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ABSTRACT Inspection for cracks is an essential yet labor-intensive aspect of maintenance for structures
in active service bridges. Deep learning networks, combined with an abundance of segmented image data
representing various types of cracks, enable the development of a computer vision-based solution. Often,
segmentation data is scarce and requires a great deal of time to annotate. This paper introduces a novel
approach to structural crack detection using synthetic data generation and advanced semantic segmentation
models. We employ StyleGAN3 and the Brownian Bridge Diffusion Model (BBDM) to create a diverse
and realistic dataset of synthetic structural crack images, addressing the critical challenge of creating
segmentation data in training deep learning models for crack detection. Our methodology is based upon the
DeepLabV3+, i.e., a semantic segmentation architecture that builds on DeepLabv3 by adding a simple yet
effective decoder module to enhance segmentation results. The original DeepLabV3+ model is insufficient
and thus, we first perform a meticulous hyperparameter tuning, which is responsible for about a 10%
increase in overall performance. Next, we generate multiple image-to-image translations with BBDMs
synthetic datasets and pair them with a set of fine-selected data augmentation techniques, including motion,
zoom, and defocus blur, to improve crack segmentation performance. When compared to the state-of-the-
art latest work on the same database that achieved an accuracy of 61.49%, our proposed work attains a
Mean Intersection over Union (MeanIoU) accuracy of 65.62% through ensemble modeling on multiple
synthesized datasets, employing a majority voting strategy. We also showcase the potential of diffusion
models in synthetically generated datasets that elevate semantic segmentation accuracy and introduce blur
augmentation as a viable technique for enhancing model robustness. The results indicate that our approach
not only surpasses conventional methods in terms of MeanIoU but also offers a new avenue of research into
diffusion-model-based synthetic image generation for improved semantic segmentation performance.

INDEX TERMS StyleGAN, DeepLabV3+, synthetic data generation, hyperparameter tuning, Brownian
bridge diffusion model, semantic segmentation, data augmentation, ensemble modeling, structural crack
detection.

I. INTRODUCTION
Structural safety is of paramount importance in the industrial
community, particularly in the context of in-service bridges.
Ensuring the integrity of these structures is vital to preventing
accidents and maintaining the safety of people and goods
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that rely on them. Among the many challenges faced in this
domain, the detection of structural cracks stands out as a criti-
cal concern. The early identification andmonitoring of cracks
can significantly contribute to the longevity and reliability of
these infrastructure assets. Conventional methods use visual
inspection (traditional visual inspection methods involve
human inspectors visually examining bridge components for
cracks and anomalies), Non-Destructive Testing (NDT), i.e.,
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techniques such as ultrasonic testing, radiography, and mag-
netic particle inspection, acoustic emission testing, vibration
analysis, and other [1]. All the aforementioned approaches
are limited due to various reasons. Visual inspections, being
subjective and reliant on individual expertise, may result in
inconsistencies. Non-destructive testing methods often face
limitations in coverage and accessibility, proving challenging
for comprehensive inspections. Moreover, these traditional
approaches can be time-consuming, labor-intensive, sensitive
to environmental conditions, and may lack the sensitivity
to detect early-stage or hidden cracks. In contrast, image
processing and deep learning offer advantages in terms of
automation, objectivity, continuous monitoring, and adapt-
ability, making them valuable alternatives or complementary
solutions to traditional crack detection techniques in bridge
maintenance. Even though such a solution is attractive, this
task is far from straightforward, as it involves both data
collection and annotation.

The original approach to structural crack detection using
deep learning often requires extensive data collection, which
can be time-consuming and resource-intensive. Gathering a
substantial number of crack images is essential for training
deep learning-based crack detection systems; this approach
has emerged as a promising solution to the problem.
These novel deep learning architectures have the potential
to autonomously learn to detect cracks, but they demand
large datasets to acquire a comprehensive understanding
of the diverse features and patterns associated with real-
world cracks [2]. Moreover, the complexity of the task is
compounded when we introduce variable noise factors from
data collection such as motion blur, defocus blur, and zoom
blur.

While significant strides have been made in the field of
deep learning-based crack detection, one primary research
paper has pioneered a novel approach [3]. This paper presents
a diffusion model-based method for creating a synthesized
crack image dataset with pixel-wise annotations. This inno-
vative approach complements traditional data augmentation
techniques and offers a different perspective on addressing
the challenges of creating segmentation data.

Jin et al. [3] employed a Deep Convolutional GAN
(DCGAN) to generate synthesized crack annotations while
using a Pixel2Pixel [4] model to create corresponding
synthesized crack images. They meticulously documented
the learning process of these GANs during training, revealing
how they adapt to generate synthesized images that mimic
real-world crack patterns. Importantly, they also conducted a
comparative study to assess the performance of Deep Neural
Networks (DNNs) trained with this synthesized dataset. Their
research explores different approaches to using synthesized
and real crack images for training DNNs, with a notable
finding that pre-training with synthesized images followed
by fine-tuning with real images outperforms direct mixing of
both types.

As we discuss in the literature review section, there is
extensive research showing the capabilities of DNNs in

crack segmentation, but a gap remains for us to explore the
capabilities of diffusion-based synthesized datasets.

Building upon the foundation laid by the aforementioned
research, our work endeavors to take diffusion-based syn-
thetic crack data generation and semantic segmentation to
new heights through newer hyper-tuned models, augmen-
tation techniques, and ensemble modeling. While the most
recent paper [3] made significant strides in introducing GANs
for generating synthetic crack data and their application in
segmentation, there are a set of limitations that we address.
These limitations include limited hyperparameter tuning,
the absence of performance ensemble modeling, insuffi-
cient augmentation studies, and a lack of exploration into
diffusion-based synthetic image data generation approaches.

A. CONTRIBUTIONS
Our approach introduced in this paper makes several signif-
icant contributions to the field of structural crack detection
using deep learning and synthetic data generation:

1) Novel Approach to Synthetic Data Generation: Amajor
contribution of this research is the implementation of
StyleGAN3 and the BBDM for generating synthetic
crack images. Harnessing StyleGAN3, we generate
mask annotations that provide precise information
about the crack regions. Simultaneously, we employ
BBDM to create synthetic real images corresponding to
these mask annotations. This novel approach success-
fully addresses the challenge of creating segmentation
data, which is a critical limitation in training deep learn-
ing models for accurate and reliable crack detection.

2) Enhanced Performance through Hyperparameter Tun-
ing of DeepLabV3+: The research demonstrates the
substantial impact of hyperparameter tuning on the
performance of the DeepLabV3+ model. We exper-
iment with various hyperparameters, like changing
backbones and optimizers, and incorporate data aug-
mentationwith the goal of enhancing semantic segmen-
tation accuracy. Meticulous optimization of various
hyperparameters has led to a 9% improvement inmodel
accuracy, underscoring the importance of fine-tuning in
semantic segmentation tasks.

3) Blur Data Augmentation Technique in the Context of
Synthesized Dataset: The study introduces blur data
augmentation techniques, including motion, zoom,
and defocus blur, specifically applied to synthesized
datasets. This method enhances the robustness of
the models, making them more adept at handling
real-world variations in image quality and contributing
to the improvement in segmentation performance.

4) Ensemble Modeling on Augmented Synthesized
Datasets: A pivotal aspect of the research is the
application of ensemblemodeling techniques tomodels
trained on data-augmented synthesized datasets.
By leveraging the strengths of multiple models
through ensemble modeling, particularly with majority
voting, the study achieves notable enhancements in
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MeanIoU accuracy. This demonstrates the efficacy of
ensemble modeling in extracting maximum value from
synthesized, augmented data.

5) Diffusion-Based Synthetic Image Data Generation:
The application of BBDM in the context of synthetic
data generation represents a pioneering exploration in
the field. This research showcases the capabilities of
diffusion models in generating high-fidelity, diverse
crack images, paving the way for broader applications
of diffusion-model-based image generation in machine
learning and semantic segmentation.

We present a comprehensive solution that tackles the
challenge of generating segmentation data in structural crack
detection through the innovative use of ensemble learning.
By integrating multiple models, each trained on distinct
datasets comprising both real and synthetically generated
images, we significantly enhance the performance of crack
detection systems using ensemble modeling. This ensemble
approach not only diversifies the training data but also
combines the unique strengths of individual models to
improve overall accuracy and robustness.

Our results demonstrate the highest recorded performance
on the Bridge Crack Library (BCL) dataset [5], achieving
a MeanIoU of 65.62%, which sets a new benchmark in
structural crack detection. This breakthrough illustrates the
efficacy of our method in addressing the perennial issue
of limited data availability, a hurdle that has long impeded
progress in applying deep learning techniques to real-world
structural safety challenges. By leveraging the synergy
of multiple models trained on a rich mix of real and
augmented synthetic data, we provide a path forward for
the effective application of deep learning in scenarios where
high-quality, segmented data is scarce or difficult to obtain.
Our approach not only advances the field of structural crack
detection but also offers a blueprint for tackling similar
challenges across various domains where data limitations
persist.

II. LITERATURE REVIEW
A. NETWORK TUNING AND ARCHITECTURE
The recent advancements in network tuning and archi-
tecture for semantic segmentation play a pivotal role
in enhancing the accuracy and efficiency of structural
crack detection. This section delves into various inno-
vative approaches and modifications to existing models,
focusing on their application in the precise identifica-
tion and segmentation of structural cracks. Several sub-
sequent papers have contributed to the advancement of
semantic segmentation models crucial for structural crack
detection.

DeepLabV3+ [6], with its integration of spatial pyramid
pooling and depthwise separable convolution in both ASPP
and decoder modules, has demonstrated notable performance
on benchmark datasets, making it a preferred choice for
crack segmentation. Further enhancements, such as those
by Fu et al. [7], who introduced a densely connected

ASPP to DeepLabV3+, and comprehensive evaluations by
Wang et al. [8] across various crack detection domains,
underline the model’s adaptability and efficacy.

The efficacy of different backbone architectures in
DeepLabV3+ has been explored, with studies such as
Atik et al. [9] assessing the performance across ResNet [10],
Xception [11], and MobileNetV2 [12] backbones, and
Nie et al. [13] comparing ResNet, DenseNet, and Efficient-
Net [14] for defect detection. These studies highlight the
impact of backbone choice on segmentation performance.
Beyond traditional architectures, Ye et al. [15] introduced the
Pruned Crack Recognition Network (PCR-Net), optimized
for mobile devices, showcasing the potential for on-site,
efficient crack detection utilizing edge computing and deep
learning.

Ensemble learning has emerged as a successful strategy for
improving semantic segmentation outcomes. Fan et al. [16]
and Hirata and Takahashi [17] demonstrated the effectiveness
of combining specialized CNNs for fine crack structure
detection, achieving high precision and recall. Similarly,
Kailkhura et al. [18], and Rodriguez-Lozano et al. [19]
utilized ensemble methods, such as averaging and major-
ity voting with pre-trained CNN models, to significantly
uplift model accuracy and performance metrics in concrete
crack and road pavement detection. Li et al. [20] study
addresses the challenge of tunnel crack detection, an area
that’s crucial for maintaining tunnel safety but presents
unique challenges compared to more studied pavement crack
detection. Additionally, we saw Maarouf and Hachouf [21]
proposed a transfer learning-based ensemble deep learning
approach to improve segmentation using four pre-trained
deep CNN architectures AlexNet [22], GoogleNet [23],
VGG16 [24], and ResNet50 for increased segmentation
performance. Drawing inspiration from the aforementioned
studies, this research has employed a strategic approach to
ensemble learning to enhance crack detection accuracy.

These contributions collectively underscore the dynamic
nature of network architecture and tuning in semantic seg-
mentation, emphasizing the role of DeepLab enhancements,
backbone diversity, and ensemble methods in pushing the
boundaries of crack detection technology.

B. MODELS FOR CRACK SEGMENTATION
The field of crack segmentation has witnessed substantial
advancements through the application of deep learning,
particularly Convolutional Neural Networks (CNNs), for
structural integrity assessment. Various models have been
developed to address the complexities of crack detection
across different surfaces and contexts.

Central to these advancements are U-Net and its enhance-
ments, which have become foundational in the development
of crack segmentation models. The U-Net architecture,
introduced by Ronneberger et al. [25], has been pivotal in
this evolution, with further contributions by Tang et al. [26]
with Crack Unet, Han et al. [27] with CrackW-Net, and
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Liu et al. [28] with YoloV3 [29], each demonstrating
significant improvements in segmentation accuracy and
operational efficiency in diverse crack domains.

Beyond U-Net-based models, the field has seen the
introduction of several innovative architectures. For instance,
Lau et al. [30] propose a network incorporating a pre-trained
ResNet-34, andWang and Su [31] utilize a Pyramid Attention
Network which employs Densenet 121 [32]. Additionally,
models like CrackU-net by Huyan et al. [33], SDDNet by
Choi and Cha [34], and RUC-Net by Yu et al. [35] further
expand the toolkit available for crack segmentation, each
bringing unique enhancements to tackle the intricacies of
crack detection.

These models have proved to be very successful in
pixel-wise pavement segmentation [35], [36], [37], [38], [39],
[40], [41], [42]. In another similar domain, Zhang et al. [43]
and Shi et al. [44] assessed their models by detecting cracks
in roads.

The contributions of DeepCrack by Liu et al. [45], offering
a hierarchical feature learning architecture, and CrackSegAN
by Pan et al. [46], employing a GAN-based approach,
underscore the importance of hierarchical feature learning
and generative models in achieving high precision in crack
segmentation. Furthermore, Ali et al. [2] emphasize the
significance of evaluationmetrics such as accuracy, precision,
recall, and F1-Score, particularly in the context of imbalanced
datasets, highlighting the necessity of balanced detection
sensitivity and specificity.

In a primarily CNN-dominant field, diffusion-based
methods are establishing themselves as candidates for
enhancing image segmentation tasks. Yu et al. [47] explored
diffusion-based data augmentation for nuclei image segmen-
tation. The study is pioneering in applying a diffusion-based
method for data augmentation in the context of nuclei seg-
mentation. This method is used to generate synthetic, labeled
images to enhance training datasets. By synthesizing addi-
tional training data, this approach effectively circumvents the
limitations imposed by the need for extensive manual label-
ing. The research demonstrates that augmenting just 10% of
a labeled real dataset with these synthetic samples can yield
segmentation results comparable to a fully supervised base-
line. Dhariwal and Nichol [48] demonstrated the superiority
of diffusion models when compared to deep learning models.
Dhariwal and Nichol’s paper is a landmark in the field of
artificial intelligence andmachine learning, specifically in the
sub-domain of generative modeling. Together, these papers
demonstrate the potential of diffusion models in machine
learning. Diffusion-based methods have shown promise in
enhancing image segmentation tasks, which inspired their
incorporation into this study to explore new frontiers in image
analysis and data synthesis. As diffusion models represent a
cutting-edge advancement in the field of image generation,
our study is among the pioneering efforts to leverage
these models for creating diffusion model-based image
datasets specifically tailored for semantic segmentation
tasks.

C. DATA SYNTHESIS IN VARIOUS DOMAINS
The ability to generate synthetic images not only addresses
the growing demand for high-quality, diverse datasets but
also presents a solution to the challenges of data scarcity
and privacy concerns. From healthcare to environmental
studies, the creation and manipulation of image data through
advanced computational methods have opened new avenues
for research and application. Data synthesis has shown
promise in various domains.

Ding et al. [49] and Fetty et al. [50] have made notable
strides in medical imaging by introducing synthetic datasets
for pathological and radiological images, respectively, utiliz-
ing StyleGAN variants and a Nuclei Annotator (NA) using
HoVer-Net [51] for their generation and segmetation. This
approach mitigates the reliance on extensive, labor-intensive
human annotations and addresses data availability issues due
to privacy concerns, showcasing the potential of generative
adversarial networks (GANs) in medical data synthesis.

Further advancements by Karras et al. [52] with Style-
GAN3 aims at enhancing image quality by eliminating
aliasing, indicating a leap in the realism of generated images.
Similarly, Xu et al. [53] extend the application of synthetic
data generators to scenarios such as dam surface crack
detection. Bartz et al. [54] trained a StyleGAN model to
synthesize historical document images. This synthetic dataset
was used to train various semantic segmentation networks,
such as Doc-UFCN [55], EMANet [56], and TransUNet [57],
tailored for specific tasks like line segmentation in historical
documents. These studies highlight the versatility of synthetic
data in training machine learning models across varied
applications.

Innovative approaches by Rombach et al. [58] and
Li et al. [59] introduce Latent Diffusion Models (LDMs)
and the Brownian Bridge Diffusion Model (BBDM) for
efficient high-resolution image synthesis and image-to-image
translation. These models represent significant advancements
in reducing computational demands and establishing direct
mappings between image domains without conditional gen-
eration processes, showcasing state-of-the-art performance in
a range of synthesis tasks.

Collectively, these studies highlight the effectiveness of
advanced generative models like StyleGAN and diffusion
methods in creating detailed, accurate synthetic datasets.
The success of these approaches in diverse applications
underscores the potential of data synthesis to overcome
the limitations of traditional data collection and annotation
methods, offering new avenues for research and application
in the realm of image generation and manipulation.

D. SYNTHESIS OF STRUCTURAL CRACK DATASETS FOR
ENHANCED DETECTION
Structural safety in the industrial sector, especially for
in-service bridges, is paramount, necessitating efficient
crack detection methods. However, conventional approaches
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demand extensive data collection, which often results in data
scarcity.

Zhai et al. [60] generated 3D synthetic data to improve
crack identification performance, and Pei et al. [61] proposed
a method for the virtual generation of pavement crack
images based on an improved deep convolutional generative
adversarial network (DCGAN).

Ye et al. [62] presented benchmark datasets for eval-
uating crack detection algorithms with the creation of
the Bridge Crack Library Dataset. This dataset is the
foundation upon which our data is generated. Shortly after,
pioneering work by Jin et al. [3] introduced generative
adversarial networks (GANs) for synthesizing crack datasets
with pixel-wise annotations, addressing the issue of data
scarcity. They propose a method that closely mirrors ours,
where they establish a pipeline of GANs for data synthesis.
They used Pix2Pix for synthesized mask image annotations
and DCGAN for synthesized crack image generation which
led to the development of Bridge Crack Library 2.0 (BCL
2.0) [63], a fully synthesized dataset derived from the
original BCL. This parallel in methodology ensures that
the comparison of segmentation performances between
BCL 2.0 and our generated datasets is based on a level
playing field, with both datasets benefiting from synthetic
generation. However, their segmentation performance was
evaluated on different architectures than our own. They used
PCR-Net, DeepLab, U-Net, and FCN [64] to assess their
BCL 2.0 dataset. Their best model, PCR-Net, achieved a
remarkable MeanIoU of 74.34%, surpassing models trained
on real images. Moreover, they found that pre-training
with synthesized images, followed by fine-tuning with real
images, proved more effective than mixing both the real and
synthesized datasets. It is important to note that the dataset
used by Jin et al. for their testing, comprising their own
set of 1000 images, is not publicly available, underscoring
a limitation in the generalization of their findings. This
discrepancy in dataset size could have implications for the
training depth and model robustness because, in our research,
1000 images of the training set had to be set aside for
testing.

In our study, we expand upon this approach by introducing
newer GANs, StyleGAN3, and a diffusion model, BBDM,
for image-to-image translation. Similarly, we generate a
synthetic dataset but take it one step further by applying
blurring. To assess our dataset, DeepLabV3+ was chosen
because of the accessibility and proven performance of this
architecture in semantic segmentation tasks. The PCR-Net
architecture, while yielding promising results, was not readily
available for implementation. Therefore, we opted for the
next most viable and accessible model, DeepLabV3+, which
is well-regarded in the field. This choice is validated by
the favorable results we achieved, particularly in comparison
with Jin’s [3] findings. Our model not only demonstrated
competitive performance but also highlighted the capability
of widely accessible models like DeepLabV3+ to achieve
high-precision results in complex segmentation tasks.

III. METHODOLOGY
We present a novel methodology for synthetic data generation
that circumvents the traditional data annotation process,
which can be very timely. Our methodology comprises a
multi-step process that can be found in Figure 3.

In the first step, we employ StyleGAN3 to train on crack
annotation images sourced from the BCL mask annotations.
The BCL mask annotations were created by Ye et al. [62].
Refer to Figure 2 and to the Bridge Crack Library Dataset
section for more details. This initial GAN-based step
generates annotation mask images, which serve as the
foundation for our subsequent synthetic data generation.
StyleGAN3 is particularly well suited for the precise task of
generating mask images because of its ability to reproduce
fine details, which makes it ideal for reproducing intricate
and varied patterns of cracks. In addition, StyleGAN3 is
capable of producing a diverse array of cracks, which is
crucial for training robust semantic models. We introduce a
BBDM into our pipeline, enabling the translation between
domains, specifically converting annotationmask images into
realistic synthetic structural crack images. This translation
step is critical for generating synthetic data that closely
resembles actual crack images in both texture and structure.
Unlike traditional methods that rely on conditional generation
processes, BBDM directly translates between two image
domains through a stochastic process. BBDM’s ability to
generate high-fidelity images ensures that the synthesized
crack images are realistic. This is the first time BBDM has
been used in the context of crack image data generation
and is also a first for diffusion-based crack image data
generation. In step two, we hyper-tune the DeepLabV3+
model using the data in Table 2 and then use the newly hyper-
tuned DeepLabV3+ model to train on the blur-augmented
synthesized datasets. Finally, we ensemble the trained model
predictions together using majority voting to garner the best
MeanIoU performance.

A. CREATING SYNTHESIZED DATASETS
1) STYLEGAN3
StyleGAN3 is an advanced variant of GANs known for
its ability to generate high-quality and diverse images.
StyleGAN3’s role in ourmethodology is to learn and replicate
the intricate patterns and characteristics present in crack
annotation images sourced from the BCL dataset. These
annotation mask images, which typically depict the outlines
and boundaries of structural cracks, are critical for subsequent
steps in our pipeline.

The choice of StyleGAN3 for generating synthetic mask
annotations of cracks is rooted in its advanced architectural
features. Unlike its predecessors, StyleGAN3 introduces
several significant innovations that enhance the quality
and stability of the generated images. A notable aspect
of StyleGAN3 is its redesigned generator architecture,
which incorporates an adaptive discriminator augmentation
mechanism. This mechanism is particularly effective in
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FIGURE 1. Overall methodology schematic: A 3-step process was implemented to produce a synthesized dataset with BBDM in the pixel and latent
spaces. In step one, StyleGAN3 is trained on the ground truth mask annotation images from the BCL dataset. Once trained, a noise vector is passed into
the model, and a new randomly generated mask annotation image is formed. The pixel and latent space BBDM were trained on the entire BCL dataset.
The newly generated mask annotations were randomly paired with a BCL crack image for inferencing purposes. The result is a synthesized BBDM crack
image dataset. Three additional blur-augmented datasets were created by copying the original synthesized BBDM crack dataset. In step two,
DeepLabV3+’s hyperparameters are tuned to improve overall segmentation accuracy. In step three, 8 different datasets, 4 from the pixel space BBDM
and 4 from the latent space BBDM, were trained using the new hyper-tuned DeepLabV3+. All the predictions from the models trained on the datasets
with blur augmentation were ensembled together to generate a final segmented crack image.

FIGURE 2. Bridge crack library sample images. The figure shows a
selection of images from the Bridge Crack Library, where each picture
captures different types of cracks found in materials like stone, concrete,
and metal. These pictures, all with the same size of 256 by 256 pixels, are
part of a big collection gathered from inspecting over 50 bridges. This
collection includes 5,769 non-steel crack images (as seen in row one),
2,036 steel crack images (as seen in row three), and 3,195 images
identified as noise. Each of these images also has an annotated pair as
seen in row two and four.

preventing overfitting, a common challenge when training
on a relatively small, specialized dataset like the BCL.
The network also includes refinements in the mapping and

synthesis networks, which contribute to the generation of
more detailed and varied images, enhancing the model’s
ability to produce diverse and realistic crack patterns.

2) TRAINING STYLEGAN3
The training process for StyleGAN3 is carried out over
multiple days using the following hardware: 4 NVIDIA
A6000 GPUs on Ubuntu. All images are processed at a
resolution of 256 by 256 pixels, and no preprocessing was
necessary to train on the BCL dataset. The batch size is set
to 16 to optimize GPU usage. The Gamma value is set to
8 to regularize the trade-off between fidelity and variety of
the synthesized images. Specifically, the gamma parameter
in StyleGAN3 plays a pivotal role in balancing the fidelity
and diversity of generated images. We choose a gamma
value of 8. For approximately 10,000 epochs, we observe a
progressive refinement in the quality of the generated images.
Initially, the images bore only a rudimentary resemblance to
crack patterns, but the final images exhibit a more defined
and realistic appearance, closely mimicking various types of
crack formations. In Figure 3, the sample synthesized mask
image results show a wide variety of cracks.

All the cracks are textured and resemble many different
types of damaged surfaces, including thin, thick, bifurcated,
rugged, and smooth cracks. All the cracks manifested in
the same orientation. To diversify the generated images,
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FIGURE 3. StyleGAN3 generated and rotated results. Each tile displays a distinct crack formation with varying orientations and morphologies, ranging
from linear to branched, from fine to wide cracks, and from smooth to rugged. The diversity in crack presentations simulates a wide array of real-world
conditions. The rotation of crack images in columns 12 through 22 exemplifies the model’s ability to depict varied crack orientations, enriching the
dataset’s diversity. Generating cracks uniformly across a single axis simplifies dataset compilation and ensures the model’s impartiality to crack
orientation, leading to a more reliable crack segmentation model.

we implemented a pragmatic approach involving data
augmentation. We applied random flips and rotations (0,
90, 180, and 270 degrees) to the input images. This
strategy introduced the necessary variability and randomness,
effectively ensuring a diverse representation of crack types,
as seen in Figure 3. This augmentation technique was
applied to all the synthesized mask annotations. The resulting
synthetic crack images exhibited a remarkable range of
textures and forms, closely resembling real-world crack
patterns, which demonstrates StyleGAN3’s capability to
produce a comprehensive set of synthetic annotations that can
robustly support various semantic segmentation tasks.

3) BBDM
The BBDM presents a novel architecture for image-to-image
translation, which is particularly relevant for our project
focused on generating synthetic crack images. This model
stands apart from conventional diffusion models because of
its unique handling of the image translation process. BBDM
has never been used in the context of crack image synthesis.

At the core of BBDM, the stochastic Brownian Bridge
process is defined by its conditional distribution that is
dependent on both the starting and ending states of the
diffusion journey. This dual anchoring is pivotal in guiding
the model to adhere closely to the target domain while
maintaining a structured and relevant approach to image
translation. Unlike conventional models that end in random
noise, the Brownian Bridge’s endpoint is a known target
state, which is instrumental in ensuring the generated images
align precisely with the desired outcomes, such as accurate
representations of crack patterns. The target state in this
case will be the BCL dataset. This bidirectional methodology
ensures that the translation is not only visually appealing
but also accurately represents the target domain. In the
forward process, BBDM offers the marginal distribution at
each step, enabling a granular understanding of the image
transformation. Conversely, the reverse process in BBDM

starts with a conditional input, strategically aligning the
model’s output with the ultimate goal of realistic image
synthesis. In the context of translating crack annotations
to realistic crack images, this direct learning approach is
vital for maintaining precision and detail, crucial elements in
applications like crack detection.

When considering the application of BBDM in generating
synthesized datasets, the distinction between pixel space
and latent space BBDM becomes significant. While the
latent space BBDM works in a Vector Quantize Generative
Adversarial Networks (VQGAN) compressed feature space
emphasizing efficiency and the capability to generate a
variety of textures, the pixel space BBDM operates directly
on image pixels, offering high precision in crack generation.

4) TRAINING BBDM
In our research, we explored the capabilities of both the
pixel space and the latent space of BBDM for generating
a synthesized dataset. We train both models on the entirety
of the images and annotations from the BCL dataset. Then,
we aligned the newly synthesized StyleGAN3 mask images
with a random BCL real image for domain inferencing to
generate the fully synthetic dataset.

The latent space Brownian Bridge Diffusion Model
(LBBDM) was trained with a focus on efficiency and
generalization. This model underwent a smaller training
regime, spanning 400,000 steps. The batch size is kept
consistent at 8, and like the pixel space model, the optimizer
used is Adam with a similar learning rate and beta1 settings.
LBBDM also uses VQGAN for its ability to compress
high-dimensional data into a latent space while preserving
crucial image features, and it implements a UNet architecture
tailored to the 64 × 64 resolution for faster training and
inferencing. VQGAN was pre-trained on VQ-f4.1

1VQ-F4 can be retrieved from this official repository
https://github.com/CompVis/latent-diffusion
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The pixel space BBDM is configured to effectively learn
and translate crack patterns at the pixel level. It was trained for
just over 600,000 steps on one GPU. Key training parameters
include a batch size of 8. The model’s optimizer is set to
Adam, with a learning rate of 1.e-4 and a beta1 parameter of
0.9. The learning rate scheduler has a decay factor of 0.5 and
patience of 3,000 steps, facilitating a dynamic adjustment of
the learning rate to optimize the training process. The model
also employs an Exponential Moving Average (EMA) with a
decay of 0.995, starting at step 30,000. The architecture of the
model, characterized by its UNet parameters, is designed to
handle the 256×256 resolution images with specific attention
to details in the crack patterns.

5) GENERATING MULTIPLE BLUR-AUGMENTED SYNTHETIC
DATASETS
Following the training phase of the BBDM, we generated
several synthetic datasets by using 200 sampling steps during
the inference stage. The real crack images from the BCL
dataset and the synthesized annotation images produced by
StyleGAN3 are used as the domain reference images. Each
dataset contains 7800 synthesized images, along with a set
of real images from the BCL dataset. We produced four
different datasets for both the pixel space and latent space
models. To add variety, three out of the four datasets were
modified with different types of blur: motion blur, zoom blur,
and defocus blur. The goal of these augmented datasets is
to attack some of the problems with the BCL dataset. The
fourth dataset was kept as originally synthesized for baseline
comparison.

There are distinct characteristics between the pixel space
and latent space images generated by the BBDM. The pixel
space approach demonstrated high fidelity in reproducing
crack annotations accurately; however, it often struggled
with generating realistic textured backgrounds, as seen in
Figure 4a. This resulted in backgrounds that occasionally
appeared washed out, even though the cracks themselves
were well-rendered. The precision of crack representation in
pixel space images is noteworthy, as it aligns closely with
the detailed annotations but is sometimes limited by less
convincing textural quality.

In contrast, the LBBDM showcased its strength in generat-
ing more diverse and realistic backgrounds, as demonstrated
in Figure 4e. This enhancement in background texture
contributes significantly to the overall realism of the images.
However, this advantage comes with a trade-off. The latent
space model tended to generate cracks that did not adhere
as closely to the annotated crack patterns. The discrepancies
in crack representation in the latent space images suggest
a divergence from the source annotations, highlighting the
model’s focus on broader image context rather than precise
detail replication.

Incorporating different types of blurs as data augmentation
techniques plays a crucial role in enhancing the adaptability
and robustness of our model, particularly in the context of the
BCL dataset. Imgaug, a publicly available data augmentation

tool created by Michaelis et al. [65], was used to apply
different magnitudes and types of blurring. Refer to Figure 4.

Motion blur, which replicates the effect of rapidmovement,
is instrumental in preparing the model for scenarios involving
moving subjects or capturing devices. A random severity
ranging from 3 to 12 was applied to the pixel and latent
BBDM datasets. This type of augmentation is particularly
beneficial for analyzing images of cracks that are captured
in motion, such as those taken from moving vehicles or
through dynamic monitoring systems, ensuring that the
model maintains consistent crack detection performance even
in motion.

Similarly, zoom blur is employed to mimic the effect
of rapid changes in focal length, challenging the model
to maintain its accuracy despite variations in image focus.
This augmentation is significant for images captured from
varying distances or during swift zooming actions, a common
occurrence in field surveys. A magnitude of one is applied to
the zoom blur BBDM synthetic datasets.

Defocus blur, on the other hand, simulates scenarios where
the image is not perfectly focused. Again, a severity of one
is applied to the defocus blur BBDM synthetic datasets.
This type of blur presents a challenge for the model to
accurately recognize and segment cracks, even when the
overall sharpness of the image is compromised.

For each synthesized dataset, the set was also combined
with the real training data specified in Table 2, with no
synthesized data added to the validation set. Table 1 describes
all the datasets that were generated and their contents.

By training models with datasets augmented with motion,
zoom, and defocus blurs, we significantly bolster their
ability to interpret and analyze crack images under various
real-world conditions. This approach not only enhances
the model’s generalization capabilities but also ensures its
practical applicability in diverse structural health monitoring
scenarios. The enhanced model is better equipped to handle
variations in image clarity and texture, which are common
in real-world structural assessments, thereby improving
its reliability and effectiveness in practical applications.
Incorporating zoom, defocus, and motion blur augmentations
into our training datasets prepares the DeepLabV3+ model
for adverse camera conditions often encountered in practical
settings. Later, we introduce ensemble modeling to leverage
the different synthesized augmented datasets to increase
MeanIoU performance.

B. HYPERPARAMETER TUNING DEEPLABV3+

1) DEEPLABV3+

DeepLabV3+2 is a state-of-the-art model for semantic
segmentation known for its effectiveness in handling complex
image segmentation tasks. The architecture of DeepLabV3+
is an evolution of its predecessors, designed to provide

2DeepLabV3+ implementation and pretrained model can be accessed
from this GitHub repository: https://github.com/VainF/DeepLabV3Plus-
Pytorch/tree/master
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FIGURE 4. Sample images from synthesized BBDM datasets.

high precision in object boundary delineation. DeepLabV3+
employs atrous (dilated) convolutions, allowing the model
to control the resolution at which feature responses are
computed within Deep Convolutional Neural Networks.
DeepLabV3+ was chosen for this feature because it is
particularly beneficial for segmenting fine details in images,
such as small or narrow cracks. At the heart of DeepLabV3+
is the ASPP module, which applies atrous convolution
at multiple rates to capture multi-scale information. The
module allows for detecting cracks that vary in scale.
Additionally, the model adopts an encoder-decoder structure.
The encoder module, augmented with ASPP, captures rich
contextual information, while the decoder module refines
the segmentation results, especially along object boundaries.
This refinement is vital for the precise delineation of crack
contours.

Within the framework of our study, the employment
of DeepLabV3+ extends well beyond its utilization as a
mere advanced tool for semantic segmentation. A dedicated
effort was undertaken to conduct extensive hyperparameter
tuning, adapting the DeepLabV3+ architecture to meet
the specific demands of our dataset and the intricacies
of our segmentation objectives. Moreover, DeepLabV3+
was instrumental as a benchmarking model to assess the
efficacy of our innovative data generation methodologies,
which encompass the synthesis of training data via StyleGAN
and BBDM. Additionally, we delve into the realm of
ensemble modeling utilizing DeepLabV3+, aiming to bolster
segmentation performance. By orchestrating the training of
multiple DeepLabV3+ models across a spectrum of synthe-
sized datasets and subsequently amalgamating their outputs,
we witnessed a notable enhancement in segmentation
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TABLE 1. Description of training datasets.

precision. DeepLabV3+ is the backbone for evaluating our
segmentation performance which is why hyperparameter
tuning is paramount.

2) DEEPLABV3+ HYPERPARAMETER TUNING
The training of DeepLabV3+ was meticulously conducted
on a dataset that encompasses a wide spectrum of real-world
conditions. The composition of the datasets used for training,
validation, and testing is detailed in Table 2.
Our primary objective in hyperparameter tuning was to

refine the DeepLabV3+ model for optimal crack segmenta-
tion performance. We began our experiments using a basic
setup of the DeepLabV3+ model. This initial setup involved
training the model for 200 epochs. We set the learning
rate at 0.001 and used a batch size of 128. The model’s
output stride was fixed at 8. For optimization, we chose
the Adam optimizer, applying a weight decay of 0.0001.
The optimizer’s beta values were set at 0.9 and 0.999.
We utilized a cross-entropy loss function, and the backbone
of the model was MobileNet. This initial configuration
yielded an accuracy of 59.57% (results summarized in
Table 3).
After extensive experimentation, we identified the optimal

hyperparameters for the DeepLabV3+ model, detailed in
Table 3, resulting in the best following results: the model
was trained over 200 epochs, utilizing a fixed learning
rate of 0.001 and a batch size of 128. We maintained
an output stride of 8 and employed the Adam optimizer,
featuring a weight decay of 0.0001 and betas set at 0.9 and
0.999 throughout the training process. To facilitate model
convergence and performance, we applied a cross-entropy
loss function. Our chosen backbone architecture was based on
a pre-trained 32-layer High-Resolution Net, and we further
enhanced training robustness by implementing on-the-fly
data augmentation.

TABLE 2. Composition of the training, validation, and test datasets for
hyperparameter tuning.

C. ENSEMBLE MODELING DEEPLABV3+ MODELS
TRAINED ON VARIOUS SYNTHESIZED DATASETS
To enhance the performance of structural crack detection,
we ensemble multiple DeepLabV3+ models, each trained
on the various datasets mentioned in Table 1. For each
of the six augmented datasets, a DeepLabV3+ model was
independently trained. This approach allowed each model to
specialize in images with particular characteristics of blur,
thereby enhancing its detection capabilities. Upon training
completion, these models were ensembled by pixel or latent
space using majority voting to evaluate their collective
performance on the testing set outlined in Table 2. Majority
voting is an effective technique for consolidating outputs
from multiple DeepLabV3+ models. This method involves
each model in the ensemble independently classifying each
pixel in an image as a crack or not. For every pixel, the
classification that receives the majority vote across all models
determines the final prediction. This approach enhances the
accuracy of the predictions by mitigating individual model
biases and errors, which is especially beneficial in handling
the diverse image qualities inherent in crack detection tasks.
Refer to Figure 5 for sample results of majority voting
ensemble modeling.

IV. EXPERIMENTS
A. BRIDGE CRACK LIBRARY DATASET
The Bridge Crack Library (BCL) dataset, developed by
Ye et al. [62] in their seminal work on structural crack
detection using pruned fully convolutional networks, repre-
sents a significant advancement in the domain of automated
crack detection for in-service bridges. This comprehensive
dataset comprises 11,000 pixel-wise labeled images of 256 by
256 resolution that were meticulously curated to include
a diverse range of crack forms across various structural
materials, including masonry, concrete, and steel. Notably,
the dataset encapsulates 5,769 nonsteel crack images, 2,036
steel crack images, and 3,195 images categorized as noise,
which were derived from the examination of over 50 bridges
by experienced inspection teams over two years. Refer to
back to Figure 2 The meticulous data collection process
undertaken for the BCL dataset underscores its value in
the field of structural engineering. By employing multiple
cameras and covering a wide array of in-service bridges,
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FIGURE 5. Majority Voting Ensemble Predictions. This majority voting ensemble method effectively combines individual model predictions of three
DeepLabV3+ models that were trained separately on M-BBDM-P-ZB, M-BBDM-P-DB, and M-BBDM-P-MB.

the dataset captures an extensive range of crack images and
noise motifs, set against different environmental conditions
and structural backgrounds.

A pivotal aspect of the BCL dataset’s creation was the
pixel-wise annotation of images, a labor-intensive process
that ensures high precision in crack delineation. The manual
annotation process was supported by specialized software
that facilitated precise labeling. Annotators used digital pens
and tablets, which offered more accuracy and control than
traditional mouse-based interfaces, allowing for the detailed
tracing of crack contours. This hands-on approach ensured
that the dataset captured the nuances of each crack, including
its width, direction, and branching patterns.

The BCL dataset’s comprehensive and precisely annotated
images provide a robust foundation for generating synthetic
datasets. These synthetic datasets, in turn, are instrumental
in augmenting the diversity of training samples available for

DNNs, thus addressing one of the primary challenges in the
application of deep learning for crack detection: the scarcity
of labeled training data.

B. DEEPLABV3+ HYPERPARAMETER TUNING RESULTS
In our experiments, we iteratively introduced improvements
to the DeepLabV3+ model and applied these enhancements
cumulatively in subsequent tests. This approach allowed us to
systematically assess the impact of each modification on the
MeanIoU performance. Table 3 below provides a summary of
these changes and their respective impacts.

The experiments reveal a significant influence of the
backbone architecture on the model’s performance. While
the baseline model with MobileNet as the backbone achieved
respectable accuracy, switching to the ResNet-50 and HRNet
architectures led to noticeable improvements. Notably, the
HRNetv2 with 32 layers stood out as the most effective
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TABLE 3. Summary of hyperparameter tuning for DeepLabV3+.

TABLE 4. Testing results for synthesized datasets.

backbone, achieving the highest accuracy of 63.43%. This
indicates that the HRNetv2 architecture, particularly with
32 layers, is better suited for capturing the detailed features
necessary for crack segmentation. For the loss functions,
we tried focal loss and dice loss but found that the
basic cross-entropy loss function consistently gave us good
results in terms of accuracy. The learning rate, while a
critical learning rate in many deep learning applications,
did not significantly alter our outcomes. We opted to keep
learning rate tests to a minimum to focus on identifying
other hyperparameters that contribute more substantially
to accuracy improvements. The introduction of on-the-
fly data augmentation marked a significant improvement
in model performance, boosting accuracy to 62.43%. The
augmentation techniques, including random scale, crop,
horizontal and vertical flips, random rotation, and color
jitter, contributed to the model’s improved generalization
and robustness against varying crack patterns and lighting
conditions. The experiment conducted by Jin et al. [3] using
BCL plus BCL 2.0 datasets yielded a lower accuracy of

54.23%, highlighting the effectiveness of the hyperparameter
tuning and modifications applied in our approach.

C. USING HYPERTUNED DEEPLABV3+ FOR SEMANTIC
SEGMENTATION OF GENERATED DATASETS
These results, in Table 4, highlight the capabilities of the
BBDM in synthesizing realistic crack images and also
demonstrate the effectiveness of various data augmentation
and ensemble modeling techniques in improving MeanIoU.
Additionally, we use several segmentation metrics to assess
the performance of the model’s accuracy and reliability.

• Mean Intersection over Union (MeanIoU): MeanIoU
is especially relevant for segmentation tasks because it
calculates the intersection over union for each class and
then averages these values.

• Precision: Precision is defined as the ratio of correctly
predicted positive observations to the total predicted
positives. In the context of crack segmentation, it reflects
the accuracy of the model in identifying true cracks as
opposed to false positives. A higher precision indicates
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that the model is more effective in correctly labeling
crack pixels, minimizing the instances where non-crack
pixels are incorrectly classified as cracks.

• Recall: Recall measures the ratio of correctly predicted
positive observations to the total actual positives. Recall
score quantifies the model’s ability to identify all actual
crack instances in the images. High recall is crucial
in applications like crack detection, as it ensures that
the model captures as many true crack occurrences as
possible, reducing the risk of missing critical defects.
However, higher recall typically comes with the cost of
an increased number of false positives.

• Accuracy: This metric is the ratio of correctly predicted
observations (both true positives and true negatives) to
the total observations in the dataset. While accuracy is a
widely used metric, it does not provide a comprehensive
assessment of performance, especially in the cases
of imbalanced datasets where one class (e.g., cracks)
is significantly underrepresented when compared to
another (e.g., non-cracks).

• F1-Score: The F1-Score is the harmonic mean of preci-
sion and recall. It provides a balanced measure between
these two metrics, making it particularly suitable for
situations where there is an uneven class distribution,
as is often the case in crack detection datasets.

The M-BBDM-P datasets, particularly the ones with zoom
blur and defocus blur showed high MeanIoU scores, with
zoom blur leading at 64.75% and defocus blur following
at 64.14%. Furthermore, each augmented dataset exhibited
distinct strengths: the pixel space datasets generally out-
performed in MeanIoU, Recall, and F1-score, whereas the
latent space datasets excelled in precision and accuracy.
All augmented datasets demonstrated an improvement in
MeanIoU compared to their predecessors that were not
augmented. The pixel space saw at least a 2% increase in
MeanIoU performance, while the latent space saw at least a
1.21% increase.

Since the accuracy between the augmented models in each
of their respective spaces was similar, we tried out three
different ensemble modeling techniques: majority voting,
mean, and logical or. Mean ensemble modeling was applied
by averaging the predictions of all models, which helped in
smoothing out the anomalies and uncertainties in individual
predictions. Logically OR’ing prediction images involves
combining the outputs of multiple models such that if any
model predicts a pixel as a crack, it is marked as a crack in the
final aggregated image, enhancing the detection sensitivity.
Mostly, individual models may have unique strengths and
weaknesses; by combining them, the ensemble can leverage
the strengths of each while mitigating their weaknesses.

Ensemble modeling proved to almost always improve
MeanIoU performance and F1-score. Specifically, majority
voting performed the best amongst both the pixel and latent
space, achieving 65.62% and 64.40% MeanIoU respectively.
However, mean and majority voting ensemble modeling both
performed very similarly across all performance metrics.

Logically or ensemble modeling tended to score the best in
terms of recall and F1-score when compared to other tech-
niques likely because of its increased sensitivity. Illustrated
in the Appendix in Figure 6, the final results of the ensemble
modeling methods can be found.

TheM-BBDM-L-DB scores a competitive precision score,
of 73.51%. The M-BBDM-P-Ensemble-Voting model, with
the highest Recall (83.20%), and F1 Score (71.79%), proved
its efficacy in identifying cracks more comprehensively
than the baseline models. The M-BBDM-P-Ensemble-
Voting model exhibited the highest MeanIoU, surpassing the
baselines and scoring 65.62%.

1) PROPOSED METHOD DISCUSSION
For any practical application, we need to consider a
combination of metrics that align closely with the specific
requirements of its use case. Selecting the most suitable
method requires a nuanced understanding of the trade-offs
inherent in different performance metrics.

Given the nature of our application, where missing a
crack could have serious consequences, a high recall rate is
essential. Thus, we aim to capture as many cracks as possible,
even at the risk of some false positives. M-BBDM-P-E-Or
achieved the highest recall score of 83.20%.

If the primary goal is to provide a balanced evaluation
between precision and recall then F1 Score emerges as
an apt metric. The F1 Score, the harmonic mean of
precision and recall, offers a comprehensive assessment
of model performance. Therefore, model M-BBDM-P-E-
Or also emerges as the best solution under this criteria.
This model demonstrates an effective balance, achieving a
high recall without significantly compromising on precision,
as evident in its F1-Score (71.79%).

If the priority shifts towards minimizing false positives
(increase precision), while still maintaining a high F1 score,
there are better-suited models for this task. In this case,
models employing mean and majority voting ensemble tech-
niques, specifically M-BBDM-P-E-Mean and M-BBDM-P-
E-Voting, become more relevant because of their high F1
score and high MeanIoU and precision.

In light of both scenarios, the M-BBDM-P-E-Or model
distinguishes itself as the superior choice, boasting an
exceptionally high detection rate coupled with an impressive
F1 score.

V. CONCLUSION
Our study made significant contributions to the field of
structural crack detection, particularly in demonstrating
the efficacy of ensemble models trained on augmented
synthetic datasets to enhance semantic segmentation per-
formance. By employing StyleGAN3 and BBDM for data
synthesis, we created rich and varied datasets that signif-
icantly improved the training of DeepLabV3+ models on
structural health datasets. This advancement addresses a
critical challenge in the field - the scarcity of diverse and
high-quality datasets for training sophisticated segmentation
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FIGURE 6. Final prediction results from ensemble modeling synthesized BBDM datasets.

models. A pivotal contribution of our research lies in
the meticulous hyperparameter tuning of the DeepLabV3+
model. Our findings underscore the importance of hyper-
parameter optimization, revealing how subtle changes in
model configuration can lead to substantial improvements
in accuracy and efficiency. By experimenting with different
backbones, optimizers, and on-the-fly data augmentation
techniques, we achieved marked improvements in crack
segmentation accuracy. The selection of HRNetv2 with
32 layers as the backbone, in particular, led to the highest

accuracy of 63.43%, highlighting the substantial impact of
model architecture on segmentation performance. One of the
novel aspects of our research was the application of diffusion
models, specifically BBDM, to generate synthetic datasets.
We showed that these models could create realistic and
diverse crack images, which, when used in conjunction with
real data, lead to improved segmentation performance when
combined with ensemble modeling methods and blur aug-
mentation techniques. This finding opens new possibilities in
data generation for machine learning, extending beyond the

34782 VOLUME 12, 2024



C. C. Rakowski, T. Bourlai: On Enhancing Crack Semantic Segmentation

realm of crack detection. Looking ahead, the methodologies
and insights gleaned from our work hold promise for broader
application. Future work could explore the applicability
of our ensemble modeling approach and data synthesis
techniques to other crack detection datasets and within
different domains, such as aerospace, civil infrastructure,
and manufacturing. By training on more different types
of domains with crack-like defects, we can explore the
capabilities of automated inspection systems across a wider
range of applications. Ultimately, by extending our research
into these new territories, we aim to further enhance the
capabilities of machine learning models in identifying and
quantifying structural damage, thereby contributing to the
safety and longevity of critical infrastructure worldwide.

APPENDIX
See the Figure 6.
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