
Received 1 January 2024, accepted 12 February 2024, date of publication 23 February 2024, date of current version 13 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3369608

Creating and Developing a High-Throughput
Covert Channel via Program Execution
ABDULRAHMAN ALHELAL AND MOHAMMAD AL-KHATIB
Computer Science Department, Imam Mohammad Ibn Saud Islamic University, Riyadh 11652, Saudi Arabia

Corresponding author: Abdulrahman Alhelal (429000816@sm.imamu.edu.sa)

This work was supported by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University through the Graduate
Students Research Support Program.

ABSTRACT A covert communication channel facilitates direct data transfer between two parties through
pre-communication knowledge agreements, ensuring secure and confidential transmission of information.
However, the existing covert channels suffer from performance limitations, specifically in terms of through-
put and speed. The encoding techniques employed in covert channels can be time-consuming and have
limited data transfer capabilities. Furthermore, the ability of covert channels to handle files with different
formats has not been sufficiently explored. This paper introduces a high-performance implementation of
a covert channel that leverages Java exception handling during program execution. To optimize the covert
channel’s performance, this research explores the use of several encoding methods, including ASCII, Byte,
Hexadecimal, Base64, and Huffman coding. The proposed covert channel’s performance is evaluated and
analyzed for various coding methods. To study the impact on performance, multiple file formats, including
text, audio, and video, were used in the experiment. Experimental results showed that the hexadecimal coding
method improves the throughput and decreases the time delay of the covert channel. This is attributed to its
ability to minimize the number of tries before encountering an ‘‘Index Out of Bounds’’ exception. On the
contrary, the Base64 method is found to be inefficient as it produces longer strings than the original inputs,
resulting in increased time delays during data transfer. The best results are achieved when applying the
hexadecimal method with Huffman coding. It takes 6241 milliseconds to transmit a 12.8-megabyte text file,
with a throughput of 23116 bits per millisecond.

INDEX TERMS Covert channel throughput, time, optimization, index out of bound, exception, ASCII, byte,
hexadecimal, Base64, Huffman coding.

I. INTRODUCTION
A covert channel is a communication channel that allows
two entities to indirectly transfer data by specifying and
sharing knowledge before communication occurs. Various
types of covert channels have been used in encoding, decod-
ing, and transferring original messages [1], [2], [3], [4].
A covert channel is considered a mechanism for violating
the communication security policy, which is not antici-
pated by the system creator [1]. The study [5] presents two
covert channels that exploit nonce-based network authenti-
cation. The first channel exploits key-based authentication,

The associate editor coordinating the review of this manuscript and

approving it for publication was Tiago Cruz .

while the second channel exploits hash-based authentica-
tion. These channels are utilized for sending encrypted
information between parties and involve challenge-response
authentication with a nonce for transferring secret informa-
tion. The researchers evaluate the throughput performance of
their covert channel by measuring the number of attempts
required to achieve the challenge-response authentication
mechanism. However, most previous work on developing
covert channel mechanisms still suffers from low throughput
performance when sending files. Additionally, these mecha-
nisms require an effective encoding strategy to enhance data
transfer [5], [6].

There are several coding techniques used to compress
data and improve the performance of data transfer. In our

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 36515

https://orcid.org/0009-0004-5640-0457
https://orcid.org/0000-0002-9922-6645
https://orcid.org/0000-0001-9278-6503


A. Alhelal, M. Al-Khatib: Creating and Developing a High-Throughput Covert Channel

FIGURE 1. The proposed architecture of a covert channel for file transfer.

paper, we utilize Huffman code, Base64 coding, byte cod-
ing, ASCII coding, hexadecimal coding, and combinations
thereof. ASCII coding [7] is based on a character encoding
system that follows the order of the English alphabet. With
128 specified characters, ASCII is typically predicted to be
8 bits long. However, statistical studies on text demonstrate
that alternative letter pairings and their frequency can be
employed to compress data effectively. Huffman coding [8]
is a widely used frequency-dependent lossless compression
technique. It allocates shorter code words to frequently occur-
ring letters and longer ones to less frequently occurring
ones, thus facilitating data compression. Base64 coding [9]
employs a 65-character subset of US-ASCII, allowing for
the representation of 6 bits per printed character. An array
of 64 printable characters serves as an index for each 6-bit
group, with the referred character being added to the output
string. Hexadecimal coding [10] is a numbering systemwith a
base value of 16. It uses 16 symbols to represent hexadecimal
integers, including values from 0 to 9 and letters A to F.

We develop a new covert channel that exploits Java’s
‘‘Index Out of Bounds’’ exception handling. Figure 1 illus-
trates the steps of the covert channel architecture, which
comprises three major components: the client side, encoding,
and server side. The covert channel is implemented using
a Java program that exploits the ‘‘Index Out of Bounds’’
exception. Our covert channel is designed for transferring
files (text, audio, and video) using various coding techniques
and encoding methods, including ASCII, Byte, Hexadecimal,
Base64, and Huffman coding.

The rest of the paper is organized as follows: In
Section II, we provide a comprehensive review of related
works about covert channels and their utilization in data
transfer. Section III outlines our technique for the develop-
ment and implementation of covert channels. In Section IV,
we present the experimental results and provide a detailed
discussion of the findings. Finally, in Section V, we sum-
marize the key findings and draw conclusions based on our
research.

II. RELATED WORKS
A. RELEVANT STUDIES
In this section, we focus on the relevant studies that explore
covert channels used for data transfer. One study [11] con-
ducts a comprehensive survey on covert channels employed
to conceal information within network protocols. They
analyze approximately 109 techniques targeting covert com-
munication protocols and classify them based on special
patterns. These patterns include size modulation, encoding
hidden information in the sequence of header/PDU elements,
adding redundancy, PDU corruption/loss pattern, random
value pattern, value modulation pattern, reserved/unused pat-
tern (a reserved or unused header/PDU element is used by the
covert channel to encode data), inter-arrival time pattern, data
rate of traffic, PDU order pattern, and retransmission pattern.

The study [12] presents a survey on the development of
network covert channels, covering items such as adversary
scenarios, covert channel techniques, and countermeasures.
Covert channels are used to transmit information through net-
work protocols. The survey highlights various covert channel
techniques, including the use of unused header bits, header
extensions, padding, the IP Identifier and Fragment Offset,
TCP Initial Sequence Number (ISN), checksum fields, the
time to live (TTL) field, modulation of address fields and
packet lengths, modulation of timestamp fields, packet rate
and timing, message sequence timing, packet loss and packet
sorting, frame collisions, and ad hoc routing protocols. Coun-
termeasure techniques to detect and prevent covert channels
are also discussed, including channel elimination through
host security, network security, and traffic normalization,
as well as bandwidth limitation.

Study [2] develops a storage covert channel by utilizing
a storage memory as a pre-agreement data store between
entities. Data structures are employed to establish the covert
channel, enabling secure data transfer between the entities.
This mechanism allows parties to agree on a secret key and
is flexible in generating keys of different sizes. However,
it incurs additional traffic overhead and is time-consuming.
Studies [3], [6] utilize stack-overflow attacks and address
space layout randomization on Linux to transmit different
file formats. The sender attempts to guess the delta_mmap
memory (16 bits) while one entity indirectly sends files to
another entity through a server located on the same machine.
The client guesses the random memory offset of the vul-
nerable server’s standard C library (delta_mmap), and Bob
monitors Alice’s guessing attempts by observing the server
process. The information to be transmitted is encoded in the
number of failed guesses before success. Text and audio files
are successfully transmitted between the entities with the best
throughput performance achieved using hexadecimal coding,
as shown in Table 1.
One study [13] explores the utilization of VoIP commu-

nications as a technique to enhance privacy in file transfers.
They propose the idea of concealing traffic within VoIP
conversations to prevent detection and interference. The

36516 VOLUME 12, 2024



A. Alhelal, M. Al-Khatib: Creating and Developing a High-Throughput Covert Channel

TABLE 1. Covert channel performance during transferring audio files [3].

researchers utilize voice activity detection features available
in client interfaces to generate fake silent packets that can
serve as carriers for transferring confidential data. The results
indicate that this approach could effectively enforce pri-
vacy in practical use cases, particularly in file transfers. The
researchers also develop an interface for tunneling protocols
in the TCP/IP suite, as shown in Table 2. However, it was
found that Privacy Enhancing Technology Voice Activity
Detection (PETVAD) is slower compared to direct access
due to the subpar performance of TCP in the presence of
significant delays. The results presented in [13] demon-
strate that sending a 1 MB web page incurs a throughput
of 283 KB/s and takes 3.61 seconds with a 100 ms delay.
The throughput is measured by constructing local area and
wide area network configurations, and the researchers use
three web pages with varying numbers of inline objects (1,
10, and 100) with sizes of 1 MB, 100 KB, and 10 KB,
respectively.

B. RELATED WORKS ANALYSIS
This section focuses on the analysis of related works that
explore covert channels utilized for data transfer between
entities. Various methods are employed to establish covert
channels, enabling the encoding and decoding of informa-
tion including text files, audio, video, and web pages. The
performance of the covert channel is evaluated based on its
throughput, which refers to the number of transmitted bits per
second. In the reviewed literature, it is observed that covert
channels generally exhibit low throughput. To address this
limitation, researchers have proposed different mechanisms
and enhancements to improve performance, such as using
encoding techniques. For a more comprehensive understand-
ing of these mechanisms, refer to [10].

III. CREATING AND DEVELOPING COVERT CHANNEL
BASED ON JAVA PROGRAM
To construct and implement our covert channel, we utilize
a Java program, as described in Section I. The objective is
to establish an indirect interaction between the client and
the server computer using the covert channel. In some com-
puter languages, like Java, buffers have a predefined capacity
and do not accept data that exceeds their size. To handle
this situation, an exception called ‘‘java.lang.ArrayIndex Out
Of Bounds Exception’’ is created, which prevents buffer
overflow when a user attempts to input data that exceeds
the array’s size. The code snippet below provides an exam-
ple of the Java ‘‘IndexOutOfBoundsException’’ exception
handling

int a[] = {2, 3, 5, 1, 20};

TABLE 2. Time and throughput for direct and PETVAD covert
channels [10].

for(int i = 2; i <= a.length; i+ +)

System.out.print(a[i]);

When a user executes the code segment, the output is ‘‘2 3
5 1 20’’ followed by ‘‘Exception:java.lang.ArrayIndexOutOf
Bounds’’. We can exploit this exception to create and develop
a covert channel. The server program keeps track of the num-
ber of buffer accessing operations required until the ‘‘Index
Out of Bound exception’’ occurs, allowing us to monitor
when this exception happens. If the sender wants to send
number 3 to the server program, they simply set the variable
‘‘i’’ to 2. This will cause the function ‘‘system.out.print’’ to
be executed three times. The backdoor keeps track of the
server software to determine the number of system calls that
are made before exception handling occurs. Once a covert
channel is established, it can be used to send data in different
formats. The channel’s performance is evaluated in terms of
throughput and time. Various encoding techniques are imple-
mented to assess their impact on the channel’s performance.
By conducting these implementation scenarios and evaluat-
ing the performance using different encoding techniques, the
aim is to determine the optimal combination of techniques
that achieves the highest performance level for the covert
channel. The channel will be utilized in various scenarios,
including:

1. Alice will send audio files with different sizes and
measure the throughput of the channel using Huffman code,
Base64, Byte, ASCII, hexadecimal coding, and combinations
of these techniques.

2. Alice will send video files of different sizes and measure
the throughput of the channel using Huffman code, Base64,
Byte, ASCII, hexadecimal coding, and combinations of these
techniques.

3. Alice will send text files of different sizes and measure
the throughput of the channel using Huffman code, Base64,
Byte, ASCII, hexadecimal coding, and combinations of these
techniques.

Figure 2 illustrates a real-life scenario of sending covert
data. For instance, if the sender transmits the character ‘A’ to
the receiver, the covert ‘A’ to the hexadecimal value 0 × 41.
The sender splits the 0×41 into two numbers: ‘4’ and ‘1’, and
sends the numbers individually to the server, which. Records
the timing of the exception handling.

VOLUME 12, 2024 36517



A. Alhelal, M. Al-Khatib: Creating and Developing a High-Throughput Covert Channel

FIGURE 2. The real-life scenario of sending data over the channel.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EXPERIMENTS ENVIRONMENT
The experiments for this paper are conducted using Java,
which is considered the software for implementing our covert
channel. We develop three programs: the client, server, and
backdoor. The client establishes a covert channel by exploit-
ing server software to transmit different file formats to a
backdoor. Proof-of-concept techniques are utilized to imple-
ment our covert channel andmeasure network throughput and
other metrics. We conducted the experiments on a laptop with
the following specifications: Intel® CoreTM i3-500u pro-
cessor, 250GB SSD hard disk, 4GB RAM, and the Windows
10 operating system. To manage and organize the experi-
mental findings, we employ Excel software. We compute
the average results and create graphs to represent time and
throughput. These graphs aid in analyzing and interpreting
the experimental data. In addition to Java, we use programs
such as Excel and Word for the creation and evaluation of
our covert channel. Excel software is utilized for computing
the average results and creating graphs to represent time and
throughput, facilitating the management and organization of
the experimental findings.

TABLE 3. Applying several optimization techniques to our covert channel.

As represented in Table 3, the parameters of how the client
sends files to a backdoor through an exploited server pro-
gram. Firstly, different file formats, such as text, audio, and
video, are employed. Secondly, different optimization tech-
niques, including byte, hexadecimal, Huffman, and base64
coding, are utilized. Thirdly, optimization techniques are
combined. Fourthly, the performance of our covert channels
is measured in terms of time and throughput. To enhance
time and throughput performance, we combine optimization
strategies. Regardless of the optimization methods used, the
sender transmits files to the server, and the time and through-
put required for the backdoor to receive the files are tracked.
Each experiment is repeated five times before averaging the
results. Free audio, video, and text files of different sizes
are downloaded from free websites. In this study, throughput
refers to the number of bits sent via the covert channel per
second. The time it takes for data to be transmitted through
our covert channel is the subject of our paper, referred to as
‘time’ [3], [6], [13], [14].
We select several text files of varying sizes, along with

audio files in WAV format and video files in MP4 format.
These files are used in our experiments to evaluate the per-
formance of our covert channel.

B. EXPERIMENT RESULT
This research introduces comprehensive experiments to eval-
uate proposed covert channel implementations and find out
their performance results. As mentioned in the previous
section of this research, experiments include implementing
covert channels with a variety of encoding methods. More-
over, experiments involve implementing a covert channel
with a combination of two or more encoding methods. This
aims to find out the best optimization strategy that boosts
the throughput of the channel and reduces the time delay for
sending data.

The experimental results are depicted in Figures 3–15.
These figures mainly showcase the correlation between file
size (in KB or MB) and time consumption (in milliseconds).
As the file size increases, time consumption also increases,
leading to degradation in the performance of the covert chan-
nel. To address this issue, encoding techniques are employed.

When employing byte optimization to send text files
between two entities, it takes approximately 138 seconds to
transmit a 16.6 MB text file. The time duration is consid-
ered significantly high when compared to other widely-used

36518 VOLUME 12, 2024



A. Alhelal, M. Al-Khatib: Creating and Developing a High-Throughput Covert Channel

FIGURE 3. A graph showing the speed of file transfer using the covert
channel method.

optimization strategies, as shown in Figure 3. In Figure 3 (a),
the text file sizes are represented in KB, while in Figure 3 (b),
they are represented in MB. The experiments are conducted
using both smaller (KB) and larger (MB) file sizes to assess
the behavior of the proposed method concerning the file
size. The experimental results demonstrate that there is no
significant impact on performance when the size of files is
below 12.1KB.

Figure 4 illustrates the relationship between file size (in
MB) on the horizontal axis and throughput (bits/sec) on
the vertical axes. As the file size increases, the throughput
performance decreases. Specifically, when employing byte
optimization, it requires approximately 1000 bits per second
to transmit a 16.6MB text file. This throughput rate is notably
lower compared to other commonly utilized optimization
strategies.

The relationship between text file size (in MB) on
the horizontal axis and time (in milliseconds) on the
vertical axes is shown in Figure 5. In this experiment,
we used hexadecimal optimization. As the file size grows,
the time performance is significantly improved compared
with byte-coding optimization. Using hex-optimization opti-
mization, it takes approximately 10 seconds to send a
16.6 MB text file. Which, in comparison to other opti-
mization strategies, is considered to have significantly
high performance.

Hexadecimal and byte coding for sending text files are
evaluated in terms of time and throughput, as depicted in
Figures 6 and 7, respectively. When transferring a 16.6 MB
file, the time required using hexadecimal coding is 9679 ms,
whereas, with byte coding, it took 138959 milliseconds.

In Figure 7, the throughput performance is compared
between the byte-coding and hexadecimal-coding methods.
Hexadecimal and byte coding for sending audio files are eval-
uated in terms of time and throughput, as shown in Figures 8
and 9, respectively. When transferring a 10MB audio file, the
time required using hexadecimal coding is 1.6 seconds, while
with byte coding it takes 4.7 seconds.

Figure 9. An analysis of the efficiency of sending audio
files using hexadecimal and byte optimization in terms of
throughput.

FIGURE 4. A graph showing the relationship between file size and
throughput.

FIGURE 5. Displays a graph illustrating the throughput of file transfers
using hexadecimal optimization.

FIGURE 6. A graph comparing the file transfer rates between Byte-coding
and Hexadecimal-coding methods.

Figure 10 illustrates that, for both video and audio formats,
hexadecimal optimization exhibits superior time performance
compared to byte optimization during file transfer.

Figure 11 demonstrates that, for both video and audio for-
mats, hexadecimal optimization outperforms byte optimiza-
tion in terms of throughput performance while transferring
files.

Figure 12 demonstrates that when using video format,
hexadecimal optimization achieves better throughput perfor-
mance compared to base-64 optimization during file transfer.

VOLUME 12, 2024 36519



A. Alhelal, M. Al-Khatib: Creating and Developing a High-Throughput Covert Channel

FIGURE 7. A graph comparing the throughput performance between Byte
coding and hexadecimal coding method.

FIGURE 8. A line graph illustrating the performance comparison of audio
file transfer rates between Byte-coding and Hexadecimal coding methods.

FIGURE 9. A bar chart depicting the performance comparison of audio
file transfer rates between Byte coding and hexadecimal coding methods.

Figure 13 demonstrates that, when using the video format,
hexadecimal optimization exhibits superior time performance
compared to base64 optimization during file transfers.

Figure 14 demonstrates that combining Huffman coding
with hexadecimal coding yields better performance com-
pared to using only hexadecimal coding. The file transfer
speed is significantly improved when both techniques are
combined. For transferring a 12.4MB file, the hex-coding
technique takes approximately 37273 seconds, while the
combined technique completes the transfer in approximately
6241.5 seconds.

Figure 15 demonstrates that when hexadecimal and Huff-
man coding are combined, their throughput is significantly

FIGURE 10. A line graph illustrating the performance comparison of
audio and video file transfer rates between Byte coding and Hex coding
methods.

FIGURE 11. Throughput-based performance comparison between audio
and video files using hexadecimal and byte coding.

higher compared to other optimization strategies utilized in
this study.

C. RESULTS AND DISCUSSION
To a covert channel, we evaluate the performance of differ-
ent coding techniques for transferring data in terms of time
and throughput. We test various file formats, including text,
audio, and video. The results are presented in Table 4.

Time measurements are recorded in milliseconds (ms),
throughput is measured in bits per second, and file size is
indicated in megabytes (MB). In Table 4, we present specific
instances of the many experiments we conducted, covering
various file formats. The tables include information on T
(time in milliseconds), TP (throughput in MB per millisec-
ond), and S (file size).

When using the text format, the convert channel delivers
12.5 MB in 104637 milliseconds, achieving a throughput of
754 bits per millisecond when employing byte coding. How-
ever, when utilizing hexadecimal coding, the time decreases
significantly to 37273, resulting in a higher throughput of
6245 bits per millisecond. The best performance is achieved
by combining Huffman and hexadecimal coding, where the
channel delivers 12.5 MB in just 6241 milliseconds, with a
throughput of 23116 bits per millisecond.

36520 VOLUME 12, 2024



A. Alhelal, M. Al-Khatib: Creating and Developing a High-Throughput Covert Channel

TABLE 4. Experimental results summary.

FIGURE 12. A line graph depicting the performance comparison of video
file transfer throughput using Base64 coding and Hex-coding methods.

FIGURE 13. A line graph illustrating the performance comparison of
video file transfer rates using Base64 coding and Hex-coding methods.

For audio files, the channel delivers 10 MB in 4725 mil-
liseconds when using byte coding, resulting in a throughput
of 20874 bits per millisecond. However, when employ-
ing hexadecimal coding, the delivery time decreases to

FIGURE 14. A line graph depicting the performance comparison of text
file transfer rates using Huffman coding and hexadecimal coding.

FIGURE 15. A bar chart comparing the performance of text file transfer
throughput using Huffman coding and hexadecimal coding.

1600 milliseconds, and the throughput increases to 27862 bits
per millisecond.

When it comes to video files, our covert channel deliv-
ers 10 MB in 1889 milliseconds with a throughput of
44407 bits per millisecond when using byte coding. Alter-
natively, when using hexadecimal coding, the delivery time

VOLUME 12, 2024 36521



A. Alhelal, M. Al-Khatib: Creating and Developing a High-Throughput Covert Channel

further reduces to 1607 milliseconds, with a higher through-
put of 52200 bits per millisecond. Lastly, when employing
Base64 coding, the channel delivers 10 MB in 1890 millisec-
onds, achieving a throughput of 44384 bits per millisecond.

Based on the results, hexadecimal coding proves to be
suitable for our covert channel due to its ability to reduce the
number of attempts before encountering an Array Index Out
of Bounds Exception. On the other hand, Base64 is deemed
unsuitable for our covert channel as it generates larger result-
ing strings.

V. CONCLUSION
A covert communication channel facilitates indirect data
transfer between two parties through pre-established knowl-
edge agreements. This channel is utilized for encoding and
decoding the original data and can serve both legitimate and
illegitimate purposes. Many previous attempts at creating
covert channel techniques have exhibited low performance
in terms of throughput and time required for file delivery.
To enhance data transfer performance, an appropriate encod-
ing technique is necessary. In our proposed covert channel,
we leverage exception handling in Java programs to establish
and develop covert channels. We exploit the server side,
which monitors the exploitation process and keeps track of
the number of attempts made before encountering an ‘‘Index
Out of Bounds’’ exception. Our methodology involves using
several file formats, such as text, audio, and video, and
implementing optimization methods, including base64, byte,
hexadecimal, and Huffman coding. We evaluate the effec-
tiveness of our covert channels by measuring the throughput
and time required for file delivery. To improve performance
in terms of time and throughput, we integrate optimization
techniques. The sender transmits files to the server using
optimization techniques, while we monitor the throughput
and time required by the backdoor to receive the files.
Each experiment is repeated five times, and the results are
averaged. Our covert channel employs multiple optimiza-
tion strategies, including byte, hexadecimal, Huffman, and
base64. The results of our covert channel for data transfer
using various coding algorithms demonstrate its effectiveness
with various file formats, including text, audio, and video.
When using the text format, our covert channel delivers
12.5 MB in 104637 milliseconds, achieving a throughput of
754 bits per millisecond when utilizing byte coding. How-
ever, the combination of Huffman and hexadecimal coding
yields the best performance, delivering the same file in
6241 milliseconds with a throughput of 23116 bits per mil-
lisecond. When employing hexadecimal coding, our covert
channel delivers 10 MB in 1607 milliseconds, achieving a
throughput of 52200 bits/millisecond. On the other hand,
when using Base64 coding, the delivery time increases to
1890 milliseconds and the throughput decreases to 44384 bits
per millisecond. Furthermore, when hexadecimal coding is
used with video files, our covert channel delivers 10 MB
in 1607 milliseconds, with a throughput of 52200 bits per
millisecond. The success of hexadecimal coding in our covert

channel can be attributed to its ability to reduce the number of
attempts before encountering an ‘‘Array Index Out of Bounds
Exception’’. Conversely, Base64 coding is not suitable for our
covert channel due to the larger resulting strings it generates.

REFERENCES
[1] S. B. Lipner, ‘‘A comment on the confinement problem,’’ ACM SIGOPS

Operating Syst. Rev., vol. 9, no. 5, pp. 192–196, Nov. 1975.
[2] T. S. Fatayer, S. Khattab, and F. A. Omara, ‘‘A key-agreement protocol

based on the stack-overflow software vulnerability,’’ in Proc. IEEE Symp.
Comput. Commun., Jun. 2010, pp. 411–416.

[3] T. S. Fatayer, S. Khattab, and F. A. Omara, ‘‘OverCovert: Using stack-
overflow software vulnerability to create a covert channel,’’ in Proc. 4th
IFIP Int. Conf. New Technol., Mobility Secur., Feb. 2011, pp. 1–5.

[4] D. J. Dye, ‘‘Bandwidth and detection of packet length covert channels,’’
Ph.D. thesis, Naval Postgraduate School, Monterey, CA, USA, 2011.

[5] T. Schmidbauer, J. Keller, and S. Wendzel, ‘‘Challenging channels:
Encrypted covert channels within challenge-response authentication,’’ in
Proc. 17th Int. Conf. Availability, Rel. Secur., Aug. 2022, pp. 1–10.

[6] T. S. Fatayer, ‘‘Secure communication using cryptography and covert
channel,’’ in Computer and Network Security. IntechOpen, 2020.

[7] E. S. Lee, ‘‘Essays about computer security,’’ Tech. Rep., 1999, p. 181.
[8] J.Wu, Y.Wang, L. Ding, and X. Liao, ‘‘Improving performance of network

covert timing channel through Huffman coding,’’ Math. Comput. Model.,
vol. 55, nos. 1–2, pp. 69–79, Jan. 2012.

[9] S. G. Josefsson, The Base16, Base32, and Base64 Data Encodings, docu-
ment RFC 4648, 2006, pp. 1–44.

[10] A. Alhelal and M. Al-Khatib, ‘‘Systematic analysis on the effectiveness of
covert channel data transmission,’’ Int. J. Adv. Comput. Sci. Appl., vol. 14,
no. 5, 2023.

[11] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, ‘‘Pattern-based survey
and categorization of network covert channel techniques,’’ ACM Comput.
Surv., vol. 47, no. 3, pp. 1–26, Apr. 2015.

[12] S. Zander, G. Armitage, and P. Branch, ‘‘A survey of covert channels and
countermeasures in computer network protocols,’’ IEEE Commun. Surveys
Tuts., vol. 9, no. 3, pp. 44–57, 3rd Quart., 2007.

[13] J. Saenger, W. Mazurczyk, J. Keller, and L. Caviglione, ‘‘VoIP network
covert channels to enhance privacy and information sharing,’’ Future
Gener. Comput. Syst., vol. 111, pp. 96–106, Oct. 2020.

[14] M. Akil, L. V. Mancini, and D. Venturi, ‘‘Multi-covert channel attack in
the cloud,’’ in Proc. 6th Int. Conf. Softw. Defined Syst. (SDS), Jun. 2019,
pp. 160–165.

ABDULRAHMAN ALHELAL received the bachelor’s degree in computer
science from Imam Mohammad Ibn Saud Islamic University, where he is
currently pursuing the master’s degree with the Faculty of Computer and
Information Sciences. He has a publication in the security field. His research
interests include information security, cryptography, coding, steganography,
and covert channels.

MOHAMMAD AL-KHATIB received the bach-
elor’s degree in computer science from Irbid
National University, the master’s degree in infor-
mation systems from DePaul University, and the
Ph.D. degree in computer science, specializing
in security in computing from University Putra
Malaysia (UPM). He is currently an Assistant
Professor with the Faculty of Computer and Infor-
mation Sciences, Imam Mohammad Ibn Saud
Islamic University. His research interests include

information security, cryptography, the Elliptic Curve algorithm, and infor-
mation retrieval.

36522 VOLUME 12, 2024


