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ABSTRACT An increasing number of users are expected to be served by wireless network with
heterogeneous requirements. Unmanned aerial vehicles (UAV) can be deployed to augment the
heterogeneous network from aerial area by taking advantages of the characteristics of UAV such as
mobility, manoeuvrability, low cost, and Line-of-Sight (LoS) communication. However, the deployment
of UAV can also cause problems. For example, in UAV-assisted HetNet, the number of handover (HO)
will increase because of the dense distribution of small base stations (SBS) and UAV base stations (UBS).
Also, because of the small coverage of SBS and the LoS communication links from neighbour UBSs, the
number of unnecessary HO will also rise. Frequent HO and unnecessary HO can result in interruption,
increased overhead and energy consumption, which is not desirable for battery powered UAVs. In this paper,
to solve the problem, a HO decision making algorithm adopting TOPSIS and Q-learning (QL) is proposed
with the aim to reduce HO number and improve energy efficiency. Q-learning can be applied to address
decision-making challenges in communication systems widely. However, a large volume of training data
can pose challenges and complexities, therefore, the TOPSIS is utilised to reduce the size of the action space
in Q-learning. The proposed hybrid TOPSIS-Q-learning method enhances both the handover performance
and the scalability. In the method, signal to interference and noise ratio (SINR), time of stay (ToS) and
average energy efficiency (EE) are taken into account. The simulation results show that the number of HO
and unnecessary HO is remarkably reduced and the average EE is notably improved in comparison with
other existing methods.

INDEX TERMS UAV, heterogeneous network, handover, TOPSIS, Q-learning.

I. INTRODUCTION
Recently, heterogeneous network (HetNet) has been
deployed widely to provide access service for user equipment
(UE) to combine different access technologies and trans-
mission solutions [1]. However, the increasing demand for
bandwidth, capacity, and coverage, along with challenges
such as interference and spectrummanagement complexities,
necessitate incorporating unmanned aerial vehicles (UAVs)
in HetNet due to their flexibility, cost-efficiency, and ability
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to facilitate quick deployment [2], [3], [4]. What is more,
in HetNet, UAVs can serve as aerial base stations (BSs) or
relay nodes, leveraging the air-to-ground (A2G) channel for
excellent communication with ground UE due to high line-
of-sight (LoS) probability [5]. With low propagation delay,
high-quality communication links, and efficientmaintenance,
UAV-assisted HetNet enhances wireless network coverage,
capacity, reliability, and energy efficiency to meet future
communication demands [1].

Although UAV-assisted Hetnets provide such significant
benefits, there are still open challenges due to the need
for handovers (HOs) between different types of BSs [6].
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TABLE 1. Description of the abbreviations used in the paper.

HO is the process of transferring an ongoing call/data session
from a serving BS to a target BS without degrading the
quality of service for the connection. However, frequent
HOs will lead to various consequences, such as increased
signaling overhead, increased call drops, packet loss rates as
well as increased latency. In ground HetNet involving only
macro BSs (MBSs) and small BSs (SBSs), frequent HO and
unnecessary HO are usually caused by dense distribution of
SBSs [7]. Additionally, in UAV assisted HetNet, HO is also
caused by the movement of UAV BSs (UBSs). UEs easily
connect to UAVs with poor positions, resulting in increased
HO occurrences [8].

Several existing studies have addressed HO challenges
in UAV wireless networks. In [9], the author proposed a
UAV-aided network model that considers the advantages
and disadvantages of HO procedures. The study concluded
that UAVs should employ directive antenna systems, fly at
low altitudes, and maintain slower speeds. In [10], a path-
loss-plus-fading model incorporating HO parameters was
considered for HO in UAV networks. This study specifically
addressed frequent HO problems caused by the transition
between LoS and Non-Line-of-Sight (NLoS) in UAV net-
works. A discrete-time Markov chain was employed, and
HO failure and ping-pong probabilities were derived by ana-
lyzing HO state probabilities during time-to-trigger (TTT).

The results revealed a trade-off between HO failure and
ping-pong probabilities through TTT adjustments. Recently,
novel reinforcement learning methods have been applied in
wireless communications research, such as in [11], [12], and
[13]. They have also been employed to address handover
decision making problems. Authors of [14] have proposed
an RL-based HO mechanism to achieve UAV connectivity
in a cellular-connected UAV network. HO decisions are
dynamically optimized be applying the proposed algorithm.
In [15], a reinforcement learning-based HO algorithm and
mobility control optimization method were proposed for
UAV networks. Authors in [16] consider a network consisting
of only UAV base stations, and proposed another intelligent
HO method. It introduced a deep learning-based trajectory
prediction model and made HO decisions based on predicted
channel characteristics. The results showed a higher HO
success rate compared to traditional HO methods. In [17],
a Q-Learning-based HO management solution was proposed
between UBSs and static base stations, improving UE
capacity. Additionally, TOPSIS is used in many researches.
Reference [18] proposed a TOPSIS method to the problem
of network selection with a proposed iterative approach to
improve the result. In [19], the authors presented a to rankBSs
based on the weighted attribute for HO optimization. In this
work, authors compared two techniques which are entropy
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weighting technique and standard deviation weighting tech-
nique to scale the importance of the attributes. While the need
for UAV-assisted network systems is growing, there is limited
research focusing on optimizing HO performance in UAV-
assisted HetNets.

In this paper, a hybrid HO decision making algorithm
based on Technique for Order Preference by Similarity to
Idea Solution (TOPSIS) and Q-learning (QL) is proposed.
Q-learning can be applied in various decision-making chal-
lenges in communication systems. However, in ultra-dense
network with a significant number of BSs, handling a large
volume of training data can pose challenges and complexities.
The presence of noise or errors in the training data can
negatively impact the performance. Therefore, we employ
the TOPSIS method to reduce the dimensions of the action
space of Q-learning. This hybrid design has the potential to
enhance both the performance and the scalability, which is
crucial in efficiently handling an increasing number of BSs.
In the proposed method, three decision criteria are used to
select the best BS at a specific position, which are signal
to interference and noise ratio (SINR), time of stay (ToS)
and average energy efficiency (EE). Furthermore, in the ToS
measurement, we take into account themovements of both the
UEs and the UAVs. Finally, the results show that the proposed
scheme can reduce the number of HO and unnecessary HO
with higher EE comparing with the existing methods.

The rest of paper is organized as follows. Section II
presents the related work, in Section III, the system model
is introduced. The proposed HO scheme is illustrated
in Section IV. Section V shows the simulation results
and the analysis. Finally, the conclusion is presented in
Section V.

II. SYSTEM MODEL
A. UAV ASSISTED HETNET MODEL
A three-tier UAV assisted HetNet model is considered in this
work, as shown in Fig.1. In this model, a round coverage area
of a MBS is considered. The MBS is located at the centre of
the area, and some SBSs and UBSs are distributed in the area
following Poisson Point Process (PPP) with a specific density
λs and λu. In this system, SBSs operate at 5Gmillimetre wave
frequency and UBSs work at a frequency of LTE. Also, when
UAVs are operating, they hover and fly in the air following
their own path which is generated randomly. At the same
time, a UE moves in the area following a randomly generated
trajectory. During the movement of UBSs and the UE, HOs
are performed to keep the UE connect to a suitable BS. In this
scenario, MBS will not be the target BS in any UE HO
decisions, and UE will only connect to SBSs and UBSs to
offload the traffic from the congested MBS.

In the model, UAVs and UE are moving at the same time
following the trajectories with L waypoints. Every waypoint
is generated after UAVs or UE move for T time from the last
waypoint. Each UAV is moving with an unchanged velocity
vUBS , but the direction will be changed at every waypoint by

FIGURE 1. UAV assisted three-tier HetNet.

randomly generating a moving angle θ lUBSi , where i indicates
the ith UAV and l (l ∈ L) is the lth waypoint.

The moving model for ground UE is slightly different. The
initial point of UE is randomly generated in the area, and UE
is moving with a fixed vUE all the time. At every waypoint l,
a new value of direction θ lUE is randomly selected in
θ lUE ∈ [θ l−1UE −

π
6 , θ l−1UE +

π
6 ], where θ l−1UE is the direction

of the UE at the at last waypoint.

B. PROPAGATION MODEL
In this work, there are two different types of channels
which are ground-to-ground (G2G) and air-to-ground (A2G),
corresponding to ground and air BSs respectively.

The A2G channel consists of both LoS and NLoS links.
The A2G channels are easily affected by the obstacles such
as buildings between the UBSs and UEs. In this study,
whether the UE has an unobstructed LoS channel to a
given BS is determined using a ray tracing model [20],
where the buildings are generated randomly following
Poisson distribution with density β, and the random height
of each building follows Rayleigh distribution with scale
parameter κ . Therefore, when the groundUE connects aUBS,
if there is not a building blocking the path line between the
UBS and the UE, the channel is a LoS channel. Otherwise,
it is an NLoS channel.

The path loss for LoS and NLoS links is calculated as
follows [21]:

PLLoS = 30.9+ 20 log10 (fc)

+ (22.25− 0.5 log10 (hU )) log10 (d3d ), (1)

PLNLoS = 32.4+ 20 log10 (fc)

+ (43.2− 7.6 log10 (hU )) log10 (d3d ), (2)

where fc is the carrier frequency, hU is the height of the UAV
and d3d is the distance between the ground UE and the UAV
in 3D environment.

In contrast, the LoS probability for G2G channels is
low, therefore, it is assumed that G2G channels are NLoS.
From [22], the path loss model for G2G channels can be given
as:

PLG2G = 32.4+ 20 log10 (fc)+ 30 log10 (d3d ), (3)
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In order to improve the quality of communication link,
SINR, ToS and EE are measured for HO decision making,
as explained in the next section.

C. HO DECISION CRITERIA
1) DOWNLINK SINR FOR GROUND UE
SINR is related to the reference signal received power
(RSRP), interference and noise.The RSRP of both SBSs and
UBSs in dBm can be expressed as

RSRP = Pt + Gt + Gr − PL + SF, (4)

where the Pt is the transmit power from the serving BS,
Gt and Gr are the antenna gain of transmitter and receiver
respectively, PL represents the path loss from the serving BS
to ground UE, and SF is the shadowing fading which follows
Gaussian distribution with mean 0 and standard deviation σSF

SF ∼ N (0, σSF ). (5)

The values of σSF for LoS A2G, NLoS A2G and G2G
channels are given below [24]:

σ LoSSF = max(5× e(−0.01×hU ), 2), (6)

σNLoSSF = 8, (7)

σG2GSF = 7.8. (8)

Downlink interference is caused by other BSs. It is
assumed that there are Ks SBSs and Ku UBSs deployed in
the area. Then, when the UE is served by BS i, which could
be SBSs or UBSs, the interference in mW can be expressed
as:

Is =
Ks∑

j=1,j̸=i

RSRPj, (9)

Iu =
Ku∑

j=1,j̸=i

RSRPj, (10)

where j represents a BS. Interference is the sum of RSRP
from all BSs with same frequency except the serving BS i.
Therefore, SINR is given by:

SINR =
RSRPi
I + σn2

, (11)

where I represents the sum of interference Is and Iu, and σn
is noise power, which is calculated in Watt as:

σn = 10−3 × 10(−174+10×log10 B)/10, (12)

where B is the bandwidth.

2) TIME OF STAY
ToS is the sojourn time of the UE in a BS. Unnecessary HO
is related to ToS. If the ToS of the target BS is lower than a
time threshold Tth after a HO completes, then the HO is an
unnecessary HO. As Fig.2 shows, the position could be at A,

FIGURE 2. UE is moving through a BS coverage.

B and C when a UE is passing a BS. The corresponding ToS
is expressed respectively as

ToSA =
2× RBS ×

√
1− ( d2d×sin(ωA)RBS

)

vUE
, (13)

ToSB =

√
RBS2 − (d2d × sin(ωB)2)+ d2d × cos(ωB))

vUE
,

(14)

ToSC =

√
RBS2 − (d2d × sin(180− ωC )2)

vUE

−
d2d × cos(180− ωC ))

vUE
, (15)

where RBS is the radius of the BS, d2d is the distance between
the UE and the BS in 2-dimension environment, and the
ωA, ωB, ωC are the angle between the path of UE and the
connection between UE and the BS in degree.

Additionally, when the target BS is a UBS, the calculation
of ToS must also consider the movement of the UBS,
including both the velocity and the direction. This is achieved
by measuring ToS using relative velocity, which is calculated
using vector representation as illustrated in Fig.3, where A
and B are the objective movement of UE and UAV. Assuming
UAV is static, in relative to the UAV, the UE’s path is modified
from A to C , and ToS will be measured using the relative
velocity.

FIGURE 3. Relative velocity of UE.
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3) ENERGY EFFICIENCY
Considering the limted life time of the UAV battery, it is
critical to improve the EE of UAVs at every HO decision
making. According to [23], EE is defined as the ratio of the
spectral efficiency to power consumption.

ηEE =
ηSE

Pt + Pc
, (16)

where Pt and Pc is the transmit power and receiver’s circuit
power respectively. Also ηSE is the spectral efficiency of the
UE, which can be calculated as

ηSE = log2 (1+ SINR), (17)

where the unit of spectral efficiency is bits/s/Hz.

III. PROPOSED TOPSIS-QL HANDOVER SCHEME
The proposed TOPSIS-QL handover scheme combines a
multiple criteria decision making (MCDM) method TOPSIS
and a reinforcement learning method in the HO decision
making for UAV assisted HetNet. The HO decision aims to
select a proper target BS at every waypoint to optimise the
performance when UE is moving in the network. In TOPSIS,
we adopt three criteria to rank the BSs and construct a
candidate list. The actions of QL are the BSs in the candidate
list, and fromwhich the QL selects the target BS. Algorithm 1
depicts the process of the TOPSIS-QL HO scheme.

A. TOPSIS
A MCDM technique is used to rank the alternatives based
on multiple criteria. Generally, the best and worst values of
criterion from different alternatives are extracted to construct
a set of positive ideal solution and a set of negative ideal
solution. The main idea of TOPSIS is, by calculating the
Euclidean distance of each alternative to the solutions, finding
the alternative that is closest to the positive ideal solution,
and furthest from the negative ideal solution with weighted
criterion [24].

In order to obtain the appropriate weight for each criterion,
a method called standard deviation weighting technique is
applied. The method can provide each criterion a weight
according to its standard deviation [25]. The criterion that
is similar for all alternatives gets a smaller weight, on the
other hand, the weight is higher for the criterion with larger
variance. The weights represent the relative importance of
each criterion in the decision-making process. Assume there
are P attributes, and there are m values in every attributes
p (p ∈ P), the standard deviation of any criterion can be
calculate as:

µp =
1
m

m∑
i=1

anormi,p , (18)

σp =

√√√√ 1
m

m∑
i=1

(anormi,p − µp)2, (19)

where anormi,p represents the normalized values of different
attributes, i represents a certain value in an attribute.

Algorithm 1 TOPSIS-QL Handover Scheme
1: Initialize input parameters:

Waypoints L, number of both SBSs and UBSs K
Q table(L × 10× 10)

2: for l(l ∈ L) do
3: for BSi = i : K do
4: get SINRl,i, ToSl,i, EEl,i
5: end for
6: Cell List CL(l, :)← Top 10 ranked by TOPSIS
7: end for
8: QL initialize:
9: for l(l ∈ L) do

10: for x ∈ CL(l − 1, :) do
11: for y ∈ CL(l, :) do
12: get Q(l, x, y) according to equation (24)
13: end for
14: end for
15: end for
16: while training ≤ 2000 do
17: j = 0
18: for l in L do
19: if random value i(i ∈ [0, 1])≤ ϵ then
20: picked BS jnew← argmax Q(l, j, u)(u ∈ 10)
21: else
22: jnew← randomly picked from A(l, 1 : k)
23: end if
24: Update Q(l, j, jnew) with equation (25)
25: end for
26: j = jnew;
27: end while
28: Return Q table

In addition, σp andµp are the standard deviation and themean
value of pth attribute. Therefore, the weight of attribute p is
calculated by

wsdp =
σp∑P
j=1 σj

, (20)

where j represents different attributes.
Therefore, the higher standard deviation of the criterion,

the more important the criterion is, and its weight is higher.
With the weighted criterion, TOPSIS can rank all the

BS candidates for the waypoint in terms of the Euclidean
distance to the positive and negative ideal solutions. However,
as TOPSIS can only make decision for the current waypoint,
the effect of the next waypoint cannot be taken into account.
To further improve the HO performance, we proposed a
hybrid scheme using TOPSIS to select the top ten BSs to form
a reduced candidate list for the QL method, which is applied
to make HO decisions at each waypoint.

B. Q-LEARNING
QL is a model-free reinforcement learning method. Usually,
Markov decision process (MDP) is employed. It can be
described as {S,A,P,R}, where S is the state,A is the possible
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actions, P is the transition probability for states, and R is
the reward from the environment. The process of QL is the
agent takes action to change the state based on the reward and
interaction with the environment [14]. At the training stage,
agent optimises every action decision in iterations achieved
through exploitation and exploration. For exploitation, agent
takes the actions with the highest reward at the present, while
for exploration, agent takes actions randomly to discover the
actions that have low reward now but benefit for the long-term
reward. Therefore, QLmethod helps to get the best returns for
a sequence of decisions.

1) STATE (S)
In this work, the ground UE is the agent, and the states
include the coordinates of UE and the current serving BS,
since the position of UE can affect the channel condition and
the current connected BS can affect the selection of next BS.

2) ACTION (A)
The actions are the potential BSs. At each waypoint,
UE decides which BS to connect to achieve good perfor-
mance. Different actions can lead to different state of agent.
It is meaningless and complicated that all the BSs in the area
are selected as actions, therefore the candidate list generated
by the TOPSIS is used as the action space for QL so that the
agent only chooses a BS from the candidate list. According to
[14] and the density of BSs, the size of action space is fixed
at 10.

3) REWARD (R)
In the algorithm, a reward equation is given below involving
SINR, ToS and EE:

R = SINRnorm
· wsinr + ToSnorm · wtos
+ EEnorm

· wee − I (HO), (21)

where SINRnorm, ToSnorm and EEnorm are the normalized
value of SINR, ToS and EE, and I (HO) is the HO indicator
which will be 1 if HO happens, and 0 otherwise. The weights
wsinr , wtos and wee are also generated using the above SD
weighting technique.

In the beginning of QL, a Q-table is created containing
the states and the corresponding actions of every state. All
the BSs are ranked by TOPSIS, and the action space will
consist of the top 10 BSs. As the size of action space of
Q-learning is preliminarily reduced by TOPSIS, the proposed
hybrid method can achieve more efficient learning and
enhanced scalability, which is crucial in efficiently handling
an increasing number of BSs. Since there are L waypoints
and the length of candidate list is 10, the size of Q-table is
L× 10× 10. At the training stage, the agent makes decisions
for exploitation and exploration according to ϵ-greedy policy
at every waypoint iteratively. Following the policy, the agent
decides to exploit with the probability of ϵ, and there is 1− ϵ

chance to explore [26]. After every decision, a new reward of
the action at a specific waypoint will be calculated to replace

the previous value by equation (21). Then, Bellman equation
is applied to renew the previous Q value after getting the new
value [26]:

Q (s, a)← Q (s, a)+ α × [R+ γ

×max
a′

Q
(
s′, a′

)
− Q (s, a)], (22)

where α is the learning rate, γ is the discount rate, and
Q(s, a) is the Q value of the certain state and action stored
in the current Q-table. The above procedure is repeated
until a trained Q-table is generated. Following the Q-table,
a sequence of HO decisions can be made by choosing the best
Q value.

IV. PERFORMANCE AND RESULTS ANALYSIS
The performance of the hybrid HO scheme is evaluated in
terms of the number of HO, number of unnecessary HO and
energy efficiency. The performance of the proposed method
is compared with that of the conventional, TOPSIS-only and
QL-only methods. For the conventional method, HOwill take
place when the RSRP of the target BS is higher than the
serving BS. For TOPSIS-only method, we used the same
criteria as explained before, and the top rankedBS is the target
BS. For the QL-only method, the action space is also formed
by all BSs. In simulation, the learning rate α and discount
rate γ in training stage are fixed at 0.5 and 0.3 respectively
according to [14]. The other simulation parameters are given
in the table 1.

TABLE 2. Simulation parameters.

A. NUMBER OF HO
The number of HOs for the four methods versus the UE
velocity is shown in Fig.4. The density of SBSs and density
of UAV are fixed at 60 × 10−6/m2 and 40 × 10−6/m2
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respectively, and the velocity of UE increases from 5m/s to
55m/s. It is obvious that the numbers of HOs increases with
the increase in the density of UAV for all methods. This is
because with the increase of velocity, it is more likely for the
UE to cross cell boundaries at the next waypoint, resulting in
a higher probability of HO. Thus, the number of HO increases
with increasing UE velocity. Fig.4 clearly shows that the
proposed TOPSIS-QL method, labelled as the TOPSIS-QL,
requires the lowest number of HOs. The conventional method
has the highest number of HO as the UE only connect to
the BSs with the best RSRP. However, in the TOPSIS-only
method, the number of HOs increases slightly slower than
that of the conventional method as it avoids some unnecessary
HOs. Although QL-only method considers multiple criteria
and future decisions, it performs worse than the proposed
method because of the action space in QL-only method is
formed by all BSs, while in the proposed method we consider
multiple criteria to form the action space, especially ToS to
avoid unnecessary HOs.

FIGURE 4. Number of HO against UE velocity.

B. NUMBER OF UNNECESSARY HO
Fig.5 shows the performance of the number of unnecessary
HO against distribution density of UAVs from 10× 10−6/m2

to 100 × 10−6/m2. In addition, the velocity of UE is fixed
at 25 m/s. With the increase of the density of UAVs, the
number of unnecessary HOs for all methods decrease. This
is because the more UAVs are distributed around UE, it is
more likely to choose a BS with higher ToS. It is observed
from the figure that the proposed method has the lowest
number of unnecessary HOs and the conventional method
has the highest number of unnecessary HO for various
density of UAVs. Although both the TOPSIS-only and QL-
only methods also use ToS as a criterion, the proposed
algorithm performs the best because of the use of the ToS
in both the candidate list generation and the final selection
of BS.

FIGURE 5. Number of unnecessary HO against density of UAV.

FIGURE 6. Average EE against UAV density.

C. AVERAGE ENERGY EFFICIENCY
The average EE is evaluated by averaging the EE cross the
UE trajectory. The performance of the average EE against
density of UAV is shown in Fig.6. In this simulation, the
velocity of ground UE is fixed at 25 m/s. As Fig.6 shows, the
average EE of all methods are decreasing with the increase
of the UAV density. This is because the increase of UAV
density leads to higher number of HOs, which interrupt the
transmission more, leading to lower EE. Compared with the
other three methods, the proposed method can achieve the
best average EE.

V. CONCLUSION
A hybrid HO decision making scheme employing both
TOPSIS and QL for UAV assisted three-tier HetNet is pro-
posed in this paper. Specifically, TOPSIS with SD weighting
technique is adopted to reduce the dimensions of the action
space of QL by selecting the candidate BSs that provide better
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performance, and the QL can select a BS from the candidate
BSs to achieve the best overall performance in terms of
number of HOs, number of unnecessary HOs and the average
EE. In the proposed scheme, SINR, ToS and EE are adopted
as criteria. Simulation results demonstrate the effectiveness
of the proposed TOPSIS-QL method in comparison with the
conventional method, TOPSIS-onlymethod, and the QL-only
method. The hybrid scheme enhances both the performance
and the scalability, allowing the applications in large scale
networks. However, it is important to note that the proposed
algorithm is designed for scenarios with fixed trajectories,
such as deliver drivers, users in public transportation etc.
In practice, users often move without prior knowledge of
their paths. In our future work, we will consider HO decision
making without prior path information; we will also tune
the hyperparameters α and γ to make the Q-Learning more
efficient and accurate.
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