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ABSTRACT Creating innovative strategies for optimizing network resources is paramount in response
to the growing demand for fast and reliable data transmission. This study delves into a unique method
to enhance power allocation and throughput in 5G cellular systems. We aim to conserve resources and
ensure top-tier communication through direct terminal connections using the Device-to-Device protocol
and a modified Gale-Shapley algorithm. Our approach’s robustness is tested in two scenarios: firstly,
in standard 5G operations that focus onminimizing energy usewhilemaximizing signal reliability, evaluating
parameters like losses, gain, proximity of transmitters to receivers, and capacity using the Gale-Shapley
algorithm. Second, we simulate a disaster-induced network disruption in which D2D devices autonomously
establish connections without functional base stations. Our findings from detailed MATLAB simulations
highlight that D2D communications within the Millimeter Wave frequency band consistently maintain
reliable relationships, achieving network capacity rates between 150 and 180 Mbps under regular conditions
and 110 to 140 Mbps during disaster scenarios. This underscores our approach’s potential to significantly
enhance 5G system performance and reliability.

INDEX TERMS Device-to-device (D2D), Gale-Shapley matching theory, non-orthogonal multiple access
(NOMA), power allocation, 5G.

I. INTRODUCTION
With the swift progression of wireless communication
methodologies, Device-to-Device (D2D) communication
stands out as a transformative approach. It promises to
bolster the capabilities of wireless networks, especially in the
realms of 5G and subsequent cellular systems. D2D fosters
a mechanism where nearby devices can interact directly,
bypassing the traditional base station or central control. This
strategy not only optimizes the use of the spectrum but also
paves the way for innovative applications such as vehicular
networking, ensuring public safety, and the expansive realm
of the Internet of Things (IoT) [1], [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessio Giorgetti .

In the context of 5G networks, Non-Orthogonal Multiple
Access (NOMA) is being championed as a pivotal tech-
nology. It addresses the growing demands for high-speed
data transfers and expansive connectivity. Diverging from
traditional orthogonal multiple access (OMA) paradigms,
NOMA allows simultaneous access of resources by various
entities, amplifying spectral efficiency through sophisticated
decoding strategies, notably successive interference cancella-
tion (SIC) [4], [5], [6], [7].

The intricacies of power distribution within NOMA
frameworks, especially when synergized with D2D commu-
nication, are multifaceted. As NOMA solidifies its position
as a foundational element for 5G and its successors, it allows
multiple users to tap into the same time-frequency resources,
thus enhancing spectral efficiency. However, the challenge
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emerges in astutely distributing power among users, given
the myriad variables, such as user density, individual channel
dynamics, and the overarching system blueprint [8].

The nuances of the power distribution directly affect the
pivotal metrics of the system within the confines of NOMA.
For example, throughput, which quantifies the volume of data
relayed successfully across the network within a stipulated
timeframe, is intrinsically tied to the dynamics of the
power distribution. A strategically devised power distribution
paradigm can elevate throughput, ensuring optimal resource
utilization and an enriched user experience [9].

Ensuring equitable access to resources is another metric
intrinsically tied to power distribution. Crafting this equilib-
riumwithin NOMA can be intricate, given the inherent power
differentials among users. A meticulously devised power
distribution paradigm ensures that all users, irrespective of
their position within the network or channel dynamics, are
granted a balanced share of resources. Furthermore, energy
efficiency, quantified as the ratio of pertinent information
relayed to the aggregate energy expended, is also influ-
enced by power distribution strategies. With the escalating
demands for accelerated data transmissions and expansive
connectivity, the emphasis on energy efficiency is paramount.
A reasonable power distribution strategy can harmonize
energy conservation with peak system performance, ensuring
network longevity [10].
While prior research has provided a robust foundation

on the merits of D2D within 5G frameworks, specific
dimensions still need to be explored. These encompass
deploying the Gale-Shapley algorithm and exploring the
millimeter-wave (mmW) frequency spectrum in power dis-
tribution paradigms. This manuscript introduces a pioneering
power distribution framework for NOMA anchored in
D2D communication. This paradigm integrates a refined
Gale-Shapley algorithm with path loss models and Mixed
Integer Non-Linear Programming (MINLP) optimization
strategies. This amalgamation promises to redefine power
distribution in D2D communication within NOMA frame-
works, showcasing resilience across diverse network sce-
narios. The robust nature of this paradigm makes it apt for
emerging applications such as urban intelligent grids and
industrial automation [11].

The evolution of 5G networks has brought forth many
opportunities but also presents challenges. The exponential
growth in traffic and service demands and the need for
higher data rates and more efficient resource utilization
have strained the current network infrastructure. D2D
communication, as an integral component of the 5G archi-
tecture, promises improvements in energy efficiency, spectral
efficiency, overall system capacity, and higher data rates.
However, the full potential of D2D in 5G networks can only
be realized by addressing significant challenges, such as
interference management, resource allocation, and ensuring
Quality of Service (QoS) [9]. NOMA further increases D2D
capabilities by allowing multiple users to share the same
frequency resources, thus enhancing spectral efficiency and

accommodating more users. D2D and NOMA present a
formidable solution to many challenges faced by current 5G
networks [12].

The subsequent sections of this manuscript are struc-
tured as follows. Section II offers a panoramic view of
recent research endeavors on power distribution in NOMA,
anchored in D2D communication and the deployment of
the Gale-Shapley algorithm. This is succeeded by a section
detailing the objectives of this research, the methodologies
used, and the specific purposes. The subsequent section
delves into the implementation methodology, elucidating the
refinements to the Gale-Shapley algorithm and its deploy-
ment to address the power distribution challenge in NOMA,
anchored in D2D communication. The penultimate section
presents the outcomes of simulations, offering a quantitative
assessment of the efficacy of our proposed methodology. The
manuscript concludes with a recapitulation of critical insights
and potential trajectories for future exploration.

In light of the transformative potential of D2D communi-
cation within the 5G architecture, this paper seeks to provide
a substantive contribution to the domain by addressing the
critical challenge of power allocation. We are motivated
by the necessity to enhance network performance while
ensuring energy efficiency—a crucial consideration as the
proliferation of 5G technology accelerates. Our innovative
contributions include applying a modified Gale-Shapley
algorithm to power distribution in NOMA frameworks,
comprehensively exploring the mmW frequency spectrum,
and integrating MINLP optimization techniques. These
advancements collectively promise to advance theoretical
understanding and deliver tangible improvements in the oper-
ation of real-world 5G networks. The subsequent sections
will elucidate our systematic approach, detail the novel
methodologies employed, and demonstrate the efficacy of our
strategies through rigorous simulation-based validation.

II. RECENT STUDIES
In the realm of D2D communication synergized with NOMA,
extensive research has been carried out, each study paving the
way for further innovation in this field. Our research draws
upon these foundational studies, extending their concepts and
addressing the gaps they have identified.

The study titled ‘‘Energy-Efficient Matching for Resource
Allocation in D2D-Enabled Cellular Networks’’ [13] utilizes
a matching algorithm to fine-tune resource allocation with
a focus on energy efficiency. This approach is particularly
relevant to our work as it highlights the importance of
efficient power usage in D2D networks, a key consideration
in our algorithm’s design.

In ‘‘Resource Allocation for NOMA-Enhanced D2D Com-
munications with Energy Harvesting’’ [14], the authors
present a dual-layer optimization framework that incorpo-
rates energy harvesting. This research is closely related to
our approach, emphasizing the need for sustainable energy
solutions within D2D and NOMA frameworks, a challenge
our algorithm aims to address.
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The work ‘‘Non-Orthogonal Multiple Access for Unicast
and Multicast D2D’’ [15] focuses on optimizing both
unicast and multicast D2D communications through a
multi-objective optimization framework. Our research builds
upon this by exploring how the Gale-Shapley algorithm can
be adapted to achieve similar goals more efficiently and
equitably.
‘‘An Efficient Resource Allocation Algorithm for Device-

to-Device Communications’’ [16] introduces a novel
algorithm specifically designed for D2D communications.
Our study extends these findings by comparing the
Gale-Shapley algorithm’s performance in similar network
environments.

Another pivotal study, ‘‘Resource Allocation for Downlink
NOMA in Joint Transmission Coordinated Multi-Point Net-
works’’ [17], explores joint optimization strategies in NOMA
networks. Our research contributes to this area by applying
the Gale-Shapley algorithm to optimize power distribution in
complex network scenarios, such as those encountered in 5G
D2D communication.

The study by Yoganathan et al. [18] focuses on optimizing
Multihop-D2D (M-D2D) connections in cellular networks
to enhance spectrum-sharing efficiency. It emphasizes QoS
and energy efficiency in M-D2D communications, a method
that facilitates data transmission across multiple D2D links
without relying on a central base station. This approach
benefits 5G networks, improving efficiency and supporting
high-speed communications in dense areas. The study
employs advanced optimization techniques, including the
Hungarian method, Harris Hawks, and red fox algorithms,
providing sophisticated solutions for M-D2D complexities.
This research aligns with our work’s emphasis on advanced
resource allocation strategies to boost network efficiency and
user experience in 5G environments.

Finally, the investigation into resource allocation in D2D-
supported V2V communication systems [19] examines the
intricate balance of resource block allocation and power
optimization. Our research aligns with this study by offering
innovative solutions for resource distribution in 5G D2D
networks, aiming to optimize overall network performance.

By integrating and building upon these diverse yet
interconnected studies, our research contributes a novel
perspective to the field of telecommunications. We aim to
advance the understanding of power allocation strategies in
D2D communication within NOMA frameworks, offering
solutions that promise to optimize network performance and
energy efficiency.

III. OBJECTIVE AND METHODS
The evolution of 5G has ushered in a new era of wireless
communication, teeming with possibilities yet riddled with
complexities. Central to this intricate web is the challenge of
power allocation, a pivotal aspect that can make or break the
efficiency of data transmission. Our research’s objective is
clear-cut: to devise a power allocation scheme tailor-made for
D2D communication within the framework of NOMA.

FIGURE 1. Enhanced underlay D2D communication system model,
showcasing the integration of cellular and direct links.

To navigate this challenge, we have harnessed the power
of the modified Gale-Shapley algorithm. This algorithm,
renowned for its precision, has been fine-tuned to cater to the
nuances of D2D communication, ensuring optimal resource
distribution in environments where demand often outstrips
supply.

But theory alone is not enough. To truly gauge the efficacy
of our approach, we have put it to the test in two distinct
scenarios:

• Standard 5G Operations: In this scenario, we explore
the algorithm’s performance under ideal conditions,
where base stations and network infrastructures operate
at their peak. This provides a benchmark, show-
casing the algorithm’s potential in a well-optimized
environment.

• Sub-Optimal Base Station Performance: Real-world
situations aren’t always ideal. There are instances where
base stationsmight face challenges, be it due to technical
glitches, environmental factors, or other unforeseen
circumstances. In this scenario, we test the algorithm’s
resilience and adaptability, ensuring that efficient power
allocation remains uncompromised even in less-than-
perfect conditions.

IV. D2D NETWORK ESSENTIALS
Our research delves into the intricacies of a D2D cognitive
network, elucidating the components of the system and their
sophisticated interactions. This enhanced system is visually
represented in the diagram D2D Underlay Communication
System Model.

At the nucleus of this network stands the Base Station (BS),
a critical entity that provides uplink service via OMA. The BS
is connected to the D2D transmitters (DT) through dedicated
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links typically designed for downlink communication in a
full-duplex mode, allowing simultaneous transmission and
reception of signals.

Cellular User Equipment (CUE) represents the mobile
devices used by the cellular subscribers within the network.
It is shown in the diagram to indicate its role in communi-
cation with BS and D2D receivers (DRs) through cellular
links. These links are established using the cellular network
infrastructure, enabling connectivity and data exchange
between the CUE and other network nodes.

The system encompasses M cellular users, denoted as
CUE = [cue1, cue2, . . . , cueM ], serving the individual
communication needs of these users. The CUEs are essential
as they communicate with the BS and potentially serve as
relays or participants in the D2D communication, depending
on the network configuration.

Inter-device communication establishes a direct link
between D2D Receivers (DRs), allowing for a half-duplex
communication mode, where devices take turns transmitting
and receiving signals to avoid self-interference.

The network houses two DRs on the receiving end,
DR1 and DR2. Notably, DR1 employs SIC to counteract
any interference from DR2. This technique is particularly
crucial in a NOMA network, where signals are superimposed
at different power levels and decoded sequentially at the
receivers.

The channel model used in this network is typically
a fading model, which considers various factors, such as
path loss, shadowing, and multipath fading, that affect
signal quality. These models are crucial for estimating the
performance of wireless links under different environmental
conditions and designing robust communication strategies.

The details of the SIC process and the pivotal role of the
channels, such as HDT1 and HDT2 , are further expounded in
the subsequent sections, highlighting their contribution to the
network’s efficiency and reliability.

The channel model used in this network is typically a fad-
ing model, which considers various factors that affect signal
quality, such as path loss, shadowing, and multipath fading.
These models are crucial for estimating the performance of
wireless links under different environmental conditions and
designing robust communication strategies.

The details of the SIC process and the pivotal role of the
channels, such as HDT1 and HDT2 , are further expounded in
the subsequent sections, highlighting their contribution to the
network’s efficiency and reliability.

A. REVERSE TRANSMISSION DYNAMICS
IN D2D COMMUNICATION
While the primary focus of our study has been on scenarios
where D2D transmitters (DTs) transmit signals to D2D
receivers (DRs), the reverse transmission scenario, where
DRs act as transmitters, is an integral aspect of a com-
prehensive D2D communication model. In this subsection,
we explore the dynamics when DR1 and DR2 assume the

role of transmitters and their implications on the network
performance.

In reverse transmission,DR1 andDR2 transition frommere
signal recipients to active transmitters. This role reversal
necessitates reconfiguring the network’s resource allocation
and signal processing strategies. For example, whenDR1 and
DR2 transmit, the base station (BS) and the CUEs can assume
the role of receivers, altering the traditional communication
flow within the network.

Furthermore, the network must adapt to manage this
transmission mode, especially concerning interference man-
agement and signal quality assurance. SIC techniques and
NOMA protocols must be re-evaluated and adjusted to cater
to the reversed signal flow. The network’s ability to maintain
efficient communication under this scenario is a testament to
its flexibility and robustness.

The impact of reverse transmission on network per-
formance is multifaceted. It affects parameters such as
signal-to-interference-plus-noise ratios (SINRs), overall net-
work capacity, and resource utilization efficiency. The
network’s architecture must handle these changes to ensure
seamless communication irrespective of the transmission
direction.

In summary, including reverse transmission dynamics in
the D2D cognitive network model adds a layer of complexity
and versatility to the system. It underscores the need for
adaptive network protocols capable of handling various
communication scenarios, thereby enhancing the overall
resilience and efficiency of 5G networks.

B. COGNITIVE ASPECTS OF D2D COMMUNICATION
With the rapid advancement of wireless communication
technologies, cognitive D2D communication has emerged
as a critical area of interest. It involves employing
cognitive strategies within D2D networks, enhancing
efficiency and adaptability. Integrating cognitive processes
in D2D communication allows for more intelligent and
efficient use of the wireless spectrum and network
resources.

The cognitive cycle in D2D communication encompasses
several phases, including spectrum detection, decision-
making, and adaptation. This cycle enables D2D devices
to analyze their environment intelligently, make informed
decisions about spectrum usage, and adapt their communi-
cation strategies accordingly. This is particularly crucial in
congested network environments or scenarios where dynamic
spectrum access is essential.

Cognitive D2D communication is relevant in various appli-
cations, especially in scenarios where network efficiency
and spectrum utilization are critical. It paves the way for
more innovative and responsive communication methods in
next-generation wireless networks.

For an in-depth understanding of cognitive D2D communi-
cation, we refer to the work of A. Iqbal et al., which provides
comprehensive insights into this field [20].
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C. INTEGRATION OF D2D IN STANDARD 5G SYSTEMS
D2D communication within 5G networks can be integrated
through a centralized system managed by the base station or
autonomous connections between devices. The base station
orchestrates D2D connections centrally, managing resources
and ensuring optimal network performance. However, this
method may introduce additional latency and overhead.
On the other hand, an autonomous approach allows devices
to establish direct connections independently, enhancing
network flexibility and reducing latency. However, it poses
challenges in terms of interference management and resource
distribution.

D. CONTROL FUNCTIONS IN D2D-ONLY SCENARIOS
In scenarios where D2D communication operates indepen-
dently of the base station, several key control functions come
into play:

Device Discovery: Devices identify and discover each
other in a D2D-only scenario through specific protocols or
technologies, allowing efficient and direct communication
without central coordination.

Mode Selection: Devices decide whether to communicate
directly (D2D mode) or through the base station (cellular
mode) based on various factors, such as signal strength,
proximity, and network conditions.

Resource and Power Allocation: Without a central
coordinating authority, D2D devices allocate resources (such
as spectrum and channels) and power among themselves
using algorithms or strategies designed for efficient and fair
distribution.

E. SCENARIO OVERVIEW
Our study assesses the D2D protocol’s effectiveness within
5G networks through two meticulously defined operational
scenarios:

1) Standard 5G System: This scenario models a con-
ventional 5G network architecture comprising a central
base station, Cellular User Equipment (CUE), and D2D
users. The key characteristics of this setup include:

• Seamless integration of D2D links into the existing
network infrastructure.

• Independent transmission of signals by D2D
transmitters, designed to minimize reliance on the
central base station.

• Focused examination of how D2D communica-
tion impacts latency and overall system capacity,
including the management of network traffic and
resource allocation efficiencies.

• Exploration of scenarios where D2D communica-
tion occurs without initial base station interaction,
highlighting direct device connections and their
influence on network dynamics.

This scenario is critical for evaluating the D2D
protocol’s role in enhancing traditional 5G networks,

particularly optimizing system capacity and response
times.

2) Urban 5G Environment with High Device Density:
The second scenario delves into a more complex
urban setting characterized by high device density and
diverse user behaviors. This scenario aims to simulate
real-world challenges in urban 5G networks, such as:

• High user density increases network demand and
potential interference issues.

• Varied user mobility patterns impacting network
stability and D2D communication reliability.

• The effectiveness of D2D communication in man-
aging network congestion and maintaining QoS
under challenging urban conditions.

• Evaluation of the D2D protocol’s capacity to
sustain high data rates and consistent connectivity
in densely populated areas.

The focus here is on understanding the scalability of
the D2D protocol in dynamic urban environments and
its potential to improve user experience and network
efficiency.

Each scenario is tailored to illustrate the D2D protocol’s
practicality and performance under different network condi-
tions, providing comprehensive insights into its applicability
and benefits in 5G telecommunications.

1) SIGNAL DYNAMICS
In the D2D cognitive network, signals at the cellular user
(CUE) and decoding relays, represented as CUE , yDR1,
and yDR2, are shaped by direct links, relayed signals,
interference, and noise. Their rates are ascertained using
signal-to-interference-plus-noise ratios (SINRs). The system
uses the SINR metric for flow rates and power levels and
employs the Gale-Shapley technique for pairing DTm and
CUE. Path loss, influenced by transmitter-receiver distances
and frequency, categorizes communication channels into Line
of Sight (LOS) and Non-Line of Sight (NLOS). Antenna
gain, crucial for SINR, is optimized when signals are directed
between the main lobes of the transmitter and receiver.

2) OPTIMIZATION PROBLEM
The signals at the cellular user (CUE) and decoding
relays, represented as yCUE , yDR1, and yDR2, are influenced
by various factors such as direct links, relayed signals,
interference, and noise. The performance of these entities
is gauged using their respective signal-to-interference-plus-
noise ratios (SINRs) [21].
The term s

N+I represents the signal-to-interference-plus-
noise ratio (SINR), where:

• s is the signal power.
• N is the noise power.
• I is the interference power.

This SINR metric is pivotal in determining the achievable
rates of communication entities. It aids in computing flow
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rates, designating power levels, and pairing devices using the
Gale-Shapley technique.

The system, in this context, refers to the D2D cognitive
network. It is designed to optimize power allocation in D2D
communication using NOMA technologies. The primary
goal is to enhance system performance, ensuring resilience
under diverse network conditions, making it suitable for
applications like smart cities and industrial automation [21].

3) ANTENNA DYNAMICS
The effective aperture of the antenna, Ae, related to the
antenna gain (G) and the signal wavelength (λ), impacts
the received signal power, influencing achievable rates and
SINRs.

Ae =
λ2

4π
· G (1)

This relationship offers insights into system performance,
especially for D2D pairs and cellular users engaged in signal
transmission and reception.

4) PATH LOSS CALCULATION MODELS
Path loss is a critical parameter in wireless communication,
determining the strength and quality of the received signal.
In the D2D cognitive network, the path loss is influenced
by the distance between devices and the transmitted signal’s
frequency [22].

The path loss between two devices,DTm andDRn, is given
by:

PLD2D = 12 log10(d) + 12 log10(fc) + 19.45 (2)

where d represents the distance between the devices, and fc
denotes the frequency. This formula is applicable when the
distance d is less than a specific threshold [22].
Interference from traditional communication users, espe-

cially concerning the DRn device, introduces additional
complexities. The interference at the receiver can be repre-
sented by two distinct cases:

Case 1: Short Distances - When the distance d between
the devices is less than a certain threshold, the path loss due
to interference is given by:

PLINTFshort = 20 log10(d) + 20 log10(fc) + 32.45 (3)

This equation captures the path loss dynamics for shorter
distances, where the interference effects aremore pronounced
due to the proximity of devices [22].
Case 2: LongDistances - For scenarios where the distance

d exceeds the threshold, the path loss due to interference is
represented by:

PLINTFlong = 34 log10(d) + 34 log10(fc) + 64.9 (4)

In this case, the path loss is influenced by the extended
distance between devices, which can decrease signal strength
and increase susceptibility to interference from other distant
sources [22].

By understanding these two cases and accurately calculat-
ing the path loss, one can make informed decisions regarding
transmission power or frequency selection, ensuring optimal
communication quality [22].
The equations (5) to (9) provided offer insights into

calculating path loss based on distance and frequency,
differentiating between Line of Sight (LOS) and Non-Line
of Sight (NLOS) scenarios.

For LOS links, the equation, derived from [22] and [23],
can be simplified to be dependent only on distance:

PL(d)[dB] = δ + β10 log10(d) (5)

In this equation:
• δ (delta) is the floating intercept, a parameter that adjusts
the path loss equation based on specific environmental
conditions or system configurations.

• β represents the path loss exponent, indicating the rate
at which the path loss increases with distance.

For NLOS communication, the equation introduces the
shadowing effect, which captures the variability in path loss
due to obstacles and other environmental factors:

PL(d)[dB] = δ + β10 log10(d) + ξ, ξ ∼ N
(
0, σ 2

)
(6)

Here, ξ represents the shadowing effect and follows a normal
distribution with mean 0 and variance σ 2. The term σ (sigma)
denotes the standard deviation of the shadowing effect.

Depending on the environment, the path loss is further
categorized into urban (denoted by u) and highway (denoted
by h):
Urban LOS

PLuLoS (d) = 16.7 log(d) + 18.2 log(fc) + 38.77 + ξ (7)

Highway LOS

PLhLoS (d) = 20 log(d) + 20 log(fc) + 32.4 + ξ (8)

NLOS

PLNLOS (d) = 30 log(d) + 18.9 log(fc) + 36.85 + ξ (9)

V. SIMULATION PARAMETERS
Before presenting the results, we summarize the key param-
eters used in our simulations.

VI. IMPLEMENTATION METHODOLOGY
In the pursuit of optimizing 5G networks, this research
meticulously navigates through the complexities of power
allocation, mainly focusing on D2D communication within
the NOMA framework. The methodology hinges on the
modified Gale-Shapley algorithm, renowned for its precision
and adaptability. It has been fine-tuned to cater to the nuanced
demands of D2D communication, ensuring optimal resource
distribution in environments where network demands are
perpetually evolving. Two distinct scenarios are explored to
validate the methodology: Standard 5G Operations, which
provides a benchmark by exploring the algorithm’s perfor-
mance under ideal conditions, and Sub-Optimal Base Station
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TABLE 1. Summary of key simulation parameters.

Performance, which tests the algorithm’s resilience and
adaptability in less-than-perfect conditions. This approach
ensures efficient power allocation and provides a robust
framework that maintains reliable communication despite
unforeseen network challenges [24].

A. COMPARATIVE ANALYSIS OF THE ADAPTED
GALE-SHAPLEY ALGORITHM IN D2D COMMUNICATION
The Gale-Shapley algorithm, initially effective in solving the
stable marriage problem, has been innovatively adapted in
our study. This adaptation addresses the complex resource
allocation challenges within D2D communication in 5G net-
works. We have conducted an extensive analysis comparing
the performance of our adapted Gale-Shapley algorithm with
other established algorithms in this field.

The effectiveness of our modified Gale-Shapley algorithm
is evaluated on three major fronts:

• Efficiency: The algorithm performs better in pair-
ing devices, optimizing overall network throughput
and reducing latency. This improvement is notable
when compared to other prevalent algorithms, such
as the Hungarian method or traditional auction-based
approaches.

• Fairness: A critical aspect of our algorithm is its ability
to ensure equitable resource distribution among D2D
pairs. This is a distinct advantage over other algorithms,
which may not prioritize network users as evenly.

• Adaptability: Our algorithm exhibits remarkable flex-
ibility, efficiently accommodating changes in network
topology and user demand. This adaptability is a
marked improvement over more static or predetermined
matching approaches that are commonly used.

1) KEY MODIFICATIONS
The enhancements made to the Gale-Shapley algorithm to
suit D2D communication are as follows:

• Determining Preferences: Unlike traditional criteria
based on singular preference lists, our algorithm consid-
ers signal strength, proximity, and data rate potential to
define preferences in the D2D context. This approach is
more aligned with the dynamic nature of 5G networks.

• Matching Process: We have refined the matching
process to emphasize network efficiency metrics, such
as minimizing interference. This step goes beyond
the original algorithm’s scope, primarily focusing on
mutual preferences without considering the broader
implications on system-wide performance.

• Algorithm Execution: Tailored for real-time opera-
tions, our execution strategy is uniquely designed to
adapt to the ever-changing dynamics of network con-
ditions. This contrasts with some existing algorithms,
which may not offer the same level of responsiveness
in real-time scenarios.

2) EMPIRICAL EVIDENCE AND CONTRIBUTIONS
Our enhancements to the Gale-Shapley algorithm enable
it to outperform specific existing algorithms regarding
throughput, fairness, and adaptability. This makes it a robust
candidate for resource allocation in D2D communication
within 5G networks. The subsequent sections of this paper
will present empirical evidence to support these claims,
further highlighting our work’s significant contributions to
the telecommunications field.

B. IMPLEMENTATION ENVIRONMENT
We utilized MATLAB for software implementation due
to its efficient management of multi-dimensional arrays
and strong signal and image processing computational
capabilities. The simulation uses a standard toolbox without
relying on external libraries. We base the simulation on two
D2D communication programs, which will be discussed in
subsequent sections.

C. FOUNDATIONAL SCRIPTS
This section elaborates on the two primary scripts underpin-
ning our simulation, emphasizing the integral components
during the implementation phase.

1) RESOURCE ALLOCATION USING MATCHING THEORY
FOR D2D UNDERLAY
This script configures a system comprising D2D users, CUE,
and a central BS. Its primary objective is to optimally
pair D2D users with CUEs to maximize the flow rate
across dual connections. The algorithm considers shadowing,
attenuation, and device interference, integrating intra-cell
device distances. These distances are determined using the
Euclidean equation:

d(p, q) =

√
(q1 − p1)2 + (q2 − p2)2 (10)

After this, power allocation is carried out for DTm and
CUE devices, predicated on anticipated throughput after
ascertaining distance and gain. The system leverages the
SINR metric to deduce flow rates and designates apt power
levels.

The Gale-Shapley algorithm, originally designed to solve
the stable marriage problem, optimally pairs DTm and CUE
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optimally. In this context, D2D users (orDTm) and CUEs rank
each other based on preferences, which factors like signal
strength, proximity, or potential data rates can influence. The
algorithm then finds a stable pairing where no two devices
would prefer to be paired with each other over their current
partners, ensuring efficient resource utilization.

2) D2D COMMUNICATIONS IN THE MILLIMETER WAVE
BAND: A NOVEL DISTRIBUTED MECHANISM
Inspired by the research of Bahadori et al. [25], this scenario
illustrates a D2D-enabled, multi-cell cellular network. In this
context, devices equipped with MIMO antennas send out
detection signals, which are specific signals to identify and
establish communication links with other devices. Depending
on the environmental conditions and the presence of a Line-
of-Sight (LOS) link, these devices can communicate over
either the micro-Wave (µW) or mmW band.

The significance of this mechanism lies in its ability to
harness the high-frequency mmW band, which offers sub-
stantial bandwidth and can support higher data rates, making
it crucial for 5G and beyond. However, the mmWband is also
characterized by its susceptibility to blockages and high path
loss. By enabling D2D communication in this band, devices
can achieve direct, short-range communications, mitigating
some of the challenges associated with mmW transmissions.

During the simulation, a DR is strategically positioned
at the center of the axes, with a transmitter located 50m
away. This setup is surrounded by square-shaped structures
generated using a Poisson Point Process (PPP) distribution.
The primary transmission medium is air, which inherently
has uniform free space losses. The system precedes the
mmW band (28GHz) for LOS connections. The positions
of potential interfering devices, structures, and DR(s) are
adjusted with each simulation iteration and epoch.

Devices in this scenario construct the Angle of Arrival
(AoA) spectrum. This spectrum assists devices in locating
peer D2D devices, identifying available LOS links, and sub-
sequently aligning their communication beams for optimal
transmission. The performancemetrics, crucial for evaluating
the efficiency and reliability of this mechanism, are derived
using the SINR metric and the equation for direct antenna
gain at the receiver.

D. SIMULATION CODE IMPLEMENTATION
Our simulation code demonstrates D2D communication
within 5G networks, incorporating mobile and D2D users
and a base station. The code focuses on enhancing overall
network performance by fine-tuning the allocation of energy
resources within two distinct scenarios. The first scenario
depicts the network in a standard operational mode, aiming
to reduce energy consumption while increasing signal
reliability. In this context, the simulation evaluates various
parameters such as losses, gain, proximity of the closest
transmitter to each receiver, and overall network capacity.
The Gale-Shapley algorithm is employed for comparative
analysis in this scenario. Conversely, the second scenario

FIGURE 2. Cellular and D2D layout.

simulates a network disruption induced by a disaster,
wherein D2D devices establish connections autonomously.
The simulation for each scenario is executed over 50 epochs,
encompassing 2,000 Monte Carlo iterations, cumulatively
resulting in 100,000 iterations for the entire simulation.
This comprehensive approach ensures a robust evaluation
of the network’s performance under varying conditions.
Additionally, two distinct power distribution scenarios are
considered, creating seven different usage scenarios to be
explored in the simulations.

1) FIRST SIMULATION SCENARIO: RESOURCE
ALLOCATION IN D2D UNDERLAY
This scenario envisions a 5G network operating within
a distinct cell with a radius R = 200 m, with the
base station strategically positioned at its center. The setup
comprises 30 D2D receivers (DRn), 30 D2D transmitters
(DTm), and 20 mobile users (CUEs) randomly dispersed
within the cell.

a: SIMULATION SETUP
The D2D pairs are identified based on minimal distance,
calculated using MATLAB with the base station facilitating
distancemeasurement for each receiver. A Throughput Power
Allocation (TPA) strategy is implemented to optimize system
throughput. The optimization problem is maximizing the sum
of the logarithmic function of one plus the SINR for each
device. Critical parameters in this formulation include the
power allocation vector (P), channel gain (hi), noise power
(σ 2), and interference (Ii). The Rayleigh fading model is
applied to represent realistic signal propagation in urban
environments characterized by multiple signal paths and
varying signal amplitudes.

Figure 2 depicts the D2D pairs, determined based on the
minimal distance between transmitter and receiver.MATLAB
calculates these distances with the base station’s assistance,
identifying the shortest distance for each receiver.
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TPA strategy maximizes system throughput by allocating
power to devices or users. The optimization problem for TPA
is expressed as:

max
P

N∑
i=1

log2

(
1 +

Pihi
σ 2 + Ii

)
(11)

where:
• P: Power allocation vector.
• Pi: Power allocated to the i-th device or user.
• hi: Channel gain for the i-th user.
• σ 2: Noise power.
• Ii: Interference experienced by the i-th user.
The Rayleigh fading model is applied to simulate

real-world wireless communication environments. In this
model, the amplitude varies rapidly, causing the received
signal strength to fluctuate. This fluctuation is due to multiple
signal paths’ constructive and destructive interference. The
Rayleigh fading model is particularly suitable for urban
environments with many obstructions, and the signal can take
various paths to reach the receiver. The channel coefficient
is a complex Gaussian random variable with zero mean and
variance equivalent to the path loss. From this, we derive the
channel gain, represented by hi,j [23].

b: SIMPLIFIED EXAMPLE CALCULATION
Consider a scenario with 10 D2D pairs in a cell and a total
bandwidth of 20 MHz. The bandwidth allocation per D2D
pair would be 20 MHz

10 = 2 MHz. This illustrates an equal
distribution of resources among the D2D pairs in the underlay
scenario.

2) SECOND SIMULATION SCENARIO: AUTONOMOUS D2D
COMMUNICATION IN POST-SEISMIC ENVIRONMENTS
In this scenario, we design an autonomous network capable of
operating even when the central base station is compromised,
making it particularly suitable for environments affected by
post-seismic vibrations, such as aftershocks following an
earthquake. The network operates within the FR2 (Frequency
Range 2) frequency range, which spans from 24.25 GHz to
52.6GHz, focusing on the 28GHz frequency and a bandwidth
of BW = 0.5 GHz.

a: SIMULATION LAYOUT
The simulated cell includes randomly distributed obstacles
based on Poisson Point Processes, with about 35 barriers per
simulation. The algorithm identifies the closest DRn − DTm
pairs from an initial set of 30 D2D devices and computes path
loss using parameters like floating intercept (δ), signal slope
(β), and log-normal shadowing (σ ). Channel gains are then
estimated for resource management.

Figure 3 illustrates the cell layout with obstacles distributed
based on the Poisson Point Processes (PPPs). On average,
35 square-shaped barriers are introduced during the simula-
tion, simplifying comparisons by correlating the coordinates
of their corners to the universal network users’ coordinates.

FIGURE 3. Cell layout in challenging environments.

For D2D communication, optimal connections are typi-
cally within a 200m range. However, interference can impact
receivers even from greater distances. The system identifies
the nearest DRn − DTm pairs, reducing the original set
of 30 D2D devices to a smaller subset, N ′.

The algorithm uses the recorded distances to compute the
path loss for each communication channel. The parameters
include:

• δ: Floating intercept, representing the path loss at a
reference distance.

• β: Signal slope, indicating the rate at which the path loss
increases with distance.

• σ : Log-normal shadowing, capturing the variability in
path loss due to obstacles and terrain.

After categorizing the channels, channel gains are esti-
mated using the system’s channel coefficients.

Resource management simplifies power distribution for
optimal throughput across conventional and D2D channels
based on each channel’s path loss. The base station evaluates
and aggregates each link’s loss to determine the total power
distribution.

The final SINR is calculated as:

SINR =
Signal

Noise + Interference
(12)

This SINR metric is then used to compute the channel
capacity:

C = W log(1 + SINR) (13)

b: SIMPLIFIED EXAMPLE CALCULATION
For a D2D pair at a distance of 100m, with a path loss
exponent of 3, the path loss would be 10× 3× log10(100) =

60 dB. This calculation highlights the consideration of
distance in resource allocation in post-seismic scenarios.

E. DESCRIPTION OF POWER ALLOCATION SCHEMES
Our study evaluates three distinct power allocation schemes:
Random, Path Loss, and Gale-Shapley. Each scheme
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optimizes resource allocation in D2D communication within
5G networks.

1) RANDOM POWER ALLOCATION
This scheme allocates power to devices randomly without
considering network conditions or specific device needs.
While simple, it can lead to inefficient network performance
due to its non-strategic nature.

2) PATH LOSS-BASED POWER ALLOCATION
This more systematic approach adjusts power levels accord-
ing to the estimated path loss, ensuring adequate signal
strength while minimizing interference. It’s designed to
improve signal reliability and overall network efficiency.

3) GALE-SHAPLEY POWER ALLOCATION
Adapting the Gale-Shapley matching algorithm, this scheme
optimizes resource allocation by efficiently pairing transmit-
ters and receivers. It considers factors like signal strength,
device proximity, and potential data rates for an efficient
distribution of resources.

Each power allocation scheme offers unique benefits
and impacts network performance differently in 5G D2D
communication. The study aims to identify the most effective
method for enhancing network efficiency and user experience
by comparing these diverse allocation strategies.

VII. SIMULATION RESULTS
In our study, we conducted simulations to compare three
different power allocation approaches–Gale-Shapley Power
Allocation, Path-Loss Power Allocation, and Random
Power Allocation–in two distinct environments: a stan-
dard accessible environment and an urban environment.
These simulations were vital in understanding the effec-
tiveness of each allocation strategy under varying network
conditions.

A. METHOD SELECTION FOR PERFORMANCE
COMPARISON
1) RANDOM POWER ALLOCATION

• Reason for Selection: Random Power Allocation was
chosen for its fundamental and simplistic approach.
It represents a baseline or control scenario in power
allocation, where power levels are assigned arbitrarily
to communication devices without specific regard to
network conditions or device requirements.

• Utility in Comparison: The simplicity of this method,
which does not require complex calculations, starkly
contrasts with more sophisticated algorithms. Its inclu-
sion in the comparison is essential to illustrate the
potential inefficiencies and suboptimal performance
outcomes, especially in scenarios requiring meticulous
resource management. This method serves as a bench-
mark to highlight the improvements and advancements
offered by more systematic approaches.

2) PATH LOSS-BASED POWER ALLOCATION
• Reason for Selection: This method was selected due to
its systematic approach and widespread use in current
network technologies. Path Loss-Based Power Alloca-
tion adjusts power levels based on the estimated path
loss between devices to provide sufficient signal strength
while minimizing interference with other devices.

• Utility in Comparison: As a more advanced and
commonly used method than random allocation, Path
Loss-Based Power Allocation offers a realistic and
practical benchmark for evaluating the efficiency and
effectiveness of new allocation strategies. Its inclusion
helps assess the performance of the Gale-Shapley
Power Allocation method in scenarios that more closely
mimic real-world network conditions. This method is
especially relevant for its focus on enhancing signal
reliability and network efficiency, providing a compre-
hensive basis for comparison.

3) GALE-SHAPLEY POWER ALLOCATION
• Contextual Adaptation: The Gale-Shapley Power
Allocation, our proposed method, is an innovative adap-
tation of the Gale-Shapley matching algorithm, known
for solving the stable marriage problem. In the context of
power allocation, this method optimizes network-wide
resource utilization by intelligently pairing transmitters
and receivers.

• Consideration of Advanced Factors: Unlike the other
two methods, Gale-Shapley Power Allocation considers
complex factors such as signal strength, proximity, and
potential data rates, aiming for an efficient and equitable
distribution of resources across the network.

a: IMPLICATIONS OF THE COMPARISON
The comparison of these three methods allows for a nuanced
understanding of the trade-offs and benefits associated
with each approach. By contrasting the simplistic Random
Power Allocation and the more traditional Path Loss-Based
Power Allocation with the innovative Gale-Shapley Power
Allocation, we aim to demonstrate the advancements in
efficiency, fairness, and adaptability our proposed method
brings to 5G D2D communication networks.

B. EXPANDED EXPLANATION OF SIMULATION DETAILS
1) SIMULATION ENVIRONMENT AND SETUP
We employed Matlab to replicate a D2D network model in
our simulations. The simulated environment encompassed
51, including D2D transmitters and receivers, and a base
station configured to mimic a realistic 5G network setting.

2) MODELS AND PARAMETERS USED
We utilized channel models and, where applicable, mobility
models to reflect the dynamic nature of D2D communication.
Key simulation parameters included transmission power
levels, operating frequency bands, and path loss models.
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FIGURE 4. The capacity results of the first scenario.

These parameters were carefully chosen to mirror real-world
5G network conditions.

3) IMPLEMENTATION OF POWER ALLOCATION SCHEMES
Our simulations compared three power allocation strategies:
Random, Path-Loss, and Gale-Shapley. Each scheme was
integrated into the network model, with specific rules and
criteria guiding the power allocation process.

4) SIMULATION PROCEDURES AND SCENARIOS
The simulations were initiated by setting up the network
environment and parameters. We then executed different
scenarios to assess the performance of each power allocation
strategy. These scenarios were designed to test the effective-
ness of our novel approach under varying network conditions.

5) DATA COLLECTION AND ANALYSIS METHODS
During the simulations, we collected data on key performance
indicators such as throughput, latency, and energy efficiency.
The data was analyzed to evaluate the effectiveness of
each power allocation strategy and validate our proposed
approach.

6) RELEVANCE TO THE PROPOSED APPROACH
The simulation results serve as a crucial proof of concept
for our novel approach. They demonstrate our methodology’s
potential advantages and improvements over existing power
allocation strategies in 5G networks.

C. CAPACITY ANALYSIS IN DIFFERENT ENVIRONMENTS
1) FIRST SCENARIO: STANDARD ENVIRONMENT
In the first scenario, our analysis revealed that the
Gale-Shapley Power Allocation strategy generally provided
a more stable network capacity than Path-Loss and Random
Power Allocation methods. Figure 4 shows these results,
illustrating that while Gale-Shapley Power Allocation did not
consistently achieve the highest capacities, its performance

FIGURE 5. Power allocation strategies across D2D pairs for the first
scenario.

wasmore consistent across iterations, indicating its reliability
in standard network conditions. Conversely, Path-Loss and
Random Power Allocation strategies showed higher vari-
ability in their performance. These strategies occasionally
reached peak capacities but were less predictable, suggesting
they might be more suited to scenarios where network
conditions frequently change or environments requiring
quick adaptation to varying loads. The ‘‘Count of Iterations’’
in this context refers to the number of iterations performed
in the simulation process, with a total of 50 epochs and
2000 iterations each, summing up to 100,000 iterations for
a robust set of data for analysis.

In Figure 5, we observe the power allocation strategies for
D2D communication pairs in the First Scenario. The Random
Power Allocation (PA), Path-Loss PA, and Gale-Shapley PA
are compared against the minimum and maximum power
thresholds. The count of pairs is plotted along the x-axis,
and the power amplitude in Watts is plotted along the
y-axis. It is evident that the Gale-Shapley PA closely follows
the Path-Loss PA, with both strategies maintaining power
levels within a tight range, thereby conserving energy while
ensuring signal reliability. The Random PA exhibits more
variability, indicating a non-deterministic approach to power
allocation.

2) SECOND SCENARIO: URBAN ENVIRONMENT
We observed similar patterns in the urban environment
scenario, as depicted in Figure 6. The Gale-Shapley Power
Allocation demonstrated its potential effectiveness in urban
settings by maintaining more stable network capacities
over iterations. This finding underscores its suitability for
urban environments where consistent network performance
is critical. While generally showing lower overall capacities,
the Path-Loss and Random Power Allocation strategies
provided insights into their potential utility in specific
urban scenarios. For example, the Path-Loss strategy may
be beneficial in scenarios prioritizing energy conservation,
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FIGURE 6. The capacity results of the second scenario.

FIGURE 7. Power allocation strategies across D2D pairs for the second
scenario.

while the Random approach could be advantageous for its
adaptability in dynamic urban networks. The ‘‘Count of
Iterations’’ again denotes the number of times the simulation
was run, with results being aggregated or averaged over every
5 iterations to smooth out the results for better visualization
and understanding.

The results in Figures 4 and 6 are portrayed for ‘n x 5 itera-
tions’, meaning the data is aggregated or averaged over every
5 iterations. This data representation method is typically
used to smooth out the results, making them easier to
visualize and interpret. Doing so reduces the noise in the
data, providing a clearer picture of the underlying trends and
patterns. In the context of this study, this approach would help
better understand the stability and performance of different
power allocation strategies (like Gale-Shapley, Path-Loss,
and Random) over many iterations, particularly highlighting
their consistency and variability in network capacities.

Figure 7 showcases the power allocation strategies
for D2D pairs in the Second Scenario. This scenario

depicts a sub-optimal operational state, such as during
a disaster-induced network disruption. The graph plots
the power amplitude against the count of D2D pairs.
Unlike First Scenario, we see a more distinctive separation
between the Path-Loss PA and Gale-Shapley PA, particularly
after the 15th pair. The Gale-Shapley PA demonstrates
a significant increase in power allocation before a sharp
decline, indicating adaptive power management in response
to challenging network conditions. The Path-Loss PA main-
tains a conservative approach throughout, prioritizing energy
efficiency.

D. ENERGY DISTRIBUTION ANALYSIS
The energy distribution analysis in both scenarios highlighted
distinct patterns for each power allocation strategy. The
Gale-Shapley method balanced energy conservation and
optimal performance, making it a versatile choice for various
network scenarios. The Path-Loss strategy, with its con-
servative power allocation, appeared suitable for scenarios
where energy efficiency is a priority. In contrast, with
its inherent unpredictability, the Random Power Allocation
strategy could be advantageous in networks characterized by
frequent changes.

E. PATH LOSS ANALYSIS
Our path loss analysis played a crucial role in understanding
the impact of environmental factors, especially in urban set-
tings. It was observed that path loss significantly influences
network performance, particularly in scenarios involving
high-frequency bands like 28GHz. This analysis provided
valuable insights for optimizing network configurations and
ensuring reliable connectivity in standard and challenging
environments.

While our path loss analysis primarily focuses on scenarios
involving high-frequency bands like 28GHz, it’s essential to
clarify the use of path loss models derived from Vehicle-
to-Vehicle (V2V) mmWave communications. These models
are particularly relevant to our study of D2D communication
in 5G networks due to their comprehensive approach to
high-frequency signal behavior, which is analogous to the
challenges faced inD2D contexts. TheV2VmmWavemodels
offer detailed insights into signal propagation in environ-
ments typical of 5G networks, such as urban areas with dense
building structures and varied topologies. By employing
these models, we aim to accurately simulate and analyze
the D2D communication dynamics in 5G networks, ensuring
that our findings are grounded in realistic and applicable
scenarios.

In summary, our simulation results reveal that the choice
of power allocation strategy should be context-dependent,
carefully considering the specific network conditions and
operational requirements. The findings from our study
contribute to a deeper understanding of power allocation
strategies in 5G networks, particularly in the context of D2D
communication.
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F. NOVELTY IN PATH LOSS ANALYSIS
In our research, the path loss analysis undertaken is
distinguished by several novel elements that specifically cater
to the challenges of 5G D2D communication:

1) Adaptation to 5G D2D Context: We have extended
traditional path loss models to the specific dynamics
of 5G D2D communication. This adaptation involved
tailoring the path loss calculations to account for the
unique characteristics of D2D links, such as device
proximity, frequency of interaction, and the urban or
varied environments in which these devices operate.
Specifically, our model considers the frequency of
interaction by accounting for the variable nature of
D2D communications in terms of proximity and
environmental factors, ensuring that our path loss
estimates reflect the dynamic D2D communication
scenarios.

2) Integration of Advanced Models: Our research
incorporates cutting-edge path loss models particularly
suited to high-frequency bands like mmWave, integral
to 5G technology. These models include a nuanced
understanding of factors such as shadowing, multipath
fading, and building penetration loss, which are
critical in urban settings. Incorporating V2V mmWave
communication models into our path loss analysis is
particularly significant, as these models offer detailed
insights into signal propagation in environments typical
of 5G networks, such as urban areas with dense
building structures and varied topologies.

3) Scenario-Specific Analysis: We have conducted
scenario-specific analyses beyond generic path loss
calculations. This includes examining how path
loss varies in different real-world situations, such
as high-density urban areas, indoor environments,
or during mobility. This approach is vital for
designing efficient D2D communication strategies in
5G networks, ensuring that our path loss models are
applicable and reliable across various scenarios.

4) Empirical Validation: To reinforce the practical rele-
vance of our theoretical analysis, we have validated our
path loss models against empirical data from real-world
scenarios. This empirical validation ensures that our
findings apply to actual 5GD2D deployment strategies,
providing evidence for the accuracy and reliability of
our path loss models in practical settings.

5) Contribution to Resource Allocation Strategies:
The insights gained from our path loss analysis
have directly informed the development of innovative
resource allocation strategies in D2D communication.
This includes the optimization of power allocation,
channel selection, and interference management. Our
analysis plays a crucial role in these strategies by
providing accurate path loss estimates, essential for
adequate power and channel management in 5G D2D
communication networks.

In summary, our research not only adapts and extends
traditional path loss models for 5G D2D contexts but also
validates these models with empirical data and integrates
them into practical resource allocation strategies, offering
a comprehensive approach to understanding and improving
D2D communication in 5G networks.

G. TRADE-OFFS IN THE ADAPTED GALE-SHAPLEY
ALGORITHM FOR D2D COMMUNICATION
While the adapted Gale-Shapley algorithm presents several
advantages for D2D communication within 5G networks, it is
essential to recognize the inherent trade-offs accompanying
its implementation. The benefits of improved network
efficiency and user experience must be balanced against
potential limitations and drawbacks.

• Computational Complexity: The Gale-Shapley
algorithm, being iterative, can result in increased
computational overhead compared to simpler allocation
strategies. This has implications for the algorithm’s
scalability in large-scale networks with many devices.
Compared to other methods, a quantitative assessment
of this overhead is necessary to contextualize its impact
on the network’s operational efficiency.

• Convergence Time: The iterative process to reach stable
matches means that the convergence time might be
longer, especially in dynamic environments where user
preferences and network conditions change rapidly. This
aspect is critical as it can influence the network’s capac-
ity to adapt to changing conditions. Providing specific
metrics on convergence times in various scenarios would
aid in understanding its practical impacts.

• Responsiveness to Real-Time Changes: While the
algorithm is adaptive, there is an inherent delay in
responding to real-time changes due to the need for
re-computation. This may affect the algorithm’s per-
formance in highly volatile scenarios. Quantifying this
responsiveness and comparing it with other allocation
strategies can provide a clearer picture of its suitability
in different network environments.

• Optimality vs. Fairness: The algorithm aims to balance
optimality in resource allocation with fairness among
users. In scenarios with diverse QoS requirements,
achieving this balance may necessitate compromises.
Evaluating the algorithm’s performance in network
capacity and fairness metrics can shed light on the
practical trade-offs involved.

These trade-offs highlight the importance of context when
deploying the adapted Gale-Shapley algorithm. For instance,
the additional computational time may be a significant
consideration in networks where latency is critical. Similarly,
the convergence delay could impact the service quality in
highly dynamic network conditions.

Future work could focus on optimizing the algorithm’s
performance to mitigate these trade-offs. This could
involve employing parallel processing techniques to reduce
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computational time or heuristic methods to accelerate conver-
gence. The goal is to refine the algorithm further to harness
its advantages while minimizing its limitations for practical
application in 5G D2D communications. An empirical
evaluation of these aspects, including specific performance
metrics and comparisons with existing solutions, would
significantly enhance the understanding of the algorithm’s
practicality in real-world scenarios.

VIII. CONCLUSION
This research on optimizing power allocation in 5G networks
through D2D communication has unearthed significant
advancements in wireless communications, particularly for
5G systems. By integrating D2D communication with
the modified Gale-Shapley algorithm, our study conserves
network resources and enhances direct terminal connections,
leading to more robust and reliable data transmission.

Through comprehensive MATLAB simulations, we
demonstrated the effectiveness of D2D communication
within the mmWave frequency band. The results showed
consistent achievement of high network capacities, ranging
from 150 to 180 Mbps under standard conditions and 110 to
140 Mbps in disaster scenarios. These findings underscore
the significant potential of our proposed approach to improve
the performance and reliability of 5G systems.

Our research contributes to the evolving field of wireless
communication methodologies, where D2D communication
is a transformative approach. This strategy is promising
for future 5G and beyond cellular systems, enabling direct
interactions between nearby devices and optimizing spectrum
utilization. It opens avenues for innovative applications,
including vehicular networking and public safety, and
advances the Internet of Things (IoT) into a new era of
connectivity.

The study presents a pioneering framework for power
distribution in D2D communication within NOMA frame-
works. Integrating a refined Gale-Shapley algorithm with
path loss models and MINLP optimization, this framework
offers a resilient solution for diverse network scenarios.
It highlights our commitment to advancing efficient, reliable,
and optimized wireless communication, paramount in our
increasingly interconnected world.
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