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ABSTRACT Modern urban transportation, has concurrently posed environmental challenges such as traffic
congestion and increased greenhouse gas emissions. In response to these issues, ridesharing systems
have emerged as a viable solution. By fostering ridesharing among individuals with similar travel routes,
ridesharing, effectively, optimizes vehicle utilization, offering a sustainable and practical alternative to
address contemporary transportation challenges. In this work, we delve into intricacies of dynamic
ridesharing systems. Focusing on the dynamic matching problem within ridesharing, we propose a solution
leveraging reinforcement learning. Our contribution involves the distinct modeling of two scenarios: one-to-
one and one-to-many ridesharing. In the one-to-one scenario, spatiotemporal constraints are considered with
the objective ofminimizing passengers’ waiting times. In themore complex one-to-many scenario, additional
constraints are introduced focusing on both minimizing passengers’ waiting times and drivers’ detour times.
The proposedmodeling is time-focused assuming that time is a cutting parameter in the decision-making. The
results obtained through our experiments demonstrate the system’s effectiveness, robustness and adaptability
to diverse constraints.

INDEX TERMS Dynamic ridesharing, dynamic matching, reinforcement learning, spatiotemporal
constraints, detour.

I. INTRODUCTION
The World’s population is growing rapidly, especially in
urban areas and citizens have an increasing need to move
around and be mobile. However, this need for mobility is
not without consequences. Indeed, today’s cities are facing
challenges in terms of congestion, lack of space, air pollution,
climate change, etc.

To address these problems, various technological solutions
have been proposed, including autonomous vehicles [1],
vehicular networks [1], and the internet of things, etc.
Furthermore, shared mobility [2] has gained popularity in
recent years and has given rise to new transportation services
such as ridesharing [2], [3], [4], [5], [6], carpooling [6], Dial
a Ride Problem (DARP) [6], . . .
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The ridesharing system [3], [4] is a mode of transportation
that allows drivers and passengers with similar travel needs
to make joint trips. This obviously has the potential to
reduce traffic, fuel consumption and pollution. Therefore, this
service is an important aspect of modern society (include
smart cities). The emergence of technological advances in
recent years (Global Position System GPS, powerful mobile
applications, etc.), have called for dynamic ridesharing which
must be able to respond to real-time requests and provide
more sophisticated automatic matches than a simple radial
search around origins and destinations. Ridesharing systems
in modern times have adopted a dynamic allocation process,
which considers times and routes to match passengers with
drivers. The process of establishing a relationship between
multiple users based on their preferences is called the
ride-matching problem. Companies like Uber1 and Lyft2

1https://www.uber.com/
2https://www.lyft.com/
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provide current ridesharing systems that utilize a simple
matching algorithm allocating users solely based on their
travel routes. However, these commercial systems have
limitations, as they employ a user-matching scheme that relies
on two primary factors: (1) the passenger’s destination: the
driver’s destination is dependent on the destination of the
passenger; (2) the service’s cost is calculated by the provider
based on distances and times, without considering the cost-
sharing of both the passenger and the driver. The dynamic
ridesharing system is a solution that provides the flexibility
and comfort of a private vehicle while offering rates and
prices comparable to public transportation, distinguishing it
from other conventional means of transport.

In this work, we consider the problem of dynamically
matching drivers and passengers. The latter presents one
of the necessary components for a successful dynamic
rideshare system which needs deployment of effective and
efficient optimization technology. This optimization problem
entails efficiently managing a myriad of requests from
drivers offering rides and passengers seeking transportation,
ensuring optimalmatches while respecting a set of constraints
[7], [8], [9], [10].

The primary objective of our research is to develop a robust
system capable of optimizing dynamic ridesharing solutions.
This objective is two-fold: first to enhance the efficiency of
traditional one-to-one dynamic ridesharing, where a single
driver matches with a single passenger, and second, to delve
into the intricacies of one-to-many dynamic ridesharing,
specifically addressing detour considerations. The problem
that we address encompass temporal considerations, spatial
proximity, and the additional challenge posed by detours
in one-to-many ridesharing scenarios. Striking a balance
between the reduction of waiting times for passengers and
the minimization of detour times for drivers is at the core of
our optimization endeavor.

In approaching this optimization challenge, we explore
the integration of Reinforcement Learning (RL) [11], [12],
a methodology traditionally employed to solve sequential
decision-making problems. Indeed, a key feature of the
dynamic ridesharing problem is its spatiotemporal nature.
The eligibility of a driver to match a passenger’s request
depends in part on his spatial proximity to the request.
Moreover, responses to ride requests typically take a
different amount of time to complete, and they change
the spatial states of drivers, affecting the distribution of
supply for a future match. Therefore, operational decisions
in dynamic ridesharing are sequential in nature and have
a strong spatiotemporal dependence, which offers excellent
applications of reinforcement learning. Many works have
considered reinforcement learning in response to this type of
problem [12]. The major contribution of each work concerns
the modeling of the different parameters of the problem by
the different parameters of the theoretical foundation of RL,
namely, Markov Decision Processes (MDPs) [13]. The aim
of this work is to propose a good modeling of time and
space for dynamic matching problem in order to minimize

passengers’ waiting times and drivers’ detour times while
respecting the time windows of the users, their locations and
vehicles’ capacity. Unlike other works [14], [15], [16], the
modeling we propose is time-focused, having assumed that
time is sufficient information for decision-making. Indeed,
time is a cutting parameter in the decision: if time does not
allow to take the passenger, it is useless to see the location.

The remainder of the paper is organized as follows.
We classify and summarize related articles in section II.
The problem description and base formulation are given in
section III. Sections IV and V discuss our main contribu-
tions in modeling one-to-one and one-to-many ridesharing
problems. The performance of our proposed approaches
is evaluated in section VI. In Section VII, we provide a
discussion of our work and the obtained results, positioning
our study in relation to other works in the literature.
Section VIII concludes and summarizes our work with future
research directions.

II. LITERATURE REVIEW
A real-time ridesharing system aims to bring together
travelers within a very short timeframe. Therefore, it may
need to be reoptimized at regular intervals as new travelers
enter or exit the system. Consequently, drivers and passengers
already en route must be informed of any change in plans
each time the system is reoptimized, as their original routes
may be altered. This automated process requires efficient
models and algorithms to match drivers and passengers
in very short computation times. Several previous works
addressed the online matching from exact methods [17], [18],
[19] to heuristic and metaheuristic methods [20], [21] to
reinforcement learning (RL) [12].

Wang et al. [14] model the ridesharing problem as a
Markov Decision Process and proposed learning solutions
based on deep Q-networks with action search to optimize
the dispatching policy for drivers on ridesharing platforms.
The authors introduced a new transfer learning method
called Correlated Feature Progressive Transfer, along with
two existing methods, to enable knowledge transfer in both
spatial and temporal spaces, increasing learning adaptability
and efficiency. Ke et al. [15] established a framework that
combines deep reinforcement learning and multi-agent com-
binatorial optimization, in which the timing of each passenger
request entering for matching is dynamically determined
using multi-agent reinforcement learning techniques, while
combinatorial optimization ensures bidirectional perfect
matching between waiting passengers and inactive drivers.
In [22], the authors addressed issues related to matching and
repositioning, two key operations in ridesharing platforms.
They suggest using a centralized value function as a
foundation for learning and optimization to capture the
interactions between these two tasks. In this perspective,
they proposed an innovative approach based on a set of
values, enabling fast online learning and large-scale offline
training. Li et al. [23] addressed the ride-matching problem
using multi-agent reinforcement learning, which follows the
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distributed nature of the peer-to-peer ridesharing problem and
possesses the ability to capture the stochastic demand-supply
dynamics.

The goal of [24] was to maximize transport efficiency so
that fewer cars are needed to meet a given travel demand.
To achieve this, they developed a spatiotemporal neural
network (deep ST-NN: SpatioTemporal Neural Network) to
predict travel time from GPS data. The constructed network
learns travel time and distance from GPS coordinates of an
origin and destination and the time of day. Subsequently, they
developed a simulator for reinforcement learning using the
outputs of the ST-NN. The objective is to build a policy that
guides the driver on when to accept a ridesharing request to
maximize long-term transport efficiency and reduce traffic
congestion.

In reviewing the works addressing the problem with
reinforcement learning, it is notable that a predominant
approach involves treating the driver as the primary agent.
The state representations commonly encompass details like
the driver’s location, departure and arrival times, and
pertinent constraints, such as available seat count. Regarding
environmental observations, the majority of studies factor in
the coordinates of both the driver and passenger locations,
along with temporal aspects, leading to an expanded state
space. Rewards in this context typically function as optimiza-
tion criteria, serving to guide the agent in making judicious
decisions while steering clear of suboptimal ones.

III. PROBLEM DESCRIPTION
In this section, we present the relevant background knowl-
edge and we formulate the online matching problem that we
consider in this work.

Dynamic ridesharing is an automated process in which
a service provider connects drivers and passengers with
similar routes and schedules to share a ride on short notice
in a personal vehicle. Ridesharing systems are inherently
dynamic given the need for quick and responsive matching.
The challenge of these systems lies in connecting individuals
whomust adhere to different constraints (spatiotemporal, seat
vacancy, users’ preferences, etc.). These constraints must be
specified in advance by both drivers and passengers before
the desired trip is defined and carried out

We consider, a dynamic matching problem in ridesharing
system where the goal is to bring together drivers and
passengers such that passengers’ waiting time and drivers’
detour time are minimized. Each driver and passenger carry
a trip where he specifies his origin, his destination and time
window that involves latest departure time and latest arrival
time. Furthermore, we consider, in this work, two different
online matching problems: one-to-one (one driver matched
to one passenger) and one-to-many (one driver matched to
many passengers).

Notation used to set our problem is summarized in table 1.
For the one-to-one matching problem, an offer

of driver d , Vd , is represented by a quadruple

TABLE 1. Notation table.

Vd =
(
od , dsd , dpd , ard

)
, specifying, origin and destination

points and latest departure and arrival times, respectively.
A passenger’s, p,request, Rp, is represented by a quintuple

Rp =
(
op, dsp, dpp, arp,max_wtp

)
specifying origin and

destination points, latest departure and arrival times and
maximum waiting time, respectively.

For this instance of problem, we consider an inclusive
ridesharing model [3]. This means that both the origin and
destination of a passenger are located on the route of an
original driver’s itinerary.

FIGURE 1. A scenario of one-to-one inclusive ridesharing model.

Fig. 1 presents an example for one-to-one inclusive
ridesharing model. We consider a driver d that offer to share
his vehicle on a route from point A to point D, a request
from passenger p1 has been matched with the offer of d . This
passenger will share the journey fromA to Cwith d (inclusive
route). At point B, the system receives a new request from
passenger p2. This request cannot be fulfilled as the vehicle
is already occupied. At point C, the driver drops off p1, and
the system receives a new request from p3, whose route is
included in d’s route. This request is matched with d , who
picks up p3 at point C and drops him off at point D (his
destination).
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FIGURE 2. A scenario of one-to-many ridesharing model with detour.

For the one-to-many matching problem, an offer
of driver d , Vd , is represented by a sextuple Vd =(
od , dsd , dpd , ard , sgd ,max_dtd

)
, specifying, origin and

destination points, latest departure and arrival times, the
number of available seats and maximum detour time,
respectively.

A passenger’s, p,request, Rp, is represented by a quintuple
Rp =

(
op, dsp, dpp, arp,max_wtp

)
specifying origin and

destination points, latest departure and arrival times and
maximum waiting time, respectively.

For this instance of problem, we consider an exclusive
ridesharing model [3], where a driver can take a detour
(additional distance) in order to pick up or drop off
passengers.

Fig. 2 describes an example for one-to-many ridesharing
model with detour.

We propose addressing the dynamic matching prob-
lems considered through reinforcement learning (RL). The
dynamic nature, spatiotemporal characteristics, decision-
making aspects (whether to match or not), and environmental
constraints—all these factors are inherent in reinforcement
learning, especially in its sequential decision-making aspect.

In the next sections, we will present in detail the problem
modeling approach we propose for the two instances (one-to-
one and one-to-many).

IV. ONE-TO-ONE RIDESHARING MATCHING PROBLEM
Our challenge, in this work, is to model the aforemen-
tioned parameters (offers and requests) using the various
components of reinforcement learning. RL, grounded in its
theoretical foundation, relies on Markov Decision Processes
(MDP) [13]. An MDP consists of a set of states, a set
of actions, a transition function, and a reward function.
Modeling the constrained dynamic matching decision prob-
lem using an MDP entails constructing each component
of the MDP to integrate the necessary information for
decision-making.

Our modeling centers around positioning the driver as the
focal point, representing the agent. The driver, acting as the
learning entity, makes decisions regarding whether to accept
a passenger, considering specific locations and times. The
ultimate aim is to optimize the passenger’s waiting time
within our system.

In the following, we describe the model construction of our
constrained ridesharing decision problem.

A. PROBLEM MODELING
1) STATE
The state st is captured by the geographical coordinates of the
driver, the passenger, the next destination point, and the time.
st is time stamped and is defined by st =

(
Cd ,Cp,Cnd , t

)
,

where:
- Cd is the pair of GPS coordinates (latitude, longitude)
of the driver’s origin and destination points,

- Cp is the pair of GPS coordinates (latitude, longitude)
of the passenger’s departure and destination points,

- Cnd is the pair of GPS coordinates (latitude, longitude)
of the next destination point in the driver’s itinerary.

2) OBSERVATION
At every time step, the driver receives an observation
from the environment, representing the current state of
the system. This observation provides information about
the dynamic conditions, including the driver’s location,
passenger requests, and other relevant factors. The driver then
draws an observation that is correlated with the state of the
environment. This observed information serves as the basis
for the driver’s decision-making process, allowing them to
assess the surrounding conditions andmake informed choices
regarding whether to accept passengers or not.

We define the observation within our model as a tuple
ot =

(
tnd ,Wtp,max_wtp

)
, where:

- tnd is the time to reach the next destination,
- Wtp is the current waiting time of the passenger at
time t ,

29528 VOLUME 12, 2024



H. Abdelmoumène et al.: Dynamic Matching Optimization in Ridesharing System Based on RL

- max_wtp is the maximumwaiting time of the passenger.
Our choice of these three parameters is justified by:

(1) Our overall objective, which is the minimization of
passenger waiting time. Therefore, time represents necessary
information for decision-making and dynamic accuracy,
ensuring stability and a quick response from our system.

(2) After reviewing existing works that utilized RL to solve
similar problems, we observed that all these works transmit
the locations of drivers and passengers to the agent to make a
decision, thereby increasing the space. However, in our work,
we assume that time is sufficient information for decision-
making and closely reflects reality. Indeed, time is a decisive
factor in the decision: if the time does not allow picking up
the passenger, knowing the location becomes irrelevant.

3) ACTION
Two actions are available for the driver, reflecting his
decision: {

a = 0, decline the request
a = 1, accept the request

4) REWARD
The reward signal in our problem must provide information
that guides the agent’s behavior to achieve the main objective
of the system, which is the minimization of passengers’
waiting time. Therefore, we propose that this signal, r ,
corresponds to the waiting time saved by passengers on a
trip and is a function of the current state (time to the next
destination, current waiting time of the passenger, and the
maximum waiting time of the passenger) and is defined by:

r = max_wtp −
(
Wtp + tnd

)
Our proposed reward signal signifies that a shorter waiting
time corresponds to a higher reward. The agent is required
to act in a way that maximizes this reward, aligning with our
optimization objective.

B. AGENT DECISION
Upon receiving a new request, the driver processes it by
considering waiting time, current time, and the time to reach
the next destination. Subsequently, the agentmakes a decision
on whether to accept the request.

If accepted, the driver either picks up the passenger or
provides notification. Following the reward calculation, if the
driver is already en route or has an existing request to fulfill,
they proceed to the next destination. Alternatively, if no active
tasks are present, the driver checks whether it’s time to depart;
if not, they wait.

Upon completion of this decision-making process, the
environment updates and returns the new state based on the
revised information.

V. ONE-TO-MANY RIDESHARING MATCHING PROBLEM
The objective in this second contribution is to broaden
the scope of the problem addressed above by considering
multiple passengers in a single assignment. By integrating

this new dimension, we aim to account for partial trips
and introduce the detour constraint. Thus, our goal is to
optimize two objectives: minimize passengers’ waiting time
and reduce drivers’ detour time. This approach allows us to
meet the needs of both parties involved in the ridesharing
system.

In the following sections, we present the problemmodeling
as an MDP and the agent decision for the one-to-many
ridesharing problem with detour. Again, our modeling
revolves around placing the driver at the core, serving as the
agent. In this learning framework, the driver, as the decision-
maker evaluates whether to accept a request, taking into
account, spatiotemporal constraints, vacant seats, passengers’
waiting time and the possibility of making a detour.

A. PROBLEM MODELING
1) STATE
State st is time stamped and is defined by a tuple:
st =

(
Cd ,Cp,Cnd , sg,CdsP ,arP,Cdt t

)
, where:

- Cd is the pair of GPS coordinates (latitude, longitude) of
the driver’s origin and destination points,

- Cp is the pair of GPS coordinates (latitude, longitude) of
the passenger’s departure and destination points,

- Cnd is the pair of GPS coordinates (latitude, longitude)
of the next destination point

- sg is the number of available seats at time t ,
- CdsP is the set of GPS coordinates (latitude, longitude)
of arrival points of the set P of passengers on board,

- arP is the set of latest arrival times of the set P of
passengers on board,

- Cdt is the set of GPS coordinates of the points on the
detour itinerary.

2) OBSERVATION
We define the observation as ot =

(
tnd ,Wtp,max_wtp,sgt ,

max_dt,1dt), where:
- tnd is the time to reach the next destination,
- Wtp is the current waiting time of passenger p at time t ,
- max_wtp is the maximum waiting time of passenger p,
- sgt is the number of available seats at time t ,
- max_dt is the maximum detour time of the driver,
- 1dt is the difference between the durations of the initial
itinerary with and without detour.

Our choice may be motivated by the fact that our goal
is to minimize passenger waiting time and driver detour
time. Thus, providing the agent with a comprehensive set of
information related to making the right decision regarding
detour and passenger waiting is necessary. We assume that
temporal parameters are decisive factors for the agent’s
decision before even considering locations.

3) ACTION
Two actions are available for the driver, reflecting his
decision: {

a = 0, decline the request
a = 1, accept the request
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4) REWARD
To achieve our primary system goals of reducing waiting time
and detour time, it is essential that the reward signal in our
problem contains information that guides the agent’s action.

Therefore, we propose defining the reward signal (r) based
on the reduction in passenger waiting time and driver detour
time during a specific trip. This reward signal will measure
the gain in terms of time from both the passenger and driver
perspectives. We define the reward as follows:

r = max_wtp −
(
Wtp + tnd

)
+ max_dt−1dt

where, max_wtp is the maximum waiting time of the
passenger, Wtp,tnd are the current waiting time of the
passenger and the next destination time respectively and
max_dt,1dt are the maximum detour time and the difference
between the durations of the initial itinerary with and without
detour of the driver, respectively.
Example: According to the scenario presented in Fig.2,

we assume that the driver is at point B. At the same point, the
driver has received two requests Rp2 and Rp3 , knowing that
there is only one available seat. The respective destinations
of p2 and p3 are points G and F . Both destinations require a
detour from the driver.

The agent’s (driver) decision at this moment will involve
accepting either passenger p2 or passenger p3. The observa-
tions received by the agent at this moment are:

- For p2: ot = (0, 1, 5, 1, 3, 1)
- For p3: ot = (0, 1, 5, 1, 3, 2)

Let’s compute the reward:
- If the driver decides to accept p2, the reward will be:
r = 5− (1 + 0) +3 − 1 = 6.

- Il the driver decides to accept p3, the reward will be:
r = 5− (1 + 0) +3 − 2 = 5.

In this case, the driver will choose to take passenger p2, as it
saves more time than taking p3.

B. AGENT DECISION
In the decision-making process, the driver may receive two
types of requests: those that align with his initial itinerary and
those that require a detour.

Requests are evaluated based on various criteria, such as
the passenger’s current waiting time, their maximum waiting
time, the remaining time before their next destination, and the
number of available seats in the vehicle. For detour requests,
additional factors come into play, including the driver’s latest
arrival time, his maximum detour time, the detour destination,
and the latest arrival time of passengers already on board.
Based on these criteria, the agent decides whether to accept
or reject the request.

Once an action is selected, the reward is calculated based
on the agent’s current state. If the driver has already started
the journey or all seats are occupied, he proceeds to his
next destination. Otherwise, he assesses whether it’s time to
depart or if he still needs to wait to maximize ridesharing
efficiency. After making a decision and completing the task,

the environment returns a new state reflecting the updated
information.

This iterative decision-making process continues until the
driver reaches his final destination. At each iteration, the
agent evaluates the actions taken and learns from the out-
comes. If a decision proves unfavorable, the agent considers
this experience when faced with similar situations in the
future, aiming to avoid repeating the same mistakes. Through
this iterative learning, the agent progressively improves his
choices and makes more advantageous decisions over time.

The pseudo-code of agent decision algorithm is given
below.

Algorithm Agent Decision
Input: Vd ,Rpi , t
Output:

(
Vd ,Rpi

)
If sgd ̸= 0 then

If opi ⊂ Cdt or dspi ⊂ Cdt then
If 1dt ≤ max_dt then

If CdsP ⊂ Cdt then
While (ar i ∈ arP) do
If t+1dt+tnd>arpi then
Go to next destination

Pick-up the passenger
Else Go to next destination

Else Go to next destination
Else Pick-up the passenger
Else Go to next destination
Return

(
Vd ,Rpi

)
VI. EXPERIMENTAL RESULTS
To implement our system, two distinct stages are involved.
The first is a learning phase aimed at constructing the above-
presented model. In this phase, the agent learns behavior
that effectively deals with the various constraints, such as
minimizing waiting times for passengers and reducing detour
times for drivers, and optimizes the considered objectives.

The second involves deploying this model in a simulator.
In this section, we will discuss these two phases within the
two problem instances considered.

A. LEARNING
An important aspect of our work is to construct amodel, inject
it into the agent, and enable it to learn a decision-making
behavior that maximizes efficiency within the constraints and
objectives of the problem.

To build this model, we need a dataset containing
the necessary information corresponding to our problem
description for the directions of each trip.

To achieve this, we will utilize the Uber Pickup3 database
in the city of New York. This repository contains data on over
4.5 million Uber pickups in New York City from April to
September 2014.

3https://www.kaggle.com/datasets/fivethirtyeight/uber-pickups-in-new-
york-city
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We use a specific file from this directory called ‘‘federal
02216’’,which contains raw data on pickups from a non-uber
FHV company. It includes information such asDate (the date
of the request), Time (the time of the request), PU_Address
(the pick-up address), DO_Address (the drop-off address),
Routing Details, and status (request status).
To conduct our experiments, we randomly selected two

data samples from Federal_02216. The first one, consists of
93 trips (for the one-to-one problem), and the second one,
consists of 48 trips (for the one-to-many- problem). Then,
we used the Google Directions API to obtain direction details.

In order to train our agent, we have chosen to use
Proximal Policy Optimization (PPO) [25]. PPO is considered
one of the simplest and most popular algorithms for
reinforcement learning. This technique involves interacting
with the environment to collect data and then optimizing an
objective function using the ascent gradient.

To evaluate the learning results, we considered a complete
driver’s journey as an episode to calculate the reward
curve. The total duration of the learning process amounts to
800000 episodes with a discount factor (γ = 0, 9), during
which the agent aims to maximize cumulative rewards.

Before proceeding to real-time simulation, to evaluate
the agent’s reactions, we conducted preliminary tests on
several scenarios. The objective was to determine whether
the agent consistently makes the correct choice. To do this,
we subjected the model to various observations to assess its
decisions in diverse contexts.

The different observations provided to the agent encom-
passed a set of crucial factors influencing its decisions.
This included departure and arrival times of the trips,
origin and destination points, the number of available seats,
passenger waiting times, the driver’s maximum detour time,
as well as itineraries whether they required a detour or not.
Analyzing these different variables allowed us to evaluate
the agent’s ability to make relevant decisions in a variety of
situations.

B. SIMULATOR
In this section, we perform a series of numerical experiments
to validate our proposed models using metrics crucial to the
ridesharing problem. We design a simulator that helps us
understand how our models perform in different scenarios,
providing insights into their effectiveness and adaptability in
an online matching system.

1) ONE-TO-ONE MODEL
To initialize the environment, we have launched the simula-
tion from 08:00 am to 9:00 pm. The initial locations of offers
and requests are randomly selected from the dataset.

We recall that, in this model, we consider inclusive
itineraries, where the trip of the passenger is included in the
trip of the driver.

We set the following parameters (Table 2). 1t is the time
interval for receiving new offers and requests by the system.

TABLE 2. Initialization parameters.

Thus, every 4 minutes, the system receives a random number
between 1 and 5 of offers and requests.

TABLE 3. Simulation results from 08:00 am to 09:00 pm.

In table 3, we provide a comprehensive overview of
key performance metrics for the simulation period from
08:00 am to 09:00 pm. The table includes the total number
of offers and requests received during this timeframe,
shedding light on the demand and supply dynamics within
the system. Additionally, we outline the total number of
accepted requests (successfully completed trips), the total
reward, representing the cumulative profitable time, and the
total waiting time, offering insights into the efficiency and
user experience of the system throughout the simulation
duration.

The presented table highlights a notable outcome wherein
the total system reward for the simulated time interval reaches
8145 minutes. This reward signifies the accumulated time
gain, often referred to as profitable time. It’s noteworthy that
this gain substantially exceeds the total waiting time, which
amounts to 5115 minutes. This discrepancy underscores the
system’s efficiency in optimizing the overall experience,
ensuring that the accumulated profitable time significantly
outweighs the waiting periods.

FIGURE 3. Simulation results per hour.

Fig. 3 presents details of simulation results per hour.
Furthermore, we assess the acceptance rate by calculating the
ratio of accepted requests to the total number of requests per
hour. Notably, the observed acceptance rate consistently falls
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within the range of 0.65 to 0.80. This indicates that, during
the simulation, a substantial proportion of requests were
successfully accommodated, aligning with an acceptance
rate that remained consistently high, demonstrating the
effectiveness of the system in efficiently handling incoming
requests.

To provide a more comprehensive understanding of the
effectiveness of the proposed method, we evaluated our
system across four environments corresponding to different
parameterizations. All scenarios start at 08:00 am and end
at 11:00 am. The initial locations of offers and requests are
randomly chosen from the dataset. We present in table 4 the
parameters of the various tested scenarios. The results of the
execution of these scenarios are presented in table 5.

TABLE 4. Parameters of the tested scenarios.

TABLE 5. Simulation results for different scenarios.

In all these scenarios, our system consistently demonstrates
that the total reward, representing profitable time, outweighs
the waiting time. In scenario 1, the total waiting time
is 785 minutes, while the total reward is 4305 minutes,
accounting for 85% of the time compared to 15% for waiting
time. In scenario 2, 60% of the time is considered profitable,
and 40% is waiting time. Scenarios 3 and 4 yield total rewards
of 52% and 63%, respectively, with waiting times at 48%
and 37% for each scenario. This pattern underscores the
effectiveness of our system in minimizing waiting time which
leads to maximizing profitable time.

2) ONE-TO-MANY MODEL
The second problem considered, in our work, concerns
matching one driver to multiple passengers taking into
accounts seats availability and the possibility of making a
detour in order to pick-up or drop-off passengers.

In order to evaluate this model, we have launched
simulation from 08:00 am to 09:00 pm with 1t = 5 minutes,
the number of offers is between 4 and 10, and the number of
requests is between 10 and 18. The initial locations of offers
and requests are randomly selected from the dataset. Table 6
presents simulation parameters.

TABLE 6. Initialization parameters.

TABLE 7. Simulation results from 08:00 am to 09:00 pm.

The data obtained from the simulation, as presented in
Table 7 highlight the effectiveness of our approach. The
total reward achieved, interpreting the gain in time resulting
from the drivers’ informed decisions regarding detours and
passenger waiting times, amounts to 20000 minutes for
a simulation from 8:00 am to 9:00 pm. This remarkable
figure clearly demonstrates the significant benefits of our
application.

By optimizing detour decisions, our model has enabled
drivers to minimize the additional time spent on the road
while still meeting the needs of passengers. Furthermore,
by optimizing passenger waiting times, our application has
greatly enhanced their experience by reducing the overall
waiting time. These results underscore the effectiveness of
our approach in making optimal decisions for drivers and
improving the passenger experience.

To more effectively evaluate the proposed method,
experiments were conducted in different environments and
configurations, primarily focusing on the number of requests
and offers to assess scalability. Additionally, we varied
the maximum detour time to observe the decision-making
behavior of the agent. Three distinct scenarios were created,
each covering a time range from 7:00 am to 12:00 pm.
The initial locations of ridesharing offers and requests were
randomly selected from our dataset. For each driver, we set
the number of available seats to 3. Details of the three
scenarios parametrization are given in table 8

The results of the execution of these scenarios are
presented in table 9 and illustrated in Fig. 4.

The experiments we conducted aim to assess the adapt-
ability of our system in situations where drivers may face
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FIGURE 4. Simulation results for the three scenarios.

TABLE 8. Parameters of the tested scenarios.

TABLE 9. Simulation results for different scenarios.

detours of varying durations. By comparing results for
different intervals of maximum detour time, we observed
that the number of accepted requests with and without
detour does not reveal a significant difference. This finding
attests to the effectiveness of our decision algorithm and
the reasoning of the agent. Our system can make balanced

decisions, considering requests requiring a detour and those
that can be integrated into the initial route and passenger
waiting time. Additionally, varying the number of offers
and requests allowed us to explore different workloads and
test our system’s ability to efficiently handle an increasing
volume of real-time data. By analyzing the system’s per-
formance under these different conditions, we were able to
evaluate its robustness and adaptability to various demand
situations.

VII. DISCUSSION
This work aims to address the dynamic ridesharing optimiza-
tion problem with a primary focus on minimizing passenger
waiting time and driver detour time. The obtained results
demonstrate the effectiveness and the robustness of our
system in making balanced decisions between drivers’ con-
straints and passengers’ constraints. This balanced decision-
making capability contributes to the development of a
robust dynamic ridesharing system which is adaptable and
responsive in real-world scenarios.

In a departure from existing literature, our proposed
modeling approach uniquely prioritizes temporal dimension,
emphasizing time-related factors in the decision-making
process. Unlike other works that integrate both temporal
and spatial information into observations, a practice that
significantly inflates the state space, our approach focuses
on temporal aspects. Specifically, the information captured in
the observation pertains exclusively to time-related factors,
encompassing passenger waiting times and driver detour
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durations. Central to our framework is the assumption
that time serves as a critical delineating parameter for
decision-making, a departure that simplifies the problem
considered. Furthermore, our work addresses two instances
of the dynamic ridesharing optimization problem: the one-
to-one ridesharing matching problem and the one-to-many
ridesharing matching problem. This dual perspective offers
a more nuanced understanding of the system dynamics,
enhancing the adaptability and applicability of our proposed
model across diverse ridesharing scenarios.

Based on the promising results obtained and the extensive
review of related literature, our approach stands as a
noteworthy contribution to the field of dynamic rideshar-
ing optimization. The balanced decision-making capability,
coupled with a focus on the temporal dimension, positions
our system as an efficient and adaptable solution, offering
substantial benefits to both passengers and drivers in dynamic
ridesharing environments.

VIII. CONCLUSION AND FUTURE WORK
Dynamic ridesharing offers great flexibility of use, allowing
for the swift identification of a shared ride based on the
positions of potential drivers and passengers along a given
route. Ridesharing systems are inherently dynamic and
complex. Their complexity primarily lying in the matching of
users subject to several constraints: spatiotemporal, waiting
times, detour times, etc.

In this work, our modeling comprises two key aspects.
Initially, we focus on modeling the one-to-one dynamic
ridesharing problem, incorporating inherent constraints and
the objective of minimizing passengers’ waiting time.
Subsequently, we extend our modeling to address the one-to-
many dynamic ridesharing scenario, introducing additional
inherent constraints and objectives that involve minimizing
both passengers’ waiting times and drivers’ detour times.
This comprehensive approach, based on components of
the Markov decision process and rooted in reinforcement
learning theory, primarily centers on the temporal dimension.
The overarching goal is to optimize the dynamic constrained
matching process, ultimately leading to a reduction in
passenger waiting times and minimizing detour times for
drivers, thereby enhancing the overall efficiency of the
ridesharing system and increasing the number of successfully
completed requests.

The proposed modeling was validated on the basis of a
simulator developed to ensure the dynamic aspect of the
system. The results obtained through the various experiments
demonstrated the effectiveness, robustness, and ability of
our system to respond to diverse requests subject to various
constraints. These outcomes confirmed our hypothesis that
time plays a crucial role in decision-making. It is encouraging
to note that ourmodel successfully reduced passenger waiting
times and minimized driver detour times, providing an
efficient and beneficial solution for all parties involved in the
ridesharing process.

This work can be extended in many different directions.
One potential is to address conflicting objectives. The
inherent tension betweenminimizing passengerwaiting times
and reducing driver detour times necessitates a more nuanced
approach. One avenue worth exploring is the application of
multi-objective reinforcement learning, allowing the system
to find optimal solutions that balance these conflicting
objectives. Scalability is another important perspective to
consider. As ridesharing systems evolve and cater to an
increasing number of users, it is imperative to assess the
scalability of our proposed model.

User preferences play a pivotal role in the success of
ridesharing systems. Future work should delve into incor-
porating personalized preferences and constraints, offering
users a more tailored experience.
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