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ABSTRACT Current single-model methods for fine-grained image classification suffer from insufficient
generalisation ability, while multi-model fusion methods suffer from weight curing. The study suggests and
experimentally tests a dynamic weight multi-model fusion strategy for transfer learning-based fine-grained
picture classification. The results of the experiment showed that the suggested fusion model enhanced
recognition accuracy by 1.33%, 1.19%, and 0.83% compared to the single model on the medical dataset
and 3.25%, 1.34%, and 7.28% on the agronomy dataset, respectively. Furthermore, when compared to the
comparison method, the models under the proposed method of the study improved recognition accuracy
by 0.18%, 0.61%, 0.43%, and 0.43% on the medical dataset, and the experimental time consumed was
3.25 minutes less than that of the sum-of-maximum-probabilities method; however, the fusion models of the
proposed method of the study had higher recognition accuracy than that of the comparison met Overall, the
proposed dynamic weight multi-model fusion method for fine-grained image classification using migration
learning has better performance and generalisation ability, which can improve performance while reducing
time cost, and has higher application value for the actual fine-grained image classification task.

INDEX TERMS Migration learning, multi-model, fine-grained image, generalization capability, CNN.

I. INTRODUCTION
The advancement of computer and modern communication
technology has made it increasingly easier for people to
acquire image data and classify images. The actual task of
image classification is to use the network model to propose
corresponding features to the objects to be classified in the
image in order to achieve the goal of judging the classification
of the category to which they belong [1]. The current image
classification system includes both coarse- and fine-grained
image (FGI) classification; the latter is more closely related
to human life and has greater practical value, thus it has
attracted a lot of attention [2]. Early FGI classification is
generally accomplished through the use of machine learning
algorithms, which typically analyse the lower level infor-
mation in the image and do not involve the higher level
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abstraction information, resulting in a limitation that cannot
satisfy the needs of the actual scene [3]. Deep learning (DL)
is a new notion for FGI classification since it can auto-
matically extract the actual feature information of an image
layer by layer as artificial intelligence has progressed [4].
When using fine-grained image classification, there is often
a problem of insufficient training samples. Compared to
previous methods, transfer learning allows researchers to
conduct experiments using pre trained models, which are
typically trained on large-scale datasets and can provide rich
feature representations. Meanwhile, transferring learned fea-
tures can achieve more accurate classification on relatively
small datasets. In addition, transfer learning can effectively
integrate the pre training knowledge of various models and
improve classification performance.

However, in fine-grained image classification, although
single model classification methods based on deep learning
can achieve good results, they still have some shortcomings
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compared to multi model fusion methods, and significantly
increase time costs, making recognition accuracy difficult
to meet practical requirements. However, the fixed weight
multi model fusion method adopts an empirical assignment
method for the contribution weights of each sub model,
resulting in fixedweight values and randomness in the results,
making it difficult to ensure that the model converges to the
optimal solution. In view of this, the experiment proposes a
multi-model fusion fine-grained image classification method
based on transfer learning, aiming to explore efficient meth-
ods for fine-grained image classification.

During the experiment, a dynamic weight multi model
fusion method (DWMF) for fine-grained image classifica-
tion was proposed by using transfer learning. It is expected
to solve the problem of insufficient generalization ability
of single model methods and the problem of traditional
multi-model fusion methods. The problem of value solidifi-
cation. Compared with existing single model classification
methods using deep learning (such as attention paired
interaction networks, weakly supervised fine-grained image
classification networks based on attention guided image
enhancement, etc.) and fine-grained image classification
methods based on multi model fusion (such as image recog-
nition methods based on self coding and convolutional neural
network fusion, etc.), the experimental method provides
unique insights by combining transfer learning and multi
model fusion. This model not only improves the accuracy
of classification, but also enhances the recognition abil-
ity of the model for fine-grained features. In addition, this
method also demonstrates how to utilize pre trained models
in resource constrained situations, which is not common in
current fine-grained image classification research.

The whole study is organised into four parts, the first of
which summarises and examines existing research on FGI
classification methods for DL under DL. The second section
provides a summary of the theoretical underpinnings of the
FGI classification approach for MMF as well as the proposed
research method. The final section is an experimental verifi-
cation of the research method’s validity. The fourth section
provides a synopsis of the entire article.

II. RELATED WORK
According to the quantity of manually labelled data required
for the algorithmic model to be trained, the current FGI
classification methods using DL can be divided into two
categories: those that use strongly supervised information and
those that use weakly supervised information [5]. Among
them, the latter combines the target detection algorithm,
attention mechanism, reinforcement learning and other meth-
ods, which not only saves the cost of manual annotation, but
also has more research value for practical application and
promotion on the basis of meeting or even exceeding the FGI
classification method based on strongly supervised informa-
tion [6]. Wang et al. addressed the problems related to the
classification of FGIs due to intra- and inter-class differences
by proposing a neural model incorporating a new attentional

mechanism on the basis of the aggregated attention module,
which effectively improves the accuracy of recognizing and
classifying FGIs [7]. Wei et al. addressed the problem of
FGI analysis in computer vision and pattern recognition by
reviewing the research of DL in FGI classification, which
redefined and broadened the field of FGI analysis, and thus
effectively solved the key problems in FGI classification [8].
Adem et al. addressed the problem of FGI in agricultural
vegetable leaves by proposing a model for image recognition
classification based on image processing and DL, thus effec-
tively reducing the diagnosis time of actual disease categories
while improving the recognition accuracy [9]. By putting up
a model for picture recognition classification based on image
processing and DL, Ngugi L.C. et al. attempted to address the
issue of plant disease identification. On the basis of image
processing methods and DL, a model for picture identifica-
tion and classification was put out, effectively cutting the
diagnosis time for actual disease categories while increas-
ing the recognition accuracy [9]. Ngugi et al. addressed the
related problems in plant disease detection by proposing a
model for automatic recognition and classification of pictures
on the basis of image processing techniques and DL, thus
effectively improving the diagnosis and recognition accuracy
of plant diseases [10].

In addition, Chen et al. proposed an improvedmodel fusing
segmented linear representation and weighted support vec-
tor machine for the problems related to FGI classification
by applying it in real stock image analysis, thus effectively
improving the recognition accuracy of FGI [11]. Liu et al.
addressed the problem of recognizing and classifying hyper-
spectral FGIs by organically integrating convolutional and
multimodal neural network models on the basis of dynamic
stochastic resonance, thus effectively improving the recogni-
tion accuracy of FGIs based on the use ofMMFs [12]. Jenisha
and Dickson proposed a fusion model for automated FGI
segmentation by using deep ML and attention mechanism
for problems related to FGI recognition segmentation of liver
tumors, thus in providing help in enhancing the segmentation
of liver tumor images [13]. Vo et al. addressed the problems
related to DL in medical FGI recognition and classification,
and constructed an X-network model by fusing a residual
network model with a squeezing and excitation model, which
effectively improved the predictability of medical image clas-
sification [14].
FGI classification methods based on weakly supervised

information mainly include two kinds of FGI classification
using SM and MMF. However, the current SM method only
makes use of parameter tuning or fine-tuning the model struc-
ture based on the current network model to improve recogni-
tion accuracy in image classification, which not only adds to
the time cost but also makes it challenging to obtain satisfac-
tory results. The MMF method for image classification has
fixed weights for each sub-model and the researchers assign
values to each sub-model based on their own experience,
so it cannot reflect the contribution of each sub-model in the
actual classification task. Based on this, the study proposes
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FIGURE 1. Schematic diagram of the specific architecture of CNN in the
field of image recognition and classification.

a dynamic weighting MMF method for FGI classification by
utilizingML, which not only can solve the problem of insuffi-
cient GC, but also can realize the dynamic adjustment of the
weights, so it is innovative. Meanwhile, in theory, research
methods have a significant improvement in classification
performance compared to single model methods; Compared
to traditional fixed weight multi model fusion methods, the
research method not only improves classification perfor-
mance, but also achieves the optimal state faster, saving time
and computational costs. Therefore, it has superiority and
innovation.

III. ANALYSIS OF CLASSIFICATION METHODS FOR FGI
OF MMFS
Numerous studies have demonstrated that theMMF approach
has better performance than a single model, and its practical
application mainly depends on the network model used and
the fusion strategy of different models. Therefore, this section
focuses on the main models of MMF and analyzes the pro-
posed MMF approach.

A. CNN MODELING AND MMF ANALYSIS
Aiming at the GC deficiency of the current SM method
and the solidification of the weights of the traditional MMF
method, the study proposes a dynamic weighted MMF
method for FGI classification by utilizing ML. Convolu-
tional Neural Networks (CNN) and Deep Neural Networks
are the basic technologies for the approach, so the study
first examines both of them.CNN is a feed-forward neural
network that was developed using DL, and its operation was
influenced by the visual cortex of the human eye, which is
naturally better at recognising images [15], [16]. CNN uses
a ‘‘end-to-end’’ approach to image recognition, but it can
be intuitively divided into two parts based on the functions
played by each component of its structure: feature extraction
and classification. The feature extraction component uses
alternating convolutional and pooling layers to perform, and
the classification component is typically implemented by a
fully connected layer [17], [18]. Thus, the specific CNN
structure in the area of image identification and classification
is depicted in Figure 1.
As shown in Figure 1, the study sets the feature maps in

the CNN’s convolutional layer to 3 layers, the pooling layer’s
feature maps to 3 layers, the convolutional layer’s feature
maps to 5 layers, the secondary pooling layer’s feature maps

to 5 layers, and then it moves on to the fully-connected layer
and the output layer. The central part of the CNN is the
convolutional layer, whose primary job is to automatically
extract the input data and local features using convolutional
operations and numerous convolutional kernels to produce
the feature map. This process can be viewed as filtering the
entire image with a filter of a specific size and specific rules,
and then filtering out the content that matches the filtering
rules of that filter to get a feature map. The major convolution
kernel parameters are its size, the motion step size, and the
filling of the feature map. This filter is also known as a
convolution kernel. In this case, the convolution is computed
as the sum of the products of the convolution kernel weights
and the corresponding pixel values, which is expressed as
shown in equation (1).

convp,q =

x∗y∑
i

γiλj (1)

In equation (1), convp,q denotes the convolution result value;
p and q denote the horizontal and vertical coordinates of the
actual feature map; x × y denotes the maximum size of the
convolution kernel, and i and j are the internal size sizes
of the two, respectively; γ denotes the visual weight of the
convolution kernel; and λ denotes the relevant pixel value
of the corresponding point of the actual image. The pooling
layer mainly plays the role of pooling operation on the feature
map, which improves the robustness of the CNN. The pooling
operation adopts a method similar to downsampling, which
can both reduce the computational amount of the model and
compress the features, thus effectively eliminating the redun-
dant information in the data and preventing the overfitting of
the data. In the pooling layer, the pooling operation can be
divided into average pooling and maximum pooling, which
reduces all the values on each block to a single number
after average or maximum pooling of the input image. The
corresponding expression is shown in equation (2).

Blk (i, j) =

 f∑
p=1

f∑
q=1

Blk (zoi+ p, zoj+ q)w


1
w

(2)

In equation (2), Blk denotes the simplified value; f denotes
the feature map size; zo denotes the step size; and w denotes
the pre-specified value, which when it is 1 denotes the aver-
age pooling, and the corresponding region takes the mean
value, and when it tends to infinity denotes the maximum
pooling, and the corresponding region takes the maximum
value. In addition, CNN internal important also contains acti-
vation function, commonly used activation function contains
S-type activation function and Linear Rectification Function
(ReLu), the expression of the two as shown in equation (3)
and equation (4).

f (h) =
1

1 + e−h
(3)

In equation (3), the first line denotes the S-type acti-
vation function expression and h denotes the function
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FIGURE 2. Typical ResNet network structure diagram.

independent variable.

f ′ (h) =

{
h, h ≥ 0
0, h < 0

(4)

Equation (4) represents the ReLu function expression.The
most important network model in CNN modeling is the
Residual Network (ResNet), mainly because of its solution
to the long unsolved problem of gradient vanishing. Figure 2
displays a typical ResNet network structure.

As can be seen in Figure 2, a typical ResNet network
structure starts with image samples of 3×224×224 size, and
on the one hand, it is output through the form of continuous
reduction, which can make the original image construction
level significantly improved; on the other hand, it is output
through the fully connected layer after multi-layer network
through convolution operation, batch normalization, ReLu
function and maximum pooling operation. For the ResNet
network model, the most important component is the resid-
ual learning unit, the basic idea is to draw on the residual
learning, using a technique called ‘‘jump connection’’ to skip
multiple levels of input training, and will be directly con-
nected to the output. The expression of the residual equation
is shown in equation (5).

G
(
p′

)
= E

(
p′

)
+ p′

⇒ E
(
p′

)
= G

(
p′

)
− p′ (5)

In equation (5), p′ denotes the residual value; E
(
p′

)
the

observed value; G
(
p′

)
the actual value. In addition to this,

deep neural network models have developed many models on
the basis of CNN, such as AttentionMechanism, Transformer
Structure and so on. Among them, the typical model in the
Transformer structure is the Vision Transformer (Vit) model,
which outperforms most of the CNN models on image net-
works with a recognition accuracy of 88.55%. The traditional
CNN is built by associating the pixel points in the whole
image over a long period of time, while for a very small
convolutional kernel granularity can not completely cover the
whole image, and it is necessary to expand the perceptual
field by increasing the depth of the model, but such a method
not only can not achieve the expected results, but also has
some undesirable effects.Transformer, on the other hand,

FIGURE 3. Schematic diagram of multi model fusion under feature fusion
and decision fusion.

adopts the use of self-attention layer to build the long-distance
dependency, reducing the degree of dependency on external
information so as to capture the internal relevance of the data
or features and maximize the use of the information inherent
in the features themselves to interact with the attention.

The models constructed for the study are then fused with
multiple models.The principle of MMF is to train multiple
base models simultaneously, after which these base mod-
els are fused using a model fusion strategy, and finally the
fused integrated network model is obtained.The MMF usu-
ally contains feature and decision fusion, where the schematic
diagram of theMMF under feature fusion and decision fusion
is shown in Figure 3.

As can be seen from Figure 3, feature fusion refers to the
fusion of features extracted frommultiple sub-models to form
a feature map that is more informative and more conducive to
classification, after which the relevant classification is carried
out through the fully connected layer. Decision fusion is by
fusing and re-calculating the classification probability results
output from each sub-model, and finally outputting the actual
classification results.

B. RESEARCH ON DYNAMIC WEIGHTED MMF METHOD
On the basis of the theory of CNN in deep neural network part
of the model and the theory of MMF, the research began to
propose the MMF method for FGI. In practice, MMF mainly
depends on the network model used and the fusion strategy of
different models, by applying the network model constructed
on the basis of ML to the actual MMF not only can achieve
better results than a single model, but also can effectively
improve the efficiency. However, the current MMF method
realizes fusion by fixing the weights, but the method ignores
the role played by each sub-model in the whole process of
model operation and the differences in the actual classifi-
cation, and also fails to take into account the problem that
the experimenter assigns the values based on his/her own
experience. Therefore, the study utilizes the idea of dynamic
adjustment to propose the DWMF method, the framework of
which is shown in Figure 4.
The primary components of the DWMF structure include

input and data pre-processing, model library, weight
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FIGURE 4. Schematic diagram of the structural framework of dynamic
weight multi model fusion method for fine-grained image classification.

adjustment and fusion, and output modules, as shown in
Figure 4. The input and data pre-processing module contains
the actual data input and data pre-processing parts. Among
them, the actual data input part is mainly responsible for
receiving the input image sampling data, and this method
can accept Red Green Blue (RGB) image sampling. The
data pre-processing part is responsible for pre-processing
the received image samples to eliminate the inconsistency
of size and data distribution in the image samples, which
provides the basis for the subsequent use of image samples
in the model. The role of the model library module is to store
the sub-models involved in the MMF process and to provide
users with the functions of managing and configuring the
sub-models. There are three network models placed inside
the model library, namely, ResNet50, Efficient Network_b0
(EfficientNet_b0) model, and the model about Vit chunking
(vit_base_patch16_224), which are all experimental models
without structural modification and have been subjected to
the corresponding changes in the ImageNet dataset. structural
modifications and all three network models are experimental
models, which have not been structurally modified and have
been pre-trained accordingly in the ImageNet dataset.

The primary function of the weight adjustment and fusion
module is to correct and combine the weights of each sub-
model. During the model fusion process in this module, the
weight value of each sub-model will be changed in real time.
Each sub-model’s weight value will be dynamically modified
in accordance with the accuracy of the previous round; the
higher the accuracy, the better the sub-model’s performance,
the higher the weight value of the model will be, and vice
versa. The module is divided into a parameter initializer,
a weight adjuster, and a model fuser. The parameter initializer
initializes the parameters before the implementation of the
actual method, and in the actual application, it is mainly
complicated to initialize the parameters in the method auto-
matically according to the model user’s own choice. Among
them, the model weight parameter is particularly important
for comparing the expression of sub-models on the dataset
before model fusion, and its calculation expression is shown
in equation (6).

Ml =
1
F
, l ∈ F (6)

FIGURE 5. Schematic diagram of the weight dynamic adaptive
adjustment algorithm flow.

In equation (6), Ml represents the actual weight value of the
model; F represents the actual number of models. The weight
adjustment step size is also important for the model itself,
and the actual fusion model will take too much time if it
wants to reach the ideal convergence state, while setting it
too large will make its change magnitude too large, which in
the extreme case will lead to the emergence of the sub-model
with weights greater than 1 and the other sub-model with a
negative value. The weight adjustment step size calculation
expression is shown in equation (7).

L =
1

F ∗ V
(7)

In equation (7), L denotes the weight adjustment step size;
V denotes the actual number of model training. The weight
adjuster is the core component of the module, which is
responsible for the dynamic adaptive adjustment of the visual
weight values of each submodel involved in model fusion,
and mainly contains the weight adjustment strategy, the step
size adjustment strategy and the weight adaptive adjustment
algorithm. Among them, the weight adjustment equation in
the weight adjustment strategy is expressed as shown in
equation (8) and equation (9).{

Ml = Ml + L
Ml

(8)

The first line of equation (8) represents the computed expres-
sion of the weight values when the accuracy is maximized.

Ml = Ml − L (9)

Equation (9) represents the expression of weight value calcu-
lation when the accuracy is the minimum value. The weight
adaptive adjustment algorithm is the core algorithm in the
weight adjustment and fusion module, based on the proposed
algorithm can be realized in the actual self-training process of
the model to adaptive adjustment of the weights, and its flow
is shown in Figure 5.

As can be seen from Figure 5, for iteration round o ∈

(1, 2, · · · ,V ), the algorithm first builds a fusion model by
training and validating each sub-model accordingly, and then
composes a dictionary of the actual validation accuracy
of each sub-model and the corresponding weight values.
Secondly, it compares the accuracy of each sub-model,
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FIGURE 6. Schematic diagram of the actual working process of the weight
fusion device.

increases the weight of the sub-model with the highest accu-
racy by L, and decreases the weight of the sub-model with
the lowest accuracy by L, and then starts to determine that
if the accuracy of the fusion model increases compared to
the previous iteration after more than 2 iteration rounds of
the experimental iteration, then it stores the actual position
of the current node and continues to change in the original
step size. If there is no rise then the node position stored
in the previous iteration round is returned and the step size
is adjusted and then the detection is performed with the
changed small step size. Then the dictionary is updated to
end the iteration and end the process. In this, the dictionary
expression is constructed as shown in equation (10).

dict = (a1 : M1, a2 : M2, · · · , aF : MF ) (10)

In equation (10), dict denotes the dictionary composed of
the combination of accuracy and weight values; a denotes
the accuracy rate. And in the step of algorithm step adjust-
ment, the adjustment equation is expressed as shown in
equation (11).

L = L ∗ α (11)

In equation (11), α denotes the step decay rate, and its value
is determined to be 0.5 in the actual experiments.In addition,
the model fuser is the key of MMF, which is mainly used
to generate the decision matrix of the final fusion model by
fusing the decision matrices of the actual outputs of various
sub-models in a corresponding weighted manner, and the
actual flow of its work is shown in Figure 6.

As shown in Figure 6, the decision matrix for the final
model is produced by first multiplying the weights by the
actual output decision matrix of each sub-model to produce
the weighted decision matrix of each sub-model. Where
the final model decision matrix is expressed as shown in
equation (12).

Q (u) =

m∑
k=1

MkXk = M1X1 +M2X2 + · · · +MmXm (12)

In equation (12), Q (u) denotes the decision matrix of the
fusion model; k denotes the serial number of the sub-
model, m denotes the actual total number of sub-models;
and Xk denotes the decision matrix of the actual output of

the kth sub-model, which is actually expressed as shown in
equation (13).

Xm =


γ11 γ21 · · · γb1
γ12 γ22 · · · γb2
...

...
. . .

...

γ1c γ2c · · · γbc

 (13)

In equation (13), γbc represents the actual probability that
sample c belongs to category b. Finally, the output module
refers to the decision matrix from the weight adjustment and
fusion module after the fusion of the maximum probability
value by rows, this maximum probability value correspond-
ing to the category of the column that is the fusion model
of the sample’s predicted classification, and after compar-
ing with the real label, the final classification probability is
output. In addition, the algorithm is evaluated from the clas-
sification effect and algorithm efficiency respectively in the
experiment, in which the recall, accuracy, precision and F1
value are selected as the evaluation indexes for the classifica-
tion effect, and the corresponding computational expressions
are shown in equation (14) and equation (15).

A =
ϕ + κ

ϕ + ψ + κ + ρ

R =
ϕ

ϕ + ψ

(14)

In equation (14), A denotes the accuracy rate; ϕ denotes the
number of correctly classified positive samples; κ denotes the
number of correctly classified negative samples; ψ denotes
the number of negative samples misidentified as positive
samples; ρ denotes the number of underreported positive
samples; and R denotes the recall rate.

µ =
ϕ

ϕ + ρ

F1 =
2 (µ ∗ R)
µ+ R

(15)

In equation (15), µ denotes the precision rate; F1 denotes the
F1 value.

IV. PERFORMANCE ANALYSIS OF FGI CLASSIFICATION
METHODS BASED ON MMF FOR ML
The study chose two additional traditional FGI classification
datasets in the medical and agricultural domains, respec-
tively, for trials to confirm the validity and generalizability
of the research approach in FGI classification. Among them,
the medical dataset is selected as Human Against Machine
with 10000 training images (HAM10000) in the skin cancer
related dataset. The HAM10000 data set is a fine-grained
image data set with a simple background. It comes from
the International Skin Imaging Society ISIC2018 Challenge.
The data set contains 10,015 dermoscopic images of differ-
ent people, divided into 7 categories. The cases basically
include those in the field of pigmented lesions. All important
diagnostic categories. And the cassava leaf disease (CLD)
dataset is selected as the dataset in the agricultural field. The
CLD dataset is a fine-grained image dataset with complex
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TABLE 1. Original dataset, enhanced dataset and experimental
environment content.

background. The dataset has a total of 21,367 cassava disease
images, divided into four disease categories and a fifth cate-
gory representing healthy leaves. Most of the images were
obtained from farmers taking photos of their own vegetable
gardens and were annotated by professional institutions. This
is a form that most truly represents the diagnosis that farmers
need in real life, and has fine-grained features such as com-
plex backgrounds, illumination changes, different angles, etc.
It is more suitable for experimental laboratories than other
widely used data sets in the field of plant diseases. Build
the model. Due to the problem of uneven data distribution
in the HAM10000 dataset and severe long-tailed distribution
in the CLD dataset, the study utilizes data enhancement to
process the two datasets. Table 1 displays a selection of them,
including the original dataset, the augmented dataset, and the
components of the experimental setting.

Table 1 shows that following data augmentation, the num-
ber of HAM10000 photos increases by 51,454 from 10015;
also, the number of images in the CLD dataset doubles, going
from 21367 to 96322 images. In addition, the categories
before and after data enhancement of the two datasets remain
unchanged, and the two are 7 and 5. Based on this founda-
tion, the study was carried out to validate the comparisons
from three perspectives, respectively, i.e. original dataset and
enhanced dataset comparison, SM vs. MMF comparison, and
different MMF methods comparison experiments. Among
them, the comparison of the recognition results of the pro-
posed fusion model of the study in the two datasets is shown
in Table 2.

In Table 2, the accuracy rate of the HAM10000 dataset
before data enhancement was 88.42%, the average recall rate
was 76.63%, the average precision rate was 86.41%, and the
average F1 value was 80.58%; whereas the values of the
four metrics after data enhancement grew to 98.83%, and
the recognition effect was significantly enhanced. In addition,
the accuracy rate of CLD dataset before data enhancement

TABLE 2. The recognition results of the fusion model proposed in the
study on two datasets.

was 86.60%, the average recall rate was 72.98%, the aver-
age precision rate was 77.97, and the average F1 value
was 75.07%; while the values of the four metrics after data
enhancement were 98.19%, 98.24%, 98.14%, and 98.18%,
which were also significantly enhanced. Taken together, the
operation of offline data augmentation positively affects the
final recognition results of the fusionmodel, with the recogni-
tion accuracy metrics improving by 10.42% and other metrics
improving by around 12.43% to 22.21% on the HAM10000
dataset in a simple context. While on the CLD dataset in
complex context the recognition accuracy was improved by
11.60% and other metrics were improved by around 20.18%
to 25.27%. Thus the operation of data enhancement not
only makes the recognition accuracy of the fusion model
effectively improved, but also makes the actual difference
between the evaluation indicators become smaller. On this
basis, the study compares the fine-grained image recognition
performance of the three single models in the model library
in Figure 4 with the fusion model proposed in the study on
two datasets, and sets the three single models as A∼C. Set
ResNet50 (themain feature of ResNet50 is the introduction of
‘‘Residual Block’’, which allows the network to better learn
the differences between input and output, rather than directly
learning output, which helps improve the performance of the
model) to Model A and Efficient Network_ B0 (which uses
the trained parameters, freezes the high-level, only fine tunes
the classifier’s parameters using the training set, and uses
the entire model to recognize the test set) is set to B model,
vit_ Base_ Patch16_ 224 is set as the C model. These three
models are all experimental models and are officially released
network models without any structural changes. They have
all been pre trained on relevant datasets. All three models are
already mature pre trained models. The recognition results on
the HAM10000 dataset are shown in Figure 7.

Detailed Figure 7 demonstrates that on the HAM10000
dataset, Model A has accuracy values of 97.51%, average
recall values of 97.51%, average precision values of 97.51%,
and average F1 values of 97.50%, whereas the values of the
four metrics of Model B are 97.65%, 97.65%, 97.64%, and
97.64%, respectively. The values of the four metrics ofModel
C are 98.01%, 97.80%, 98.00%, and 98.00%,while the values
of the four metrics of the fusion model proposed in the study
are 98.83%, which are higher than the comparison models.
When compared to models A, B, and C collectively, the
fusion model’s recognition accuracy is increased by 1.33%,
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FIGURE 7. Recognition results of four models on the HAM10000 dataset.

FIGURE 8. Recognition results of four models on the CLD dataset.

1.19%, and 0.83%, while the other three metrics are improved
by 0.84% to 1.33%, 0.84% to 1.33%, and 0.84% to 1.34%,
respectively, when compared to the SM. In addition, the
recognition results on the CLD dataset are shown in Figure 8.

Comprehensive Figure 8 demonstrates that on the CLD
dataset, Model A has accuracy values of 94.95%, average
recall levels of 94.46%, average precision values of 95.53%,
and average F1 values of 94.49%. In contrast, Model B has
accuracy values of 96.86%, 97.11%, 96.74%, and 96.90% for
each of the four metrics. The values of the four indicators of
Model C were 90.92%, 89.77%, 89.85%, and 89.80%, while
the values of the four indicators of the fusion model proposed
in the study were 98.19%, 98.24%, 98.14%, and 98.18%,
which were higher than those of the comparison model.
In conclusion, while the other three metrics are improved
by 1.14%-8.48%, 1.41%-8.30%, and 1.38%-8.39%, respec-
tively, compared to SM, the recognition accuracy of the fusion
model is enhanced by 3.25%, 1.34%, and 7.28% compared
to models A, B, and C, respectively. The fusion model out-
performs the comparison model and has the best picture
recognition result, as can be demonstrated by combining
Figure 7 and Figure 8. In order to visualize the difference

FIGURE 9. The results of accuracy changes with iteration for four models
on the HAM10000 dataset.

FIGURE 10. The accuracy of four models on the dataset CLD varies with
iteration results.

between the SM and fusion models, the study continued by
comparing the results of the four models on two datasets in
terms of the change in accuracy with iterations. One of the
results on the dataset HAM10000 is shown in Figure 9.
As can be seen from the combined Figure 9, due to

the use of ML techniques for the four models, the accu-
racy improvement is realized quickly and the models reach
convergence with only a small number of iterations. Addi-
tionally, the fusion model’s accuracy curve is always above
the comparison model and exhibits minimal fluctuation. For
instance, when the number of iterations is between 5 and 10,
models A and C exhibit significant fluctuation while model B
is comparatively smooth, the fusion model exhibits minimal
fluctuation. This indicates that the fusion model successfully
combines the traits of the three SMs to improve recognition.
Taken together, on the HAM10000 dataset, the fusion model
proposed by the study outperforms the SMs in all four indica-
tors, indicating the effectiveness of the research method. And
Figure 10 displays the outcomes for the dataset CLD.
Comprehensive Figure 10 shows that model C has the

best actual recognition effect among the three SMs when on
the dataset HAM10000, but the worst performance on the
CLD dataset, indicating that model C has an advantage in
recognizing data samples with simple backgrounds, but not in
recognizing image samples with complex background noise.
The fusion model converges faster in the case of growing
number of iterations, and basically starts to stabilize when
the number of iterations is around 8 and is used higher than
the comparison model, which proves that the fusion model
has better robustness. Combining Figure 9 and Figure 10,
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TABLE 3. Comparison of recognition effect and algorithmic efficiency on
data set HAM10000.

it can be seen that the fusion model exhibits high recognition
performance despite the significant variation in the actual
recognition performance of individual sub-models. This sug-
gests that it is less impacted by the actual performance of
individual sub-models that exhibit poor classification perfor-
mance, while at the same time, it consistently outperforms
other models in the recognition and classification of both
simple and complex background images. The findings also
demonstrate the superiority of the proposed DWFM tech-
nique over SM in the application of fusing simple network
models using machine learning, as well as its superior robust-
ness, demonstrating the efficacy of the study methodology on
such network models.

Finally, to increase the reliability of the test, the experiment
was repeated multiple times for each method on two data sets,
and the algorithm efficiency, actual recognition effect and
accuracywere analyzed. Themaximumvalue of the three per-
formance indicators is 100%. The higher the values obtained
by different methods, the better the relative performance of
the method.

The study compared the actual effects of different
multi-model fusion methods in two fine-grained images. The
comparative fusion methods are the Sum of the Probabili-
ties (SP), the Product of the Probabilities (PP), and Sum of
the Maximal Probabilities (SMP) and Simple Majority Vot-
ing (SMV). The recognition effect and algorithm efficiency
results on the data set HAM10000 are shown in Table 3.

As can be seen in Table 3, on the dataset HAM10000
the accuracy, average recall, average precision, and average
F1 value of the SP method is 98.65%, and the values of
the four metrics of the PP method are 98.22%, 98.22%,
98.23%, and 98.22%. the values of the four metrics of the
SMV method are 98.40%, 98.40%, 98.39%, and 98.39%,
and the values of the four metrics of the SMP method are
98.40%, 98.40%, 98.39%, and 98.39%, respectively, 98.40%,
and 98.39%, and the values of the four indicators for the SMP
method were 98.40%, 98.40%, 98.39%, and 98.39%, respec-
tively. Whereas, the values of all the research methods were
98.83%, which was significantly higher than the comparison
methods. The fusion model recognition accuracy is improved
by 0.18%, 0.61%, 0.43%, and 0.43% for the research method

FIGURE 11. Comparison results of recognition effect and Algorithmic
efficiency on data set CLD.

compared to the comparison methods, while it is improved
by 0.18% to 0.61%, 0.18% to 0.60, and 0.18% to 0.61% in
the other three metrics, respectively. In addition, the experi-
mental times of the four comparison methods are 282.05 min,
282.80 min, 286.72 min, and 287.45 min, respectively, while
the experimental time of the research method is in the middle
at 284.2 min. Taken as a whole, the fusion model constructed
by the research method has a better practical performance,
while the experimental time consumed is 3.25 min less than
that of SMP, and the four fusion algorithms’ overall time
is not much different, and the efficiency of each model is
basically the same. And the recognition effect and algorithm
efficiency on the dataset CLD are shown in Figure 11.
In Figure 11, 1 to 5 denote SP, PP, SMV, SMP, and

research methods, respectively. Combining Figure 11, it can
be seen that the values of the four indicators of the SP
method on the dataset CLD are 97.54%, 97.50%, 97.43%,
and 97.46%, respectively; the values of the PP method are
93.97%, 93.74%, 93.32%, and 93.52%, respectively. the val-
ues of the SMV method are 96.67%, 96.77%, respectively,
96.30%, and 96.52%, and the values for the SMP method
were 97.72%, 97.97%, 97.54%, and 97.74%, respectively.
Whereas, the values of 98.19%, 98.24%, 98.14%, and 98.18%
for the research methods were higher than those of the
comparison methods. In addition, the experimental time of
the four comparison methods was 450.9 min, 450.97 min,
450.05 min, and 449.82 min, while the experimental time
of the research method was 449.2 min, which was signifi-
cantly lower than the comparison methods. Taken together,
the recognition accuracy of the fusion model utilizing the
research method is higher than the comparison method by
0.68%, 4.22%, 0.47%, and 1.52%, while the other three
metrics are improved by 0.27% to 4.50%, 0.48% to 4.82%,
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FIGURE 12. The accuracy of four methods varies with iteration on two
datasets.

and 0.44% to 4.66%, respectively. The experimental time is
also lower than the comparison method, indicating higher
performance. Similarly, in order to see the actual effect of
the research method more intuitively, the study compared
the research method with the three most advanced methods
currently. These three methods are respectively a fine-grained
image classification method based on multi-scale feature
fusion (MSF-FGVC), a fine-grained image classification
method based on learning enhanced features and double infer-
ence (LEF-FGVC), and a trusted multi-granular information
fusion method. Fine-grained image classification method
(TMG-FGVC) [19], [20], [21]. The accuracy changes with
iterations of the research method and three advanced methods
on the two data sets were analyzed, and the results are shown
in Figure 12.

Comprehensive Figure 12 shows that the trend on the
dataset HAM10000 shows that the fusion model under the
research method can reach the fitting state faster compared
to other model fusion methods, which is more obvious when
the number of iterations is in the range of 8 to 15. When the
number of iterations is 15, the recognition accuracy of the
fusion model under the research method has reached 98.51%,
compared with the highest accuracy of 0.32% of the golden
cross, while the model under the other methods in the same
period maintains between 96% and 97%, significantly lower
than the fusion model under the research method. The trend
on the CLD of the dataset can be seen that there is a phase
intersection between the MSF-FGVC and LEF-FGVC meth-
ods and the research method, which performs better among
the four compared methods. Compared with HAM10000, the
dataset CLD has a higher complexity and is closer to FGI
recognition in the real environment, so different models show
significant differences in actual sample classification due to
the influence of the environment and external conditions,
which in turn leads to the fusion of different fusion methods
due to the differences in fusion mechanisms and also shows
a large difference in the fusion of decision matrices. Taken
together, the fusion model under the proposed method has
a slight advantage on the dataset HAM10000 and is able
to utilize fewer iterations to achieve the highest level of
recognition, which effectively saves time costs. Meanwhile,
it shows better results on the dataset CLD, which proves that
the research method has a better GC.

V. CONCLUSION
To improve the problem of insufficient generalization ability
of the current single model method and the solidification
of weights of the traditional multi-model fusion method,
the experiment proposes a multi-model fusion fine-grained
image classification method based on transfer learning.
On the basis of the existing multi-model fusion method,
the fine-grained image classification method of multi-model
fusion is improved. At the same time, in order to adapt to
the characteristics of fine-grained images, transfer learning
and adding attention mechanisms are adopted for the network
models used. Improve. The results show that in the compar-
ison of fusion methods, the four index values of the fusion
model under the research method on the data set HAM10000
are 98.83%; the values of the fusion model under the research
method on the data set CLD are 98.19%, 98.24%, 98.14%
and 98.18 respectively. %, are higher than the comparative
method, and the actual time consumption is lower than the
comparative method. In addition, the accuracy curve of the
fusion model is always above the comparison model with
smaller fluctuations, and converges faster as the number of
iterations continues to increase. In the accuracy comparison,
on the data set HAM10000, when the number of iterations
is 15, the recognition accuracy of the fusion model under
the research method has reached 98.51%, while the mod-
els under other methods during the same period remained
between 96% and 97%, which is obvious. The fusion model
is lower than the research method. On the dataset CLD,
the accuracy of the research method has been significantly
higher. In summary, it can be seen that the fusion method
proposed in the study can reduce the time cost of the model
while effectively improving the recognition and classifica-
tion performance, and has good generalization ability. The
research method has very significant competitiveness, and
has more obvious advantages when facing fine-grained image
data sets with complex backgrounds, which further reflects
the huge application value of the research method. However,
the experimental method relies on a large amount of rich
and diverse pre-training data, which limits its application
scope to a certain extent. For those fields where large-scale
annotated data is difficult to obtain, experimental methods
may not achieve optimal performance. In addition, although
the multi-model fusion strategy improves the accuracy of
classification, it also increases the complexity of the model
and the demand for computing resources. This may lead to
difficulties in practical application in resource-constrained
environments. If the source data set is too different from the
target task, the effect of transfer learning may be reduced.
In order to deal with these limitations and potential error
sources, future research will start from the following three
aspects: first, explore more effective data enhancement and
transfer learning strategies to reduce reliance on large-scale
pre-training data. Second, study more lightweight model
fusion methods to reduce computational costs and improve
model usability. Third, test the generalization ability of the
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method in different fields and tasks to further optimize the
migration strategy.
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