
Received 2 January 2024, accepted 12 February 2024, date of publication 22 February 2024, date of current version 14 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3368915

Enhancing Bug Report Summaries Through
Knowledge-Specific and Contrastive
Learning Pre-Training
YUNNA SHAO AND BANGMENG XIANG
Zhejiang College of Security Technology, Wenzhou, Zhejiang 325000, China

Corresponding author: Bangmeng Xiang (13957787633@163.com)

This work was supported in part by Wenzhou Municipal Science and Technology Plan Project under Grant 2023R0016, and in part by
Wenzhou Philosophy and Social Sciences Planning Annual Topic under Grant 23WSK208YBM.

ABSTRACT Bug reports are crucial in software maintenance, with concise summaries significantly
enhancing the efficiency of bug triagers and ultimately contributing to the development of high-quality
software products. Contemporary methods for automatic bug report summarization primarily utilize neural
networks’ robust learning capabilities. However, these approaches often produce suboptimal summaries
due to two primary limitations: 1) the difficulty in assimilating the domain-specific knowledge inherent
in bug reports, and 2) the limitations of purely supervised learning in comprehending the comprehensive
context of bug reports. To address the above two problems, in this paper, we propose a new approach for
bug report summarization, namely KSCLP, which leverages large language models and domain-specific
pre-training strategies, i.e., Knowledge-Specific and Contrastive Learning Pre-training. Specifically, the
Knowledge-Specific strategy allows to pre-train KSCLP on project-specific bug reports corpus, by which
the model can fully learn internal knowledge of bug reports, learning bug report-aware representation. As for
the Contrastive Learning strategy, it performs a sequence-level pre-training for KSCLP, helping it capture
the semantic information of bug reports on a global level. Upon completion of the pre-training phase,
KSCLP undergoes further refinement through a Sequence-to-Sequence framework specifically tailored for
bug report summarization. The efficacy of KSCLP is rigorously evaluated against five baseline models
using a publicly available dataset. The empirical results demonstrate that KSCLP outperforms all baselines,
achieving remarkable improvements by up to 23.73, 13.97, and 20.89 points in ROUGE-1, ROUGE-2, and
ROUGE-L metrics, thereby setting new benchmarks in the field of bug report summarization.

INDEX TERMS Bug report summarization, domain-specific pre-training, software maintenance,
representation learning.

I. INTRODUCTION
Bug reports play a pivotal role in the software maintenance
lifecycle [1]. However, the surge in bug reports submitted to
tracking systems like Bugzilla1 and Jira,2 as mentioned in
Fang et al.’s work [2], has rendered activities such as severity
and priority assessment of bugs increasingly time-consuming
and cumbersome for triagers. This escalation in workload
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approving it for publication was Giuseppe Destefanis .
1https://www.bugzilla.org/
2https://www.atlassian.com/software/jira

adversely affects the efficiency of the entire software
maintenance cycle. Consequently, there is a pressing need for
an effective mechanism to swiftly and accurately summarize
bug reports. Such a summarization process would enable
triagers to comprehend bug reports more efficiently, thereby
enhancing the overall efficiency of software maintenance.

Automating bug report summarization can significantly
enhance the efficiency of bug triagers, thereby improving
software product quality. To this end, researchers have
proposed various approaches, ranging from information
retrieval-based methods [3] to neural network-based (NN-
based) techniques [4], for automatically summarizing newly
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submitted bug reports. Recently, NN-based approaches have
gained prominence due to their powerful learning capabili-
ties. Li et al. introduce DeepSum, the first NN-based method
for automatic bug report summarization. This approach
utilizes word embeddings [5] to construct an auto-encoder
network, transforming bug reports into semantic vectors
based on individual sentences. It then employs a dynamic
programming method for sentence selection during summa-
rization. Building upon this, Liu et al. develop BugSum,
which leverages the deeper context of bug reports. Rather
than relying on word embeddings, BugSum uses a Bi-
GRU-based auto-encoder and introduces a novel metric, the
believability score, to enhance sentence vector representation.
This method also employs a dynamic selection strategy to
choose appropriate sentences for summarization. Diverging
from these methods, Sutskever et al. propose RTA, which
is pre-trained a large language model on an extensive
bug report corpus, and subsequently fine-tuned it for
bug report summarization under the Sequence-to-Sequence
framework [6].

Although neural network (NN)-based methods demon-
strate efficacy, they encounter two primary limitations that
lead to suboptimal summarization quality in the context of
bug reports. Firstly, these methods often fail to assimilate
domain-specific knowledge inherent in bug reports. Typi-
cally, bug reports are replete with detailed descriptions and
essential information about the bugs. However, conventional
neural networks and generic pre-training techniques struggle
to extract these critical features. Consequently, such models
tend to grasp only the superficial semantic content of bug
reports, yielding summaries that lack professional depth.
Secondly, the challenge intensifies with supervised training’s
inability to comprehend the holistic context of bug reports.
Bug reports generally blend natural language with technical
elements like APIs, code lines, and snippets. Traditional
supervised learningmodels are often inadequate in discerning
the subtle semantic interplays and contextual nuances within
bug reports. This limitation limits the models’ capacity to
deeply understand different bug reports at a global level,
which makes them finally produce unuseful bug report
summarization.

To address the challenges previously outlined, we intro-
duce a novel approach for bug report summarization,
designated as KSCLP. This method synergizes large lan-
guage models with tailored domain-specific pre-training
strategies. Our initial step involves the development of
a Knowledge-Specific masked language model for pre-
training KSCLP. This method is uniquely focused on
predicting tokens related to project-specific bug reports,
thereby facilitating the acquisition of in-depth bug report
knowledge. Additionally, we have developed a contrastive
learning pre-training objective. This objective empowers
KSCLP to conduct sequence-level learning, granting it a
comprehensive understanding of entire bug reports within
a broader contextual framework. Upon completing the pre-
training phase, KSCLP is integrated into a Sequence-to-

Sequence learning framework and subsequently fine-tuned
to effectively generate concise and accurate bug report
summaries. Contrasting with previous methods that pre-
dominantly extract sentences directly from bug reports, our
approach is capable of crafting new sentences, thereby
achieving more precise and informative summarizations.

To assess the efficacy of KSCLP, we selected five
cutting-edge methodologies as benchmarks: DeepSum [4],
BugSum [7], PRHAN [8], Transformer [9], and RTA [1].
We conducted an extensive performance comparison using
a publicly available bug report corpus provided by
Fang et al. [1]. Initially, we partitioned the corpus into
training, validation, and testing sets, adhering to previously
established splitting methods [1], [10]. Subsequently,
we utilized the training set to pre-train and fine-tune KSCLP,
followed by its performance evaluation on both the validation
and testing sets. The experimental outcomes demonstrate
that KSCLP surpasses all benchmark approaches in terms
of ROUGE-1, ROUGE-2, and ROUGE-L scores, showing
improvements ranging from 1.45 to 23.73 points. This
significant enhancement in performance corroborates the
effectiveness of KSCLP. Additionally, we also compare
KSCLP with other large language models [11], [12], [13],
and the experimental results show that KSCLP can get at
least 4.31 points improvement overall evaluated metrics,
indicating its superiority.

Our contributions are summarized as follows,

• We propose KSCLP and design two pre-training objec-
tives for training it, including a Knowledge-Specific
masked language model and a contrastive learning
objective. To the best of our knowledge, this is the first
work to employ domain-specific knowledge in the task
of bug report summarization.

• We conduct a series of comparative experiments to
evaluate the effectiveness of KSCLP and compare it
with five baseline approaches. The experimental results
demonstrate our designed strategies for KSCLP are
effective for the bug report summarization task.

• To further evaluate the effectiveness of KSCLP, we com-
pare it with the existing large language models, and the
experimental results show its effectiveness on the task of
bug report summarization.

The remainder of this paper is organized as follows.
Section II describes the background knowledge of this paper,
and Section III elaborates on our proposed approach, KSCLP.
Section IV and Section V present the experimental setups
and results, respectively. Section VI discusses the threats to
validity. Finally, we conclude this paper and point out the
future work in Section VII.

II. BACKGROUND
A. BUG REPORTS
Bug reports are integral to both software development and
maintenance, serving as formal documentation of detected
issues, problems, or errors within a software application [14],
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FIGURE 1. An example of bug report with id 582758 in Eclipse platform.

[15]. Typically, these reports encompass detailed descriptions
of the bug’s symptoms, the requisite steps for its repro-
duction, and pertinent environmental or system information.
By furnishing this comprehensive data, bug reports empower
developers to pinpoint, diagnose, and rectify software bugs
effectively. Furthermore, they facilitate the tracking of bug
resolutions and ensure that all identified bugs are addressed
prior to the software’s release to end-users. The efficacy of
bug reporting is paramount in maintaining software quality
and reliability, as it enables developers to tackle issues in a
timely and efficient manner.

Figure 1 presents a bug report from the Eclipse project,3

retrieved from the Bugzilla platform. Bug reports typically
comprise several components, such asDescription, Summary,
Component, Version, Assignee, Comment, among others.
Each component serves a distinct function, contributing vital
information for resolving bugs. The Description element,
for example, usually contains comprehensive details about
the bug, including its symptoms, effects, and impact on
software performance. The Summary element offers a
succinct overview of the problem, enabling developers to
quickly ascertain the nature of the bug. The Component
element identifies the specific module or segment of the
software application affected by the bug, while the Version
element indicates the software application’s version in which
the bug was found.

B. AUTOMATED BUG REPORT SUMMARIZATION
Automated bug report summarization, as explored in studies
by Li et al. [4], represents a pivotal component of software

3https://bugs.eclipse.org/bugs/

maintenance. This process leverages machine learning tech-
niques to distill extensive bug reports into concise, natural
language summaries. The primary goal is to encapsulate
the essence of a bug report in a few succinct sentences.
Such a technique is instrumental for software developers and
testers, facilitating rapid bug resolution by providing a clear
and immediate understanding of the core issues. Moreover,
automated summarization can substantially alleviate the time
and labor involved in manual bug triage and classification,
offering a streamlined and focused conclusion for bug
triagers. Consequently, this automation not only conserves
time for developers and testers but also enhances the
efficiency of bug fixing. Ultimately, it contributes to elevating
the overall software quality, thereby fostering greater user
satisfaction.

C. LARGE LANGUAGE MODEL
Large language models (LLMs) [11], [16] are developed
through pre-training on extensive corpuses using unsuper-
vised learning methods. This approach enables them to
acquire a universal representation of the data they are
trained on. Subsequently, through supervised fine-tuning,
these models are adept at performing a wide array of Natural
Language Processing (NLP) tasks. Examples of such tasks
include sentiment analysis [17], text summarization [18], and
language translation [19].

LLMs offer a host of benefits that can greatly reduce
the reliance on labeled data in downstream natural language
processing tasks. This is because their pre-existing knowl-
edge of natural language enables them to achieve state-of-
the-art performance with relatively small amounts of labeled
data, which is particularly advantageous in situations where
obtaining labeled data is difficult or expensive. Due to the
above advantages, more and more LLMs are proposed for
various software engineering tasks [1], [13], [20]. Similar to
LLMs for natural languages, thesemodels are first pre-trained
on massive software engineering data, e.g., source code
collected from GitHub, then further fine-tuned for specific
downstream tasks, like code search [21], clone code detec-
tion [22], code summarization [23], code optimization [24],
and program repair [25]. Due to the powerful representation
learning ability of LLMs, they achieve state-of-the-art results
on these tasks.

D. RELATED WORK
Early methodologies in bug report summarization were
primarily anchored in information retrieval concepts.
Rastkar et al. [26] and Jiang et al. [27] developed approaches
to select pertinent sentences from entire bug reports, utilizing
classifiers trained on specific features. Consequently, the
effectiveness of these models hinges significantly on the
training corpus’s quality [28]. Arya et al. [29] introduced a
method for categorizing comments based on the information
they contain, allowing users to select sentences that meet their
specific requirements. In a novel approach, Radev et al. [30]
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proposed compressing sentences into vectors based on their
TF-IDF values and then selecting sentences with similarities
to the centroid of all sentence vectors. Other studies, such as
those by Zhu et al. [31] and Mei et al. [32], have explored
sentence selection based on reference relations, a technique
further refined through a noise removal strategy proposed by
Mani et al. [33]. In a departure from these methodologies,
Liu et al. introduced an innovative unsupervised algorithm
for bug report summarization, designed to minimize the
inclusion of controversial sentences in summaries. In contrast
to these sentence-selection-based methods, Fang et al. [1]
proposed the RTA model, a novel approach where they
fine-tuned a generative model to create summaries for bug
reports, representing a significant evolution in bug report
summarization techniques.

Contrary to previous methods, the KSCLP model merges
large language models with contrastive learning, enabling
it to assimilate domain knowledge from bug reports while
capturing their contextual nuances. Our innovative con-
trastive learning objective empowers KSCLP to perform
sequence-level analysis, thereby extracting profound seman-
tic representations across various bug reports. This capability
endows KSCLP with the proficiency to produce superior
summarizations of bug reports.

III. APPROACH
This section outlines the KSCLP pipeline for summarizing
bug reports, as depicted in Figure 2. The pipeline encom-
passes four key stages: pre-training KSCLP with objectives
specific to Knowledge-Specific and contrastive learning,
fine-tuning KSCLP for bug report summarization within the
Sequence-to-Sequence framework, and finally, evaluating its
performance on the testing set.

A. MODEL ARCHITECTURE
In line with previous large language models such as
BERT [11] and CodeBERT [13], our approach utilizes
Transformer encoder layers, as detailed in [9], to construct
the KSCLP model. To process a bug report sequence br =

{t1, t2, . . . , tn}with length n, we prepend and append two spe-
cial tokens, resulting in br = {[CLS], t1, t2, . . . , tn, [EOS]}.
Initially, we apply word embedding [5] and position embed-
ding [34] to the sequence, yielding the vector representation
of br :

Vbr = E(br) + P(br), (1)

where E ∈ Rde×|V | and P ∈ Rde×|L| denote lookup matrices
that convert the br sequence into a vector. Here, de, |V|,
and |L| represent the embedding dimensions, the vocabulary
size, and the maximum length of bug reports, respectively.
Subsequently, we feed Vbr into the core architecture of
KSCLP, namely the Stacked Transformer Encoder Layers,
and get the contextual representation of the bug report
sequence:

Cbr = Trans(Vbr ). (2)

B. KNOWLEDGE-SPECIFIC PRE-TRAINING
In Fig. 2, the pre-training stage 1 illustrates a straightforward
pipeline for training KSCLP using a Knowledge-Specific
objective. This approach differs significantly from the
masked language modeling technique described in [11],
which randomly masks only 15% of tokens in a bug report
sequence. In contrast, Knowledge-Specific masks 40% of the
tokens, often targeting entire sentences or specific entities like
API name or function name, which can guide the model to
learn domain-specific knowledge from bug reports. KSCLP
then attempts to reconstruct these masked sentences based
on their context and the overall content of the bug report.
Specifically, sentences in the bug report are masked using one
of three methods:

• With a 70% probability, all tokens in a sentence are
replaced with [MASK] tokens. This method challenges
KSCLP to comprehend the intrinsic knowledge of the
bug report to reconstruct the masked sentence.

• With a 15% probability, two tokens in the sentence are
randomly swapped. This simulates real-world scenarios
where, despite word rearrangements, the sentence’s
meaning remains comprehensible. This method aids
KSCLP in modeling the contextual relationship of each
sentence within the bug report.

• For the remaining probability, 15% of the tokens in
a sentence are replaced with random tokens. This
technique enables KSCLP to understand the context
surrounding individual tokens in the bug report.

To further refine the contextual representation learning
of bug reports using KSCLP, we incorporate a dynamic
masking operation as described by Liu et al. [12] during
the masking stage of each report’s processing. Dynamic
masking facilitates the variation in sentence masking within
the same bug report across diverse pre-training iterations.
This approach notably expands the scale of the pre-training
corpus, thereby facilitating a more extensive acquisition of
contextual knowledge by KSCLP. Consequently, KSCLP
achieves a more precise understanding of the contextual
nuances inherent in each bug report.
After the KSCLP model successfully extracts the con-

textual vector from the masked bug reports, it endeavors
to predict the masked tokens. This prediction is based
on maximizing the log-likelihood, which is formulated as
follows:

LMLM (θ ) =

∑
i ∈ M− log p(ti|Ŝ) (3)

In this equation, θ denotes the parameters learned by the
KSCLP model. The symbolM represents the set of masked
tokens. The probability function p(·) is modeled explicitly by
KSCLP. Here, ti signifies each individual masked token, and
Ŝ refers to the sequence of remaining tokens present in the
bug report.

Table 1 provides a comprehensive overview of the
pre-training parameters for KSCLP. In alignment with
established methodologies in the field, as documented
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FIGURE 2. The pipeline of KSCLP.
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TABLE 1. Statistics of parameters used in the pretraining stage.

by Devlin et al. [11] and Liu et al. [12], we configured the
hyperparameters of KSCLP as follows: the number of layers
(L) is set to 12, the number of attention heads (h) is 12, the
dimension of word embeddings (de) is 768, and the feed-
forward/filter size (dff ) is 3072.
For the optimization process, the AdamW optimizer [35]

is employed, featuring a learning rate of 5 × 10−5, with
first and second moment decay rates (β1 and β2) set to
0.9 and 0.999, respectively. Additionally, we incorporate an
L2 weight decay of 0.01 and implemented a linear decay
strategy for the learning rate. The batch size is set to 32, and
the maximum sequence length for bug report analysis is set
to 512 tokens.

KSCLP underwent a pre-training regime spanning
40 epochs, leveraging the initial weight configuration from
CodeBERT. This strategic choice of initialization facilitated
KSCLP’s enhanced capacity to assimilate and process the
semantic intricacies inherent in source code as presented
within bug reports.

C. CONTRASTIVE LEARNING PRE-TRAINING
In the second stage of pre-training, depicted in Figure 2,
we illustrate the process of training the Knowledge Synthesis
for KSCLP by using a contrastive learning objective. The
KSCLP typically undergoes training in mini-batches. Within
each batch, individual bug reports function as negative
samples for one another. The principal challenge lies in
generating positive samples for each bug report. To overcome
this, we implement the dropout technique as described by
Srivastava et al. [36] within the Transformer encoder layer,
a strategy aimed at mitigating overfitting. This method
involves the random deactivation of a subset of neurons
in the neural network during each training cycle, thereby
compelling the active neurons to independently adapt and
learn relevant features. As a result, by inputting identical
data into the Transformer encoder on two separate occasions,
we acquire two semantically analogous but numerically
distinct vectors. This approach simplifies the generation of
positive samples for each bug report; each report merely
needs to be processed twice through KSCLP. The contrastive

learning objective is then optimized by minimizing the loss
function expressed as follows:

ℓi = − log
esim(pi,pi′)/τ∑

j = 1N esim(pi,pj)/τ
(4)

In this equation, sim(·) represents the cosine similarity
function. The variables pi and pi′ denote the contextual
representations of the i-th bug report and its corresponding
positive sample, respectively. The term τ refers to a
temperature parameter that prevents the issue of gradient
vanishing. Through this specialized pre-training process, the
KSCLP is enabled to execute sequence-level modeling of bug
reports, thereby deeply understanding the bug report from the
perspective of developers.

1) PRE-TRAINING DETAILS
The pre-training of KSCLP using the contrastive learning
objective largely adheres to the hyper-parameter settings
established in the initial pre-training stage. However,
we made specific adjustments to optimize performance: the
batch size was set to 64, the learning rate was fine-tuned to 3e-
5, and the number of training epochs was limited to 3. Prior
to this phase of pre-training, KSCLP was initialized using
the weights obtained from the first stage of pre-training. This
strategic initialization aims to leverage foundational learning
while adapting KSCLP to the nuances of the contrastive
learning approach.

D. FINE-TUNING KSCLP FOR BUG REPORT
SUMMARIZATION
After completing the pre-training phase, we integrate the
pre-trained KSCLP within a Sequence-to-Sequence frame-
work. This integration is specifically tailored for the task of
bug report summarization. As depicted in Figure 2, we also
use the KSCLP model as a decoder to generate summaries
based on the contextual representations produced by the
encoder. To fully leverage the knowledge acquired during
pre-training, we implement parameter sharing between the
encoder and decoder. This approach marks a departure
from traditional methods, which typically involve selecting
sentences from the bug report to create a summary. In con-
trast, our method synthesizes unique, concise, and precise
summaries, thus enhancing the summarization process.

1) TRAINING DETAILS
For the fine-tuning of the KSCLPmodel, wemodified several
parameters: the batch size was set to 64, the learning rate was
adjusted to 5× 10−5, and the number of training epochs was
fixed at 10.

E. EVALUATING KSCLP
Upon refining the KSCLP model for bug report summa-
rization, it is crucial to evaluate its efficacy using the test
dataset. Figure 2 illustrates this evaluation process. For each
new bug report in the test set, the model first processes it
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TABLE 2. The statistics of the bug report in each project.

through an encoder to generate a contextual representation.
This representation is then fed into a decoder, which generates
the summary. Consistent with previous work [9], [23], our
approach employs a beam search decoding algorithm with a
beam size of 10.

IV. EXPERIMENTAL SETUPS
This section introduces the experimental frameworks
employed in our study. Initially, we delineate the research
questions that guide the investigation. Subsequently,
we describe the dataset and baseline models used in
the experiments. This is followed by a discussion of
the evaluation metrics chosen to assess the baselines.
Furthermore, we provide details about the experimental
environment, introducing the configurations and tools
utilized for conducting the experiments.

A. RESEARCH QUESTIONS
Our work focuses on the following three research questions
(RQ):

• RQ1:How effective is KSCLP when compared with the
baseline approaches?

• RQ2: How effective is KSCLP when compared with
large language models?

• RQ3: How does each pre-training objective affect the
performance of KSCLP?

Our first research question (RQ1) seeks to evaluate the
efficacy of the KSCLP by comparing it with established
baselines. This comparison aims to ascertain if KSCLP
effectively assimilates domain-specific knowledge from bug
reports and their overarching contextual information. Given
that KSCLP is developed upon the foundation of LLMs,
a secondary goal of our research is to determine whether
KSCLP surpasses the performance of existing prominent
LLMs, such as BERT [11] and CodeBERT [13]. This
investigation forms the basis of our second research question
(RQ2). Furthermore, to optimize the pre-training of KSCLP,
we have devised a pair of targeted pre-training objectives.
Consequently, our third research question (RQ3) delves into
the impact of each specific pre-training objective on the
overall efficacy of KSCLP.

B. DATASET AND BASELINES
1) DATASET
Our study employs the public bug report corpus curated
by Fang et al. [1], encompassing over 270,000 bug reports

TABLE 3. The statistics of the bug report in each set.

from four renowned projects on BugZilla: Mozilla, Eclipse,
Netbeans, and the GNU Compiler Collection (GCC). A com-
prehensive breakdown of this dataset is presented in Table 2.
The corpus is partitioned into three subsets: 80% of the
reports form the training set, 10% constitute the validation
set, and the remaining 10% are allocated to the testing set,
as detailed in Table 3. These subsets are integral to our
experimental framework, where the training set is utilized
for initial model pre-training, subsequent fine-tuning, and
for training baseline methods. Performance evaluation of
these baselines is conducted on the validation and testing
sets. In our approach, the pre-training stage involves treating
bug report summarization as an integral part of the input
sequence. During fine-tuning, the model is fed with bug
report sequences excluding their summarizations, and is
tasked with generating these summaries autonomously.

2) BASELINE SELECTION FOR RQ1
In our study, we selected five leading-edge approaches in
automated bug report summarization to evaluate the efficacy
of KSCLP. These approaches are:

• DeepSum [4]: This approach leverages word embed-
ding techniques to generate summaries.

• BugSum [7]: This method utilizes a Bi-directional
Gated Recurrent Unit (Bi-GRU) architecture for sum-
marization tasks.

• PRHAN [8]: PRHAN employs a hybrid attention
network to enhance summarization quality.

• Transformer [9]: This well-known model is based on
the self-attention network, known for its effectiveness
in various generative tasks.

• RTA [1]: RTA utilizes advanced language modeling
techniques for summarization.

Each of these approaches represents a significant advance-
ment in the field, offering diverse methodologies and
perspectives. By benchmarking KSCLP against these state-
of-the-art techniques, we aim to provide a comprehensive
assessment of its performance in the context of automated bug
report summarization.

3) BASELINES IN RQ2
In this study, we selected three effective LLMs for further
validation of the KSCLP’s effectiveness. These models are
BERT [11], RoBERTa [12], and CodeBERT [13]. Each of
these models employs a design architecture based on stacked
layers of the Transformer encoder, a notable feature in their
structural composition.
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C. EVALUATION METRICS
Following the prior work [1], [4], we choose composite
BLEU (c.B.) and ROUGE-L (R.L) to measure the perfor-
mance of each model, which are widely used in various
generation tasks like code summarization [23], machine
translation [6], and code translation [37].
BLEU score is computed as follows:

BLEU = BP · exp

(
N∑
n=1

wn log(pn)

)
, (5)

where BP represents a brevity penalty, introduced to
counterbalance the inflated scores of excessively short
generations. The factor wn, assigned the value of 1

N , serves
as a weight for each n-gram’s contribution to the overall
score. The term pn denotes the geometric mean of the
modified precision for n-grams. Consistent with existing
literature [23], we set N to 4. The BLEU score, which can
range from 0 to 100, is a quantifiable indicator of generative
accuracy, with higher scores corresponding to more precise
generation.

In the evaluation of ROUGE-N, the F1 score is computed
as follows:

F1ROUGE-N =
2 × RROUGE-N × PROUGE-N
RROUGE-N + PROUGE-N

, (6)

where RROUGE-N and PROUGE-N represent the recall and
precision metrics for ROUGE-N, respectively. These metrics
are defined as:

Rrouge−n =

∑
(gen,ref )∈S

∑
gramn∈ref Cntgen(gramn)∑

(gen,ref )∈S
∑

gramn∈ref Cntref (gramn)
, (7)

Prouge−n =

∑
(gen,ref )∈S

∑
gramn∈ref Cntgen(gramn)∑

(gen,ref )∈S
∑

gramn∈gen Cntgen(gramn)
, (8)

where gen, ref , and S denote the bug report summarization
generated by the model, the ground truth, and the test set,
respectively. The functions Cntgen(gramn) and Cntref (gramn)
quantify the frequency of occurrence of gramn in gen and
ref , respectively. Analogous to the BLEU score, the ROUGE
score varies from 0 to 100, with higher values indicating more
effective summarization.

D. EXPERIMENTAL ENVIRONMENT
In this study, all experiments are conducted on a deep learning
server equipped with two NVIDIA Tesla V100 GPUs, each
with 32GB of memory. The implementation of the KSCLP
and its training utilized a suite of Python packages: PyTorch
version 2.0.1, transformers version 4.33.2 [38], and datasets
version 2.14.5. For RQ2, baselines are publicly available
large language models sourced from the Transformers Hub.4

They are subsequently fine-tuned for the specific task of bug
report summarization.

4https://huggingface.co/models

TABLE 4. The performance comparison between KSCLP and baselines on
bug report summarization.

V. EVALUATION
A. ANSWER TO RQ1: EFFECTIVENESS COMPARISON
BETWEEN KSCLP AND BASELINES
Table 4 offers a comparative analysis of the performance
between our KSCLP model and established baseline meth-
ods. We employ various metrics for this comparison,
including ROUGE-1 (R.1), ROUGE-2 (R.2), ROUGE-L
(R.L), and composite BLEU (c.B.), as detailed in the table.
The findings indicate a notable superiority of KSCLP over
the baseline models across all metrics. Notably, Deep-
Sum exhibits the least effective performance, attributable
primarily to the fact that it is built solely based on the
simple word embedding layer. In contrast, other baseline
models demonstrate enhanced performance, underscoring
the efficacy of advanced neural network architectures such
as Bi-GRU, hybrid attention networks, and self-attention
networks. Among these, RTA emerges as the most effective,
highlighting the potency of advanced language models.

Distinguishing itself from these baseline approaches,
KSCLP incorporates a Knowledge-Specific pre-training
methodology. This approach enables the model to assimilate
domain-specific knowledge from bug reports, thereby com-
prehensively understanding the semantic interplay between
tokens. Additionally, KSCLP’s contrastive learning objective
is pivotal in acquiring a global contextual grasp of bug
reports, along with their semantic variances. This aspect is
crucial for effective sequence-level modeling. As a result,
KSCLP not only achieves superior outcomes but also
consistently outperforms the baseline models. One notable
advantage of KSCLP lies in its utilization of stacked deep
Transformer encoder layers, which are adept at modeling the
semantic representations of entire bug report sequences. This
capability is a significant leap from the capabilities of shallow
neural networks such as Bi-GRU. While these networks are
efficient in processing local semantic information, they falter
inmining domain-specific knowledge and struggle with long-
sequence modeling. KSCLP, with its advanced architecture,
effectively overcomes these limitations.

B. ANSWER TO RQ2: EFFECTIVENESS COMPARISON
BETWEEN KSCLP AND PRE-TRAINED LANGUAGE MODEL
In Table 5, we present a comparative analysis of the
performance of our KSCLP model against three estab-
lished pre-training language models: BERT, RoBERTa, and
CodeBERT. As with RQ1, the performance metrics include
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TABLE 5. The performance comparison between KSCLP and existing
LLMs on bug report summarization.

TABLE 6. The impact of each pre-training objective on the performance
of KSCLP. PT and KS denote pre-training and knowledge-specific,
respectively.

ROUGE-1 (R.1), ROUGE-2 (R.2), ROUGE-L (R.L), and
Composite BLEU (c.B.).

Upon examining the data in Table 5, it becomes evident
that KSCLP outperforms the baseline large language models
across all evaluated metrics. This outcome substantiates the
efficacy of the pre-training strategies we have proposed.
In particular, the Knowledge-Specific pre-training, tailored
to the bug reports corpus, empowers KSCLP to assimilate
domain-specific insights effectively. Consequently, KSCLP
demonstrates a heightened ability to discern and internalize
the nuanced relationships between bug reports and their
corresponding summarization.

It is also noteworthy that, with the exception of BERT,
the other large language models exhibit commendable
performance, closely paralleling the baseline methodologies
established in RQ1. This observation underscores the poten-
tial of large language models to develop profound contextual
understandings of bug reports. Furthermore, our model’s
incorporation of a contrastive learning objective significantly
contributes to KSCLP’s capacity to grasp global semantic
contexts within diverse bug reports. This aspect is instru-
mental in enhancing the model’s proficiency in generating
accurate and contextually relevant summarizations for given
bug reports.

C. ANSWER TO RQ3: THE EFFECT OF DIFFERENT
PRE-TRAINING OBJECTIVES
Table 6 presents a comparison of the KSCLP model’s
performance when pre-trained with various objectives. This
study involves three primary conditions: fine-tuning KSCLP
without any pre-training (akin to the baseline, CodeBERT),
fine-tuning KSCLP with Knowledge-Specific pre-training,
and finally, evaluating KSCLP following comprehensive pre-
training. The results in Table 6 clearly demonstrate that
pre-training KSCLP with a Knowledge-Specific objective
yields a minimum improvement of 2 points across all
evaluated metrics. More impressively, subjecting KSCLP to
a full pre-training regimen not only enhances its performance

further but also enables it to surpass all baseline models,
thereby establishing new benchmarks in the field.

VI. THREATS TO THE VALIDITY
In this study, we acknowledge two principal threats to the
validity of our research. The foremost threat pertains to
internal validity, specifically focusing on the optimal config-
uration of hyper-parameters within the KSCLP framework.
To address this issue, we adopt a methodical approach,
grounding our hyper-parameter settings in the empirical
evidence presented in seminal works such as Devlin et al., Liu
et al., and Fang et al. [1], [11], [12]. These studies provide
a robust foundation for determining the most effective
parameter configurations, thereby enhancing the internal
validity of our research.

The external validity of our study presents a potential
limitation, particularly concerning the generalizability of
KSCLP. Our evaluation of the KSCLP is confined to projects
within the BugZilla platform. This restriction raises questions
about the model’s applicability and effectiveness in diverse
bug-tracking environments, especially for systems other than
BugZilla. Nevertheless, this limitation can be addressed
through the application of transfer learning techniques [39].
By fine-tuning KSCLP on datasets from various projects, it is
possible to adapt and extend the model’s capabilities for bug
report summarization across different bug-tracking systems.
This approach enhances the model’s versatility and broadens
its potential application spectrum.

VII. CONCLUSION
In this study, we introduce KSCLP, an innovative approach
to automated bug report summarization that synergizes
large language models with contrastive learning techniques.
KSCLP demonstrates superior performance over existing
methods in this domain. This enhancement is attributable
to its capacity for assimilating domain-specific knowledge
and contextual nuances from bug reports, thereby achiev-
ing a thorough comprehension of diverse report contents.
A key feature of KSCLP is its utilization of contrastive
learning objectives, which facilitates the acquisition of
profound semantic representations across various bug reports.
To evaluate KSCLP’s efficacy, we executed comprehensive
comparative experiments using a widely recognized public
dataset. The outcomes conclusively show that KSCLP
surpasses all benchmarked methods in performance. In the
future, we aim to augment KSCLP by integrating structural
elements of bug reports and expanding its application across
different software engineering tasks that involve bug report
analysis.
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