
Received 9 December 2023, accepted 12 February 2024, date of publication 22 February 2024, date of current version 6 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3368909

An SDN-Based Flow Table Encoding Approach for
Resource and Efficiency Optimization in
Topic-Based Pub/Sub Systems
YU ZHOU 1 AND YANG ZHANG 2
1College of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China
2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Yang Zhang (YangZhang@bupt.edu.cn)

ABSTRACT With the rapid development of software-defined networking (SDN), SDN-Based multi-level
flow table architectures are always employed to address issues such as QoS, security policies, and matching
efficiency. The rise of semantic communication has also sparked researchers’ interest in semantic information
and its utilization. Many studies on semantic representation and semantic summarization have emerged. This
study takes a new perspective to reduce the number of table entries by utilizing the semantic relationships
implied in the topic tree in the topic-based pub/sub systems and introduces the concept of semantic
aggregation. Semantic aggregation of table entries can work withmulti-level flow table architecture to reduce
the number of table entries while ensuring the correct delivery of streams.We propose a semantic-based table
entry encoding algorithm to implement our idea and conduct several experiments to examine its performance.
The experiment results demonstrate that our algorithm can achieve high space and efficiency optimization
rate in a short encoding time.

INDEX TERMS Semantic aggregation, multi-level, SDN, flow table.

I. INTRODUCTION
Due to the high availability and efficiency, topic-based
pub/sub systems are still heavily used in areas such as cloud
computing and IoT. However, since messages on the same
topic published by different publishers in real networks are
different with each other, it is necessary for the subscribers to
receive all the topic messages published by different source
nodes. So, we can uniquely identify a particular stream by the
publisher and the topic it belongs to and select the flow table
rule with these two fields in packets as the matching fields.
When there are a significant number of topics and multiple
publish sources for each topic, it often leads to a great number
of flow table entries and packet matching counts.

In recent years, existing network architectures have faced
challenges due to the increasing diversity of user require-
ments and complexity of the network situation. SDN is
widely used as the next-generation network architecture

The associate editor coordinating the review of this manuscript and

approving it for publication was Tyson Brooks .

owing to its support for centralized network control and
programmability, which can provide a flexible network con-
figuration and diversified transport services. SDN technology
allows us to control the switch pipeline as well as the
flow table architecture. In many areas, it’s prevalent to opti-
mize look-ups using multi-level tables or indexes, such as
multi-level page tables, tree indexes in database storage
engines and so on [1]. Similarly, multi-level flow tables are
often used to optimize efficiency during data forwarding
in networks [2], [3], [4]. The nature of SDN makes the
implementation of multi-level flow tables easy. Therefore,
we choose to optimize the efficiency of topic-based pub/sub
systems by adopting the multi-level flow table architecture
based on SDN.

Although the multi-level flow table architecture can
improve the matching efficiency, massive flow table entries
will still occupy the limited space of the switches and con-
sume considerable resources for maintenance. Therefore,
reducing the number or size of table entries is essential. With
ongoing research on semantics and the upsurge of semantic

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 32445

https://orcid.org/0009-0000-4858-6838
https://orcid.org/0000-0003-1324-1084
https://orcid.org/0000-0001-8691-0141

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

communication [5], [6], [7], optimizing pub/sub systems by
focusing on and exploiting semantics is a hot research topic.
Here, semantic publication/subscription [8], [9], semantic
summarization [10], [11] and semantic extraction or com-
pression [12] are its common ways, which are usually used
to improve the user experience or reduce the resource con-
sumption. Fully considering the characteristics of topic-based
pub/sub systems, we propose the idea of topic-based semantic
aggregation to reduce the number of table entries in the data
plane. Semantic aggregation aims to merge the table entries
with identical or virtually identical sets of forwarding ports.

In this paper, we propose an encoding method which is
based on the semantics of topics to reduce the number of
table entries and build a multi-level flow table architecture.
We encode topics with IPv6 multicast addresses and reflect
the semantic relationships of different topics in the topic tree
through their prefix encoding. So, the topics will inherit the
non-zero prefixes of their parent topics. At the same time,
the topic fields in the flow rules are prefix-matched by the
length of their non-zero parts, which means that in some
cases, a stream of someone topic may hit the same table entry
as its parent topic. Based on this idea, we designed several
detailed algorithms to reduce the table entries by semantic
aggregation and organize them into multilevel stream table
structures.

Overall, our paper provides the following contributions:
• Semantic aggregation is proposed as an idea to optimize
topic-based pub/sub systems by merging the forwarding
of different streams. Compared to the previous optimiza-
tion approaches, it starts from the semantic view of the
topics and reduces space occupation by shrinking the
number of match fields and table entries, providing a
creative strategy to decrease resource consumption and
perform latency optimization during the transmission.

• We design a P4-based multi-level flow table architecture
where different flow tables jump to the next level based
on semantics. We dynamically generate a multi-level
flow table structure with different depths based on jump-
ing delay, the size of flow tables, and predicted traffic
conditions to optimize the number of table entries and
the matching counts.

• Based on the experiments for several metrics, the results
demonstrate that this study’s algorithm slashes the total
number of table entries and the average matching time.

The rest of this article is structured as follows. Section II
presents the related works. Section III describes the encoding
way of the topic field and introduces the idea of semantic
aggregation on table entries in detail. Section IV presents the
multi-level flow table architecture in our study. Section V
presents the details of the proposed algorithm. Section VI
discusses the experiment results. Section VII concludes the
paper.

II. RELATED WORK
SDN has evolved significantly over time, with the most com-
mon technologies including OpenFlow, P4, and SD-WAN.

In addition to some research on the SDN ecosystem and its
security and performance issues, most studies are committed
to addressing issues such as system performance, service,
and security. SDN has been researched and applied in many
scenarios, including cloud computing, the Internet of Things,
and data centers. In pub/sub systems, SDN is often used as
themeans to address issues such as latency, QoS, and network
resources [13], [14], [15], [16].

For optimization on the flow table side, some SDN-Based
studies focus on reducing the number of table entries and the
packet matching time. By constructing the multilevel table
architectures, the proposed frameworks in some previous
studies [2], [3], [4] have achieved better results in matching
time optimization. Moreover, in some special scenarios, the
multi-level table structure can be used to address some con-
current access issues [17]. In addition, some studies have been
conducted to reduce the number of table entries by combining
SDN with other technologies. Based on the network pro-
grammability that is provided by OpenFlow, Huang et al. [18]
propose a novel segment routing architecture with improved
data plane to reduce the overhead of additional flow entries.
In addition to optimizing the number of flow table entries
based on SDN, some researches [19], [20] have applied sev-
eral other techniques to reduce the number of table entries,
such as segment routing and traffic engineering. Moreover,
the entry size is also been considered as a point of opti-
mization. In work [2], an approach of bloom filter is used to
achieve high space optimization rate. Here, the bloom filter
is used to compress and limit the memory occupation of each
flow entry.

Envisioned as one of the critical technologies in future
communications, research on semantic communication is
mushrooming. Most of them revolve around semantic rep-
resentation to shrink the amount of information for effi-
cient transmission. Knowledge graphs (KL) [21], [22],
information-theoretic approaches, and machine/deep learn-
ing (DL) [23] are often used as the methods to construct
and compress semantic information. In addition to text
transmission, it also achieved better results in the efficient
transmission of data such as images [24], [25], speech [26],
and video [27]. It aims to express semantic information of
the user’s concern with less data while ensuring the recovery
accuracy.

As for the application of semantics on pub/sub systems,
the existing researches mainly utilize the semantics in the
publishing/subscription phase and data representation. Some
existing pub/sub systems implement semantic publication/
subscriptions in ways which typically include SPARQL [8],
graph subscription/publication [9], and key-value pairs.
The common examples are content-based and graph-based
pub/sub systems. Besides, by providing high-level inter-
pretation of entities through semantic summarization, some
pub/sub systems [10], [11] improve the readability of
messages and make the system more user-friendly. Like
the existing semantic communication approaches, semantic
extraction and compression aims to avoid the transmission of

32446 VOLUME 12, 2024

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

redundant information and optimize the network resources
occupation [12]. Unlike applying semantics in the matching
phase and the message representation phase, our study per-
forms semantic aggregation on table entries at the switches
to optimize the number of table entries during the delivery of
messages. This is a new perspective on the use of semantics.

III. SEMANTIC AGGREGATION
A. PREPARATION
In a topic-based pub/sub system, messages are categorized
by topics, and users can subscribe to messages on any topic.
In some topic-based pub/sub systems, topics are organized
by their semantic relationships and are available for users to
publish and subscribe in the topic tree. The mapping of the
message’s necessary publish source and topic information to
the packet’s ipv6 header is shown in Fig. 1.

FIGURE 1. Mapping of necessary attributes of the message to the ipv6
header of the packet.

As shown in Fig. 1, the source address and destination
address in the ipv6 header are used to identify the publishing
source and topic of the message. In the data plane, switches
can choose specific paths for different data streams based on
these two fields.

Semantic aggregation aims to aggregate the forwarding
table entries of multiple streams, whose topics often have
parent-child relationships or belong to the same topic, into
a single table entry. Such an approach produces fewer table
entries and requires less memory space.

To realize semantic-based table entry aggregation, we first
need to specify the matching fields of the table entries. For
any independent users, streams on the same topic from dif-
ferent publishers are distinct and required to be received by
them. Therefore, only the combination of source and topic
can uniquely identify a stream. For a table entry that has not
performed any aggregation operations, its match fields should
contain both the publish source and topic identifier.

In addition, we need to design a topic field encoding
method that reflects the semantic relationships among topics.

FIGURE 2. An example for topic encoding.

So, we adopt the prefix encoding shown in Fig. 2. We can see
that a non-zero encoding prefix of someone’s topic is also
the encoding prefix of all its child topics. For the topic field
in the table entry, we only need to set the match length to
the length of the non-zero prefix so that the table entry can
accurately match the messages belonging to a specific topic.
If we need to aggregate forwarding entries of these topics and
have messages belonging to different topics forwarded from
the same port collection, we only need to use a new table entry
that takes the encoding of the nearest public ancestor topic of
all the aggregated topics as the value of the topic field.

B. TABLE-ENTRY SEMANTIC AGGREGATION
Before specifying the idea of semantic aggregation of table
entries in this paper, we first introduce the aggregation of sev-
eral arbitrary table entries. As shown in Fig. 3, S1, S2, . . . are
the ipv6 addresses of different publisher node. In (a), table
aggregation shrinks the size and number of flow table entries
by removing the source ipv6 address as a match field and
combining table entries with the same topic into a single
table entry. In (b), by modifying the matching field and the
prefix match length, we can aggregate table entries with
different topics but with the same forwarding ports into a
single table entry, further reducing the number of flow table
entries. Regardless of which type of table entry aggregation
is implemented, the data streams that need to be matched by
the table entries before aggregation can hit the table entry
after aggregation, ensuring at least their correct propagation
along the pre-planned paths. It should be noted that such
table entry aggregation may also cause traffic to propagate
to links outside of the plan, requiring us to intercept it with
appropriate methods.

Here, we divide the procedure of semantic aggregations
into two steps, which are the aggregation of table entries
with the same topic and the aggregation of table entries
with different topics. The target table entry takes the union
of the forwarding ports sets of the original table entries as

VOLUME 12, 2024 32447

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 3. An example of aggregations on any table entries.

its set of forwarding ports. Semantic aggregation of table
entries with the same topic is well understood. Streams with
the same topic tend to reach the same destinations and thus
have nearly the same forwarding behavior on some nodes.
It makes the forwarding ports of the streams after aggregation
nearly identical to the original ones, which is advantageous
for the entries’ aggregation. Meanwhile, after the semantic
aggregation of entries on the same topic, the source domain
will no longer be used as a match field in the table entries.

As for the semantic aggregation for entries with different
topics, it is hard to guarantee that they have relatively similar
forwarding ports. However, theoretically, when a user seman-
tically subscribes to a topic, the descendant topics of this topic
are usually also considered as the user’s subscribed topics,
and the streams belonging to these descendant topics need to
be routed and delivered to that user as well. Thus, it is easy
to have some streams share part of the forwarding routes and
forwarding behaviors of streams belonging to its parent topic.
So, we usually aggregate table entries whose topics possess
ancestor-descendant relationships.

Tomake the forwarding behaviors of streamswith different
topics more similar, we make the forwarding paths more
centralized byminimizing resource consumption. In the route
planning phase, we divide the topics’ routes into two types,
namely, aggregated routes and non-aggregated routes. The
specific algorithm will not be clearly described here due to

space constraints. We simply denote this algorithm as the RP
(Route Planing) algorithm, which computes routes based on
Dijkstra’s algorithm and the idea of backtracking and prun-
ing. One of its inputs is a topic ti (when there is only one topic
as input, the output route is called as a non-aggregate route)
or a sub-tree SubTree(ti) in the topic-tree which is rooted at ti.
It aims to find a shared route that covers the forwarding paths
of all the streams of input topics based on the bandwidth
resources available, the cost of each link, and the size of the
bandwidth resource requested by the stream while somehow
minimizing link usage and maximizing forwarding paths’
overlap. We identify the final aggregated routes as well as
the non-aggregated routes by doing the following:

Traverse the topics in the topic tree in a post-order. For the
current topic ti:

1) Compute the aggregated route RP(SubTree(ti)) for ti and
its descendant topics using the RP algorithm;

2) Denote the costs of the links that RP(SubTree(ti)) occu-
pies as c1.
3) Compute the route RP(i) for topic ti;
4) Denote the aggregate link cost of RP(i) and the existing

routes of ti ‘s descendant topics as c2.
5) Finally, compare c1 and c2. If c2 is more than c1,

then ti and its descendant topics share the aggregated route
RP(SubTree(ti)); Otherwise, the routes of ti’s descendant
topics remain unchanged, and ti uses the non-aggregated

32448 VOLUME 12, 2024

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 4. An example of aggregated routes and non-aggregated routes.

FIGURE 5. An example of semantic aggregations on table entries at a switch.

route RP(i). Fig. 4 gives a simple example of solving for
aggregated routes.

As shown in Fig. 4, we can obtain a set of aggregated routes
suitable for semantic aggregation of table entries. When a

topic’s route is non-aggregated, we think its forwarding paths
tend to have a low overlap with its sibling topics, ancestor
topics, or child topics, which is not feasible for optimization
by flow rule aggregation. An aggregated route for the topics

VOLUME 12, 2024 32449

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 6. An example of redundant traffic.

FIGURE 7. The Multi-level Flow Table Architecture.

in sub-tree SubTree(ti) contains forwarding paths of ti and
all its descendant topics. These forwarding paths have sig-
nificant overlaps which facilitate the semantic aggregations
on the data plane. We perform semantic aggregation of flow

table entries only for topics that share the aggregated routes
and generate semantically aggregated table entries according
to the proposed algorithm at the switch nodes where these
streams pass.

32450 VOLUME 12, 2024

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

There is a simple example of semantic aggregation on
table entries in Fig. 5. After aggregating the table entries
of different streams with the same topic (Aggregation 1),
the number of table entries has been reduced by 2. Only
the topic field remains as the match field in table entries.
Then, the semantic aggregations for entries with different
topics (Aggregation 2) can further reduce their amounts by 2.
However, the semantic aggregation in ‘‘Aggregation 1’’
may lead to some downstream nodes receiving redundant
traffic, which requires the cooperation of multi-level flow
table structure for interception to avoid its flooding in the
network.

IV. MULTI-LEVEL FLOW TABLE ARCHITECTURE
Although we have used designed routing algorithms to plan
paths to make our proposed coding algorithm as efficient as
possible and minimize the generation of redundant traffic,
there is no guarantee that we can avoid the generation of
redundant traffic altogether, so we intercept this traffic by
adding a filtering flow table. As shown in Fig. 6, we give
a simple example to illustrate the generation of redundant
traffic and then will analyze the possible solutions based on
it. In Fig. 6, there are two publishers of topic0, S1 and S2,
and two subscribers, D1 and D2. Both two streams request a
bandwidth resource of sizeR.When the path shown in Fig.6 is
adopted and table entries’ aggregation is performed at node B,
node C will receive the stream published by source S2.
To avoid the propagation of redundant traffic as much as

possible, we choose to add a flow table rule at node A to
discard the stream. Therefore, we designed our multilevel
flow tables architecture as shown in Fig. 7.

As shown in Fig. 7, this architecture contains two parts,
the redundant traffic filtering and non-aggregated route for-
warding (RFNRF) table and several aggregated forwarding
tables. The RFNRF table will be placed at the first level
of the pipeline, and all the packets must be matched there.
Redundant traffic that needs to be filtered will be dropped
here, and streams that possess a non-aggregated route are
forwarded here. Packets that fail to match at this table will
enter the subsequent multi-level flow tables structure for con-
tinuing the aggregated route forwarding. The flow tables are
associated with each other in a tree-shape jump relationship.
Moreover, we have confirmed that the multi-level flow table
architecture presented in this paper can be implemented on
P4 programmable switches through the P4 language.

V. PROPOSED ALGORITHM
After introducing the idea of semantic aggregation and
multi-level flow table architecture in the previous two sec-
tions, we propose a semantic-based table entry encoding
algorithm (Algorithm 1) to reduce the number of table
entries and the matching time. It can generate the flow
tables organized in a multi-level structure while semantically
aggregating the table entries. Here, we assume that we have
computed the table entries of all aggregated routes at individ-
ual nodes and performed source aggregation on them. These

Algorithm 1 Semantic-Based Table Entry Encoding
Algorithm
Input: the topic tree t , the node id i, T1, the set of
computed aggregated routes Ra.
Result: The set of all aggregated forwarding flow
tables at node i, T .

1 T ← {T1};
2 while the post-order traversal of t not end do
3 tcur ← the current topic;
4 if RP(SubTree(tcur)) not in Ra or i not in

RP (SubTree (tcur)) then
5 continue;
6

end
7 tcur ← the sub-tree rooted at tcur in t;
8 T ← T ∪MTGSA(tcur ,T1);
9

end
10 T ← TSO(T , i);
11 return T ;

table entries after the initial aggregation are stored in the
currently unique aggregated forwarding flow table T1 (Of
course, the encoding algorithm may subsequently create new
flow tables with T1 as the jump source) and await further
semantic aggregation.

As shown in Algorithm 1, we implement the inter-topic
semantic aggregation of table entries and the generation
and optimization of multi-level flow tables. We traverse all
nodes in the topic tree in a post order. When all nodes in
a sub-tree rooted at a topic tcur share an aggregated route,
we semantically aggregate the corresponding table entries of
topics in this sub-tree by the Multi-level Tables Generation
and Semantic Aggregation (MTGSA) Algorithm (line 8).
Since the multi-level flow tables generated during semantic
aggregation may not be able to achieve matching counts opti-
mization, we also invoke the Table Structure Optimization
(TSO) Algorithm to optimize the multi-level flow table struc-
ture by upward merging (line 10). The MTGSA Algorithm
and TSO Algorithm are implemented in Algorithms 2 and 3,
respectively, which we will introduce in the following
sections.

A. MULTI-LEVEL TABLES GENERATION AND SEMANTIC
AGGREGATION ALGORITHM
In Algorithm 1, we sequentially access some specific
sub-trees in the topic tree by post-order traversal, where
topics in the same sub-tree share an aggregated route. For
any such sub-tree, Algorithm 2 performs further aggregation
on the table entries, so the streams of several different top-
ics share the same table entry without further introducing
redundant traffic. However, since there may be some topics
in the sub-tree whose streams do not pass through the cur-
rent node, no forwarding table entries are generated for the

VOLUME 12, 2024 32451

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

Algorithm 2Multi-Level Tables Generation and Semantic Aggregation Algorithm
Input: a sub-tree in topic-tree tcur , the initial aggregated forwarding table T1.
Result: The set of all aggregated forwarding flow tables after table entry semantic aggregation for topics in tcur , T .

1 T ← {T1;
2 while the bottom-up hierarchical traversal of tcur not end do
3 tj← the current topic;
4 if there is no entry for tj in T1 and tj is not a leaf-node of tcur then
5 ej← a virtual table entry with tj as the topic field;
6 P← the set of outports which appears mostly in the entries of t ′sj sub topics;
7 Set the outports of ej as P;
8 Add ejtoT1;
9

end
10

end
11 while the hierarchical traversal of tcur not end and ta is not the root of tcur ; do
12 if most entries in Ec has the same forwarding ports with eb then
13 if ea and eb have the same forwarding ports then
14 Set ea as a virtual entry;
15 // The streams of topic ta may be forwarded by eb and ea may be aggregated to eb
16

else
17 Set the match length of topic in ea to 128; // The entries in Ec may be aggregated to eb
18

end
19 Set the parent topic of all topics in Tc as tb
20 else if more than half of the entries in Ec have similar forwarding ports then
21 P← the set of forwarding ports with the highest frequency of occurrence in Ec;
22 if ea has same forwarding ports as P then
23 continue;
24

end
25 enew← a new virtual table entry with the same match configuration as ea;
26 Set the forwarding ports of enew as P;
27 // The entries in Ec may be aggregated to enew
28 Set the match length of topic field in ea to 128;
29 else

// Difficult for entries in Ec being aggregated to ea or eb
30 Ta→ a new and empty flow table;
31 Move all the entries of t ′as descendant topics and ea to Ta;
32 T ← T ∪ {Ta;
33 eg← a goto table entry with ta as the topic field;
34 Set the match length of eg as the length of tsa non-zero encoding prefix;
35 Set the target table of eg as Ta;
36

end
37

end
38 return T ;

corresponding topics. So, to facilitate the algorithm’s pro-
cessing, we propose the concept of virtual table entries.
Its presence makes the process of table entry aggrega-
tion convenient and improves the efficiency of aggregation.

Correspondingly, at the end of the algorithm, we remove all
the virtual table entries that do not affect the correct forward-
ing. In other words, a virtual table entry will be deleted if no
non-virtual table entry is aggregated to it.

32452 VOLUME 12, 2024

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

Algorithm 3 Table Structure Optimization Algorithm
Input: the set of aggregated forwarding tables T , the
node id i.
Result: The set of all aggregated forwarding tables
after optimization, T ′.

1 T ′← T ;
2 while the bottom-up hierarchical traversal of T ′

according to the jump relationship not end do
3 Tcur ← the current table;
4 Tp← the parent table of Tcur ;
5 if Tcur=T1 then
6 break;
7

end
8 Mreduced ← the reduced matching count at node i;
9 // Based on the traffic conditions on node i
10 if Mreduced ≤ 0 then
11 Merge Tcur into Tp;
12

end
13

end
14 return T ′

To simplify the writing of the algorithm, we list several
variables used in the code from line 11 to line 37 in a separate
Table 1.

TABLE 1. The variables used in Algorithm 2.

As shown in Algorithm 2, we traverse the sub-tree tcur
in level-order from the bottom up. For the topic tj, which
has no stream passing through the current node and no table
entry exists here, we add a virtual table entry ej with tj as
the topic field and the length of the non-zero encoding prefix
of tj as the matching length (line 2-10). Most importantly,
the set of forwarding ports of ej will be configured as the
set of forwarding ports that appear most frequently in the
forwarding table entries of the sub-topics of tj. Next, we will
proceed with different actions based on the following four
scenarios:

In Fig. 8 to Fig. 11, the numbers in the circles represent the
forwarding ports of the table entries, while the arrows reflect

the parent-child relationships among the topic fields of the
entries.

(1) Most entries in Ec has the same forwarding ports with
eb, and the forwarding ports of ea are identical to eb (line 13-
16, line 19):

FIGURE 8. An example of case (1).

Here, ea can be aggregated to eb, and the entries in Ec
may also be aggregated to eb. Therefore, as shown in Fig. 8,
we aggregate ea to eb and set ea as a virtual table entry (for
subsequent deletion) to make streams of topic ta forwarded
via eb. We also temporarily set the parent topic of topics in Tc
as tb to allow more table entries to be aggregated to eb in the
follow-up.

(2) Most entries in Ec has the same forwarding ports
with eb, but the forwarding ports of ea are different from eb
(line 16-18, line 19):

FIGURE 9. An example of case (2).

Here, the table entries in Ec are more likely to be aggre-
gated to eb. As shown in Fig. 9, we set the match length of
the topic field in ea to 128 so that the entry ea can only be
matched by the streams of topic ta. Even if the table entries
in Ec are aggregated to eb in the follow-up, streams of topics
in Tc will not be forwarded through ea.

(3) Most entries in Ec has the same forwarding ports
(denoted as P), but both the forwarding ports of ea or eb are
different from P (line 20-28):

As shown in Fig. 10, we set the match length of the topic
field in ea to 128 so that the entry ea can only be matched
by the streams of topic ta. Moreover, we added a virtual
table entry with P as the set of forwarding ports to enable
better aggregation of table entries in Ec to enew. enew takes the
encoding of ta as the matching field and the non-zero prefix
length of it as thematching length. Thus, after the table entries

VOLUME 12, 2024 32453

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 10. An example of case (3).

inEc are aggregated to enew, enew can prefixmatch the streams
of topics in Tc.

(4) Most entries in Ec has different forwarding ports from
each other (line 29-36):

FIGURE 11. An example of case (4).

As shown in Fig. 11, for this case where it is hard to imple-
ment table entry aggregation, we try to reduce the number of
matches by multi-level flow tables. However, this does not
necessarily mean that the matching time can be optimized,
so we also need Algorithm 3 to implement the optimization
of the multi-level table structure.

B. TABLE STRUCTURE OPTIMIZATION ALGORITHM
Notably, since we have considered the effect of jumping
between tables on the efficiency of the multi-level archi-
tecture in our study, the multi-level flow table structure
generated by the MTGSA Algorithm may not reduce the
packet matching time. In this algorithm, a sub-table will not
be divided out as one of the next-level flow tables when
the number of reduced table entries matches does not offset
the time consumption caused by the jump between tables.
Here, we denote the time to make a table jump as J and
the average time to do a table entry matching as M . Then,
we denote the variable K as J/M . Besides, to know whether
the number of matches decreases, we need to identify the
distribution of the packet amounts of different streams on the
switch. However, traffic in real networks tends to change all
the time. So, we assume that the average number of a stream’s

messages published in a unit moment is proportional to the
bandwidth resources requested by the publishing source, and
we denote the ratio as L. For any two aggregated forwarding
tables T1 and T2, streams that fail to match at T1 will continue
to be matched at T2. It is assumed that the sum of resources
requested by the matched streams in the two tables is R1
and R2, respectively, the reduced number of matches can be
expressed as follows:

(R1 × L − R2 × L)× |T2| − R2 × L × K

From the expression, we can see that L does not affect the
positivity or negativity of the results, the resource allocation
is known to the system, and K is related to the specific
device. Based on the above expression, we implement the
Table Structure Optimization Algorithm as follows to achieve
optimization of themulti-level flow table structure and ensure
that the aggregate matching time is reduced.

As shown in Algorithm 3, for all flow tables that have a
parent table in T , if the reduced matching counts is negative
due to the presence of the jump delay after dividing the
current flow table T cur from the parent flow table Tp, T cur
will be merged into Tp (line 8-12).
In Fig. 12, we merge a flow table ‘Table Y’ into

its parent table ‘Table 1’ if the expected matching time
doesn’t decrease. And the corresponding ‘goto’ table entry in
‘Table 1’ will be deleted and all flow table entries in ‘Table Y’
will be moved into ‘Table 1’.

VI. EVALUATION
Before experimenting, we need to confirm the value of K
on the tested device. Therefore, we measured the time to
jump to different depths and the matching time for different
numbers of table entries on a switch equipped with the Tofino
programming chip. Our experiments are conducted using P4
programmable switches, and the specific parameters of the
switches used in the tests are detailed in Table 2. The results
are shown in Figs. 13 and 14.

TABLE 2. Configuration parameters of P4 switches.

We can see that on the tested hardware, the time it takes
to perform a flow table jump is approximately equal to the
time it takes on 100 table entry matches. Therefore, we set

32454 VOLUME 12, 2024

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 12. An example of flow table structure optimization.

FIGURE 13. Time (ms) for jumping to the tables at different depth.

the value of K in Algorithm 3 to 100. Next, we initialized a
series of random data for the test.

We conducted several experiments to evaluate the perfor-
mance of this study’s algorithm in terms of the encoding
time, the matching counts, and the number of flow entries.
The parameters used in the experiments are summarized

in Table 3, and the experiments conducted are recorded in
Table 4.
As shown in Fig. 15, the parameters of the topologies and

topics in the test such as network connectivity, distribution
of bandwidth resources, cost of links, and the publishing
and subscription for topics were randomly generated by the

VOLUME 12, 2024 32455

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 14. The matching time (ms) for tables with different numbers of entries.

TABLE 3. Parameter definitions.

TABLE 4. Parameters used in experiments.

‘‘random’’ function in Java. For the topic tree, we generated
it based on the values of h and s. For the topology, we firstly
constructed a directed complete graph with n nodes; we then
assign random values between 0 and 100 to the bandwidth
capacity (unit: G) and cost of the links; finally, for anyone
link, we randomly chose whether to delete it or not. Lastly,
we randomly selected t topics to serve as the published and

subscribed topics, and designated two publishers and two
subscribers for each topic.

The encoding algorithm in this paper focuses on optimiz-
ing the forwarding delay and table space occupation of the
P4 switches in the data plane by redesigning the flow table
architecture and performing semantic aggregations on the
table entries in the control plane. However, the forwarding
latency of packets in a multi-level flow table structure is
related to the eventual position where the packets hit a table
entry. Therefore, we assume that the relationships between
the amounts of packets in various topicsmeet the assumptions
in Algorithm 3. We use the average number of matches per
packet in the pipeline (where one flow table jump will be
equated to K table entry matches) to reflect this metric. So,
in the experiments of this study, we mainly measured the
average number of matching counts and the total number of
table entries before and after aggregation. We evaluated the
three parameters, t , n, and s, which may affect the results of
the experiments, through three groups of experiments, A, B,
and C, respectively. For each experimental group, we con-
ducted three control experiments to ensure the reliability of
the observed trends in the metrics. Besides, based on the
content of the algorithms, we know that s is a factor that
affects the encoding time of a certain number of table entries.
Thus, to confirm the efficiency of the encoding algorithm,
we measured the execution time of the algorithm in
Experiment A.

The algorithm was implemented in Java with Open JDK
version 1.8.0_282. We used IntelliJ IDEA 2021.1.3 (Ultimate
Edition) to develop, run and test the algorithm. The computer
used in the experiments is an Intel(R) Core (TM) i7-1165G7
(2.80 GHz) machine with 16 GB of RAM. Additionally,
we used the P416 language to define the data plane of the
switches. The results of the experiments are graphically visu-
alized in Fig. 16–Fig. 21.
In Fig. 16 to Fig. 18, we can observe the variation in the

matching counts and the total number of table entries before

32456 VOLUME 12, 2024

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 15. An example of generating an experimental topology.

FIGURE 16. Exp. A1 results: (a) Matching Counts. (b) The Number of Flow Entries.

and after adopting our encoding algorithm for experiments
A1, B1, and C1.

In Experiment A1, the two metrics show nearly similar
variation before and after optimization, so we guess that the
parameter s does not havemuch influence on the optimization
ability of the encoding algorithm.

In Experiment B1, the total number of table entries grows
proportionally with the parameter t , regardless of whether
the encoding algorithm is used. And the number of matches

shows a parabola-like relationship with t . It is clear the value
of t has a significant influence on the forwarding time and
flow table space occupation before and after optimization.

In Experiment C1, we find that in the small-scale net-
work of Experiment C1, the average number of matches
after optimization is unaffected by changes in network
size and remains stable regardless of the variations before
optimization. Similarly, the total number of table entries
before optimization changes significantly as the network size

VOLUME 12, 2024 32457

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 17. Exp. B1 results: (a) Matching Counts. (b) The Number of Flow Entries.

FIGURE 18. Exp. C1 results: (a) Matching Counts. (b) The Number of Flow Entries.

increases, but remains relatively stable after optimization.
Therefore, we speculate that our algorithm is suitable for
some networks with limited storage resources when the net-
work size is not large.

We have processed the test data of the three experimental
groups and visualized them in Fig. 19 to Fig. 21. In Fig. 19 (a),
the encoding time for a certain number of table entries is
proportional to the number of sub-topics per non-leaf topic,
but the encoding of tens of thousands of table entries can
be done within seconds. So, our algorithm has good time
efficiency.

Next, we analyze and summarize the optimization rates
of the two metrics in Experiments A, B and C. The opti-
mization rates of the number of matches and table entries
remain relatively stable no matter how the parameter s varies.

Here, for a network of 100 nodes size, the matching counts
can be reduced by about 80%, and the number of table entries
can be reduced by about 70%.

As shown in Fig. 20, the two optimization rates show a
slow increase and decrease with the value of t , respectively.
Although it is hard to maintain a high optimization rate for
both parameters when t increases, the optimization rate for
the number of table entries will not keep decreasing since the
total number of topics in the topic tree is the max value of t .
Meanwhile, we can observe from the results of Experiment C
that when the network size is small, the optimization of both
matching efficiency and flow table space occupation becomes
difficult. However, even in a small-scale network with only
ten nodes, the decrease in the number of matches and table
entries is substantial.

32458 VOLUME 12, 2024

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

FIGURE 19. Exp. A results: (a) Encoding time (ms/100 entries). (b) Matching Counts Reduced. (c) The Flow Entries Reduced.

FIGURE 20. Exp. B results: (a) Matching Counts Reduced. (b) The Flow Entries Reduced.

FIGURE 21. Exp. C results: (a) Matching Counts Reduced. (b) The Flow Entries Reduced.

In Fig. 21, we can see that the optimization rate increases
with the number of nodes but gradually steadies. The possi-
ble reason is that when the network size enlarges, it allows
different streams to share forwarding paths as well as
to maintain similar forwarding behavior on most nodes.

Thus, our algorithmmay work better for large-scale networks
and situations where the forwarding paths between topics are
more centralized.

Based on the results of the above tests, we draw the
following conclusions:

VOLUME 12, 2024 32459

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

A. EFFECTIVENESS
Using the P4 language and P4 switches to implement a flex-
ible multi-level flow tables architecture, the average number
of table entry matches for the packets on a switch can be
effectively reduced, thereby effectively reducing the packet
processing time on the switches. Based on the semantic
aggregation of table entries, we reduce the number of match-
ing fields for some of the flow rules and the total number of
table entries, achieving less space occupation.

B. INFLUENCE FACTOR
The performances of the proposed mechanisms and algo-
rithms are impacted by the number of topics involved in
publishing and subscribing, and the network scale. As more
and more topics in the topic tree are involved in publishing
and subscribing, the construction of multi-level flow tables
and the optimization for the table matches become easier.
However, the increase in the number of topics will complicate
the publish-subscribe situation, and fewer virtual table entries
can be added flexibly, which is not conducive to the semantic
aggregation of the table entries and makes the optimization
difficult. When the network size gets larger, the encoding
algorithm proposed in this paper is more effective. Therefore,
it is suitable for large-scale networks.

C. AREAS FOR IMPROVEMENT
First, we have only verified the feasibility of the adopted
multi-level flow table structure on P4 languages and
P4 devices without considering other protocols such as Open-
Flow. Second, the parameters required for the optimization of
the multi-level flow table structure in Algorithm 3 are related
to specific P4 devices, while the performance of different
devices in the network may be different from each other,
which has not been considered in our algorithm. In the next
step of our research, we will address these issues.

VII. CONCLUSION
This paper integrates the multi-level flow table architecture
with topic-based pub/sub systems via P4. It presents the
idea of semantic aggregation to reduce the number of table
entries and achieve a high space optimization rate. First,
this paper forwards the concept of semantic aggregation and
then elaborates on its ideas and procedures. Next, it proposes
the multi-level flow table architecture which is suitable for
this research scenario, and introduces its components. Then,
it elaborates on the implementation process of the algorithm.
Finally, this paper implements several experiments to eval-
uate the proposed algorithm and analyze the performance
of it. The results have proved that this algorithm has good
time efficiency and achieves a high optimization rate on the
number of table entries and matching time.

In the future, we will consider how the controller program
can enable the automatic acquisition of flow table match-
ing and jumping performance in the pipeline of P4 switch
devices, followed by generating and optimizing the flow

table structure. This way, users will not need to manually
measure these parameters for each type of switch product,
thus also addressing the issue of performance discrepancies
among switches in the network. Additionally, we will explore
implementation approaches based on other SDN technologies
and more application scenarios of this research.

REFERENCES
[1] S. Xuan, H. Yu, Y. Liu, and W. Yang, ‘‘An algorithm of managing

the TCP stream based on two-level hash tables,’’ in Proc. Int. Conf.
Netw. Inf. Syst. Comput., Wuhan, China, Jan. 2015, pp. 90–96, doi:
10.1109/ICNISC.2015.115.

[2] L. Chen, Y. Zhang, and Y. Tang, ‘‘On the optimization of flow
tables of SDN-enabled switches,’’ in Proc. 5th Int. Conf. Commun.
Inf. Syst. (ICCIS), Chongqing, China, Oct. 2021, pp. 18–22, doi:
10.1109/ICCIS53528.2021.9646059.

[3] Z. Ming, W. Ling, L. Zhongqiu, L. Yuehua, Q. Ning, and L. Ran,
‘‘The design of SDN technology application in power communication
access network,’’ in Proc. IEEE Int. Conf. Commun. Problem-
Solving (ICCP), Guilin, China, Oct. 2015, pp. 578–581, doi:
10.1109/ICCPS.2015.7454235.

[4] C. He and X. Feng, ‘‘POMP: Protocol oblivious SDN programming with
automatic multi-table pipelining,’’ in Proc. IEEE Conf. Comput. Commun.,
Honolulu, HI, USA, Apr. 2018, pp. 998–1006, doi: 10.1109/INFO-
COM.2018.8485848.

[5] E. Kutay and A. Yener, ‘‘Semantic communications: A paradigm whose
time has come,’’ in Proc. IEEE 8th Int. Conf. Collaboration Inter-
net Comput. (CIC), Atlanta, GA, USA, Dec. 2022, pp. 68–71, doi:
10.1109/CIC56439.2022.00020.

[6] W. Yang, H. Du, Z. Q. Liew, W. Y. B. Lim, Z. Xiong, D. Niyato,
X. Chi, X. Shen, and C. Miao, ‘‘Semantic communications for future
Internet: Fundamentals, applications, and challenges,’’ IEEE Commun.
Surveys Tuts., vol. 25, no. 1, pp. 213–250, 1st Quart., 2023, doi:
10.1109/COMST.2022.3223224.

[7] X. Luo, H.-H. Chen, and Q. Guo, ‘‘Semantic communications: Overview,
open issues, and future research directions,’’ IEEE Wireless Commun.,
vol. 29, no. 1, pp. 210–219, Feb. 2022, doi: 10.1109/MWC.101.2100269.

[8] L. Roffia, F. Morandi, J. Kiljander, A. D’Elia, F. Vergari, F. Viola,
L. Bononi, and T. Salmon Cinotti, ‘‘A semantic publish-subscribe archi-
tecture for the Internet of Things,’’ IEEE Internet Things J., vol. 3, no. 6,
pp. 1274–1296, Dec. 2016, doi: 10.1109/JIOT.2016.2587380.

[9] C. Cañas and E. Pacheco, ‘‘Graph-based publish/subscribe research
with dynamic subscriptions,’’ in Proc. Doctoral Symp. 16th Int.
Middleware Conf., New York, NY, USA, Dec. 2015, pp. 1–4, doi:
10.1145/2843966.2843973.

[10] N. Pavlopoulou and E. Curry, ‘‘PoSSUM: An entity-centric pub-
lish/subscribe system for diverse summarization in Internet of Things,’’
ACM Trans. Internet Technol., vol. 22, no. 3, pp. 1–30, Aug. 2022, doi:
10.1145/3507911.

[11] J. Lee, S. M. Hwang, T. Abdelzaher, K. Marcus, and K. Chan,
‘‘Pub/Sub-Sum: A content summarization Pub/Sub protocol for
information-centric networks,’’ in Proc. IEEE Mil. Commun. Conf.
(MILCOM), Norfolk, VA, USA, Nov. 2019, pp. 847–852, doi:
10.1109/MILCOM47813.2019.9020777.

[12] P. Zehnder, P. Wiener, and D. Riemer, ‘‘Using virtual events for edge-
based data stream reduction in distributed publish/subscribe systems,’’ in
Proc. IEEE 3rd Int. Conf. Fog Edge Comput. (ICFEC), Larnaca, Cyprus,
May 2019, pp. 1–10, doi: 10.1109/CFEC.2019.8733146.

[13] M. Hungyo and M. Pandey, ‘‘SDN based implementation of pub-
lish/subscribe paradigm using OpenFlow multicast,’’ in Proc. IEEE Int.
Conf. Adv. Netw. Telecommun. Syst. (ANTS), Bangalore, India, Nov. 2016,
pp. 1–6, doi: 10.1109/ANTS.2016.7947820.

[14] Y. Wang, Y. Zhang, and J. Chen, ‘‘Pursuing differentiated services in
a SDN-based IoT-oriented Pub/Sub system,’’ in Proc. IEEE Int. Conf.
Web Services (ICWS), Honolulu, HI, USA, Jun. 2017, pp. 906–909, doi:
10.1109/ICWS.2017.118.

[15] L. Mendiboure, M. A. Chalouf, and F. Krief, ‘‘A SDN-based Pub/Sub
middleware for geographic content dissemination in Internet of Vehicles,’’
in Proc. IEEE 90th Veh. Technol. Conf. (VTC-Fall), Honolulu, HI, USA,
Sep. 2019, pp. 1–6, doi: 10.1109/VTCFALL.2019.8891151.

32460 VOLUME 12, 2024

http://dx.doi.org/10.1109/ICNISC.2015.115
http://dx.doi.org/10.1109/ICCIS53528.2021.9646059
http://dx.doi.org/10.1109/ICCPS.2015.7454235
http://dx.doi.org/10.1109/INFOCOM.2018.8485848
http://dx.doi.org/10.1109/INFOCOM.2018.8485848
http://dx.doi.org/10.1109/CIC56439.2022.00020
http://dx.doi.org/10.1109/COMST.2022.3223224
http://dx.doi.org/10.1109/MWC.101.2100269
http://dx.doi.org/10.1109/JIOT.2016.2587380
http://dx.doi.org/10.1145/2843966.2843973
http://dx.doi.org/10.1145/3507911
http://dx.doi.org/10.1109/MILCOM47813.2019.9020777
http://dx.doi.org/10.1109/CFEC.2019.8733146
http://dx.doi.org/10.1109/ANTS.2016.7947820
http://dx.doi.org/10.1109/ICWS.2017.118
http://dx.doi.org/10.1109/VTCFALL.2019.8891151

Y. Zhou, Y. Zhang: SDN-Based Flow Table Encoding Approach for Resource and Efficiency Optimization

[16] T. Sylla, R. Singh, L. Mendiboure, M. Stübert Berger, M. Berbineau,
and L. Dittmann, ‘‘SoD-MQTT: A SDN-based real-time distributed
MQTT broker,’’ in Proc. 19th Int. Conf. Wireless Mobile Comput., Netw.
Commun. (WiMob), Montreal, QC, Canada, Jun. 2023, pp. 92–97, doi:
10.1109/WiMob58348.2023.10187779.

[17] L. Mingche and G. Lei, ‘‘Two-level tries: A general acceleration structure
for parallel routing table accesses,’’ J. Commun. Netw., vol. 13, no. 4,
pp. 408–417, Aug. 2011, doi: 10.1109/JCN.2011.6157461.

[18] L. Huang, Q. Shen, W. Shao, and C. Xiaoyu, ‘‘Optimizing segment routing
with the maximum SLD constraint using openflow,’’ IEEE Access, vol. 6,
pp. 30874–30891, 2018, doi: 10.1109/ACCESS.2018.2826925.

[19] R. Biswas and J. Wu, ‘‘Traffic engineering to minimize the number of
rules in SDN datacenters,’’ IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2,
pp. 1467–1477, Apr. 2021, doi: 10.1109/TNSE.2021.3060372.

[20] Z. Li and Y. Hu, ‘‘PASR: An efficient flow forwarding scheme based on
segment routing in software-defined networking,’’ IEEE Access, vol. 8,
pp. 10907–10914, 2020, doi: 10.1109/ACCESS.2020.2964800.

[21] L. Hu, Y. Li, H. Zhang, L. Yuan, F. Zhou, and Q. Wu, ‘‘Robust seman-
tic communication driven by knowledge graph,’’ in Proc. 9th Int. Conf.
Internet Things, Syst., Manage. Secur. (IOTSMS), Milan, Italy, Nov. 2022,
pp. 1–5, doi: 10.1109/IOTSMS58070.2022.10061867.

[22] F. Zhou, Y. Li, X. Zhang, Q. Wu, X. Lei, and R. Q. Hu, ‘‘Cognitive
semantic communication systems driven by knowledge graph,’’ in Proc.
IEEE Int. Conf. Commun., Seoul, South Korea, May 2022, pp. 4860–4865,
doi: 10.1109/ICC45855.2022.9838470.

[23] X. Peng, Z. Qin, D. Huang, X. Tao, J. Lu, G. Liu, and C. Pan, ‘‘A robust
deep learning enabled semantic communication system for text,’’ in
Proc. IEEE Global Commun. Conf., Rio de Janeiro, Brazil, Dec. 2022,
pp. 2704–2709, doi: 10.1109/GLOBECOM48099.2022.10000901.

[24] D. Huang, X. Tao, F. Gao, and J. Lu, ‘‘Deep learning-based image
semantic coding for semantic communications,’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Madrid, Spain, Dec. 2021, pp. 1–6, doi:
10.1109/GLOBECOM46510.2021.9685667.

[25] A. Li, X. Liu, G. Wang, and P. Zhang, ‘‘Domain knowledge driven
semantic communication for image transmission over wireless channels,’’
IEEE Wireless Commun. Lett., vol. 12, no. 1, pp. 55–59, Jan. 2023, doi:
10.1109/LWC.2022.3216994.

[26] Z. Weng, Z. Qin, and G. Y. Li, ‘‘Semantic communications for speech
signals,’’ in Proc. IEEE Int. Conf. Commun., Montreal, QC, Canada,
Jun. 2021, pp. 1–6, doi: 10.1109/ICC42927.2021.9500590.

[27] P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, ‘‘Wireless semantic communica-
tions for video conferencing,’’ IEEE J. Sel. Areas Commun., vol. 41, no. 1,
pp. 230–244, Jan. 2023, doi: 10.1109/JSAC.2022.3221968.

YU ZHOU received the bachelor’s degree in
computer science and technology from Beijing
University of Posts and Telecommunications,
Beijing, China, in 2021, where she is currently
pursuing the master’s degree in computer science
and technology. Her research interests include
the Internet of Things and software-defined
networking.

YANG ZHANG received the Ph.D. degree in com-
puter applied technology from the Institute of
Software, Chinese Academy of Sciences, in 2007.
He is currently with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications,
Beijing, China. He leads a team making scientific
research on the theoretic foundation of EDSOA for
IoT services (National Natural Science Foundation
of China). His research interests include service-

oriented computing, the Internet of Things, and service security and privacy.

VOLUME 12, 2024 32461

http://dx.doi.org/10.1109/WiMob58348.2023.10187779
http://dx.doi.org/10.1109/JCN.2011.6157461
http://dx.doi.org/10.1109/ACCESS.2018.2826925
http://dx.doi.org/10.1109/TNSE.2021.3060372
http://dx.doi.org/10.1109/ACCESS.2020.2964800
http://dx.doi.org/10.1109/IOTSMS58070.2022.10061867
http://dx.doi.org/10.1109/ICC45855.2022.9838470
http://dx.doi.org/10.1109/GLOBECOM48099.2022.10000901
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685667
http://dx.doi.org/10.1109/LWC.2022.3216994
http://dx.doi.org/10.1109/ICC42927.2021.9500590
http://dx.doi.org/10.1109/JSAC.2022.3221968

