
79.51% of the results have a 1-FE value of 71.88% (within
a £4 range of the theoretic result). Fig. 7 presents the result
error distribution and FE calculation method. Absolute error
is the difference between the output result by the CIM macro
chip and the ideal result of the weights and inputs imported.
Although the same ideal result can be produced by different
sets of inputs and weights, when setting digital ‘1’ as LSB, the
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TABLE 2. Area statistic comparison.

Thi
Bl | 081 | 02 | B4 | gy
.. .. Analo, Analo Analo
Type Digial | Digital | V08 | Vo | Mixed
Technology 28 28 65 28 55
(nm)
Bitcell Area ;o725 | 279 | 0257 | 105
(um?)
—
Function Area | ) 118 | 417000 | 1.6632 | 0.3234 | 0.0760
(mm?)
*Scaled
Function 9.1501 | 53422 | 1.2529 | 1.0162 | 0.0760
Area (mm?)
Scaled Function
Area Efficiency | 822 | 3744 | 7450 | 122.89 | 70.12
(GOPS/ mm?)
Die Area(mm?) 8.97 5.04 / / 2.02
Scaled Die
Assatmaty 28.19 | 15.84 / / 2.02
Scaled System
Area Efficiency 2.67 12.63 / / 2.64
(GOPS/ mm?)

aThe area of 2 bitcells are calculated; ®Function Area = Bitcell Area +
Additional CIM Circuits Area; “Area of 16 BSOCIMs; Statistics of 5 T-
PIM cores using 4bit inputs; °Scaled Area = Area x 1.8"logy(55% /
technology?) [31].

average INL of the digital output data can still be calculated
with the provided data in the distribution graph, which results
in 2.1 LSB, a satisfying result for digital-to-digital whole chip
INL [31]. The data provided in the accuracy analysis table
can also be used to simulate the performance of our CIM on
various neural networks and calculation algorithms. This is
done by adding a random offset during accumulation of each
16 multiplication results, with the probability and size of the
offset determined by referring to the accuracy analysis table.

B. CIFAR-10 RECOGNITION TEST

The CIM macro is tested in an application scenario using the
CIFAR-10 dataset. We use a pre-trained lightweight network
as presented in Fig. 8 for implementation. It consists of 2 con-
volutional layers, 3 ReLU layers, 1 flattening layer and 2 fully
connected layers with a total of 26.498K features. Limited
CIM macro size still remains as a common challenge in the
CIM field, so many CIM designs are tested by only mapping
1 or 2 layers [20], [32], [33]. Mapping entire networks into
CIM hardware still requires continuous research for the CIM
community. In this work, the last fully connected layer is
mapped onto the macro, while the other layers operate on
the PC and FPGA. The CIM macro calculates recognition
results and outputs them directly to the PC, where they can
be compared to the results computed by software. Through
testing, the CIM macro achieves a recognition accuracy of
92.28% using the CIFAR-10 dataset compared to baseline
accuracy of 93.23%.

C. AREA STATISTIC ANALYSIS
The chip micrograph of the CIM is shown in Fig. 9 left.
The die area of the chip is 2.02 mm?, with the CIM macro
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TABLE 3. Comparison to prior CIM macros.

JSSC22 [1] | JSSC’21 [2] JSSC20 [6] JSSC’22 [15] | JSSC’23[18] | ISSCC’23 [19] This Work
Technology (nm) 28 7 55 65 28 4 55
Cell Structure 6T SRAM 8T SRAM 6T SRAM 8T SRAM 8T SRAM 6T SRAM DW6T SRAM
Array Size 64kb 4kb 4kb 16kb 219kb 54kb 4kb
Input Bits 4 4 7 8 5 1 4 @3) 4 @&3)
Weight Bits 4 4 1 8 1 2 5 (+4) 5 (+4)
ADC Output Precision
(analog) 5 4 4 5 24b 24 5(4)
Full Output Precision (analog) (analog) (analog) (analog) (digital) (digital) (analog)
(d.igital) _
*Energy Efficiency @55nm 7.57 5.69 5.7 0.6 22.07 41.74 0.46 7.3
"FoM 121.1 91.0 39.9 38.4 110.4 83.5 29.5 146.0

Energy Efficiency scaled, assuming Energy<<(Technology) [4]; "FoM = Input Bits x Weight Bits x Energy Efficiency (scaled to 55nm); “24b has an 24b
storage, for storage under different computation conditions; ‘Each Nb x Nb is considered as 2 operations.

occupying 0.30975 mm? of that space. The macro’s function
area is 0.076012 mmz, which includes the bitcell area and
the area of additional CIM circuits. These additional CIM
circuits include ADC, capacitors, row circuitry, etc. Table 2
compares our CIM macro to those of works that employ sim-
ilar technologies, providing a more detailed analysis of area
statistics. According to comparison, our proposed CIM macro
has a small bitcell area, this is because it is modified from
foundry compact bitcells. Compared to other works, the area
efficiency of our work is moderate, showing decent trade-off
between area, function, energy efficiency and accuracy.

D. ENERGY EFFICIENCY TEST AND STATISTIC
COMPARISON

The power breakdown of the CIM is shown in Fig. 9 right.
In addition to the CIM macro, the chip contains test cir-
cuits and temporary storage SRAMs for testing convenience.
Tested power consumption is 726uW at 1.2 V main analog
power for CIM and 0.9 V wordline activation voltage. This is
an average power of the CIM macro working under different
computation scenarios with an average input sparsity of 70%.
The power breakdown shows that the SAR-ADC and analog
computation logic circuit consume about half of total power,
which is a common distribution in charge-domain analog-
mixed-signal SRAM based CIMs.

We compare this work with state-of-the-art SRAM CIM
macros in Table 3. The CIM macro we present achieves
7.3 TOPS/W under 1.2 V main power and 200 MHz clock
frequency, it reaches the highest figure of merit (FoM) value
of 146 when technology and input/weight precision is added
to consideration. Compared to [1], our CIM macro exceeds
similar bitwise CIMs, even with more complicated full signed
computation. Compared to [2], statistics show the advantages
of structure improvement compared to advanced technology
process. Compared to [17], [18], [19], and [20], the advan-
tage of analog-mixed-signal SRAM-based CIM designs over
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digital CIM designs when performing signed multi-bit com-
puting operations is revealed, even with a smaller input spar-
sity.

IV. CONCLUSION

This paper presents a dual-wordline 6T SRAM-based
analog-mixed-signal computing-in-memory macro designed
for energy efficient signed multi-bit computing in sparse
lightweight networks. Thanks to the DW6T bitcell structure
and exquisite computation scheme, the CIM macro outputs
precise results with low power and short time cycle. A test-
chip is fabricated using 55nm CMOS technology. It is tested
using comprehensive computing operations achieving a pre-
cision of 79.51% in a 1-FE error range of 71.88%, and an
energy efficiency of 7.3 TOPS/W at +4/43 weight/input
precision. The CIM macro is tested in an application sce-
nario by mapping a lightweight network into the macro and
preforming CIFAR-10 recognition task. Compared with other
state-of-the-art CIM macros, our proposed work reaches the
highest FoM value of 146 when comprehensively considering
energy efficiency, technology and input/weight bit width. The
CIM macro is a design with high energy efficiency and accu-
racy, making it worthy of reference for future analog-mixed-
signal SRAM-based CIMs aiming for sparse lightweight
network applications.
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