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ABSTRACT Automated weeding equipment is urgently needed to deal with weeds in farmlands in the
context of the rapid development of Intelligent Agriculture. A system for accurately identifying crops and
weeds in images is crucial component of automated weeding equipment. However, in the field environment,
crops and weeds grow intertwined, and weeds are very similar to sugarcane leaves, making it difficult
to accurately segment crops, weeds, and their boundaries from images. In this paper, we proposed a
novel network that fully utilizes low-level semantic information to accurately segment crops and weeds
in images, improving the accuracy of crop and weed segmentation while reducing the need for training
weight parameters and improving speed in the prediction stage. Specifically, we made three important
modifications for crop and weed identification. First, a Multi-scale Feature Extraction and Fusion module
(MFEF) was designed to capture abundant low-level semantic feature information. Afterward, we introduce
a Global Response Normalization (GRN) block to select more useful feature information. Finally, a series
of residual attention transformer layers are designed to transmit the long-range dependency information
extracted between layers. Numerous experimental results confirmed that our proposed network achieved
excellent performance in segmenting sugarcane and weed images. Specifically, (1) the mean accuracy and,
Mean Intersection of Union (MIoU) reached 96.97% and 94.13%, respectively, (2) the training parameters
of the model have been reduced by more than 25%, improving the Frames Per Second (FPS) value of the
prediction process, and (3) is also effective on the publicly available BoniRob Dataset, indicating that the
proposed model has considerable generalization ability. This study provides an accurate weed identification
map and has reference significance for subsequent systems as mechanical weeding equipment.

INDEX TERMS Weeds identification, semantic segmentation, transformer, Segformer, precision
agriculture.

I. INTRODUCTION
With the continuous improvement of agricultural produc-
tivity, inefficient production methods are gradually being
replaced. Precision Agriculture (PA) is an important compo-
nent of high-quality agricultural development [1]. Precision
Agriculture, also known as site-specific weed management,
aims to reduce the cost of herbicides, improve weed control
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methods, and avoid environmental pollution [2]. Sugarcane
is an important economic and energy crop, and also the
main raw material for sucrose production [3]. However, the
wild growth of weeds in the field environment competes
with crops for resources such as water, nutrients, and sun-
light, seriously affecting crop growth and ultimately having
a negative impact on crop yield [4]. Generally, weeding
methods include manual weeding, chemical weeding, and
mechanical weeding. Manual weeding is labor-intensive,
inefficient and can easily cause heatstroke among farmers
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in hot weather. Pesticides used in chemical weeding cause
grave damage to farmlands and the surrounding ecological
environment. Based on the above reasons, it is necessary to
find an effective, safe, and low-cost weed control method.
Relatively speaking, mechanical weeding is a more suitable
weeding method for precision agriculture development in the
field. Therefore, there is an urgent need to develop a method
that can accurately segment crops andweeds from images [5].
Computer vision was first developed for weed identifica-

tion. Several methods have been developed by researchers
for weed segmentation [6], [7], [8], [9]. The process of
using computer vision for weed segmentation includes image
acquisition, preprocessing, segmentation, feature extraction,
and classification [10]. Various devices are used to capture
raw images in the field, including thermal cameras, spec-
tral cameras, and remote sensing devices [11], [12], [13],
[14], [15]. When images are collected using these devices,
they are susceptible to natural circumstances, such as illu-
mination conditions, soil wetness, or drought. In addition,
they are relatively expensive for ordinary people. In terms of
the way images are collected, the collected images include
airborne remote sensing images and ground-based sensing
images [16], [17], [18]. However, in the process of data
collection in the sensing images, the data collection points
are far away from crops and weeds, and the shooting angle is
single, resulting in some weeds being ignored and low spatial
resolution of the images. This is not conducive to precise
weeding of farmlands. So, we use low-cost digital cameras
to capture ground-based sensing images under natural condi-
tions. In the feature extraction process, based on the obtained
dataset, some feature combinations that can distinguish crops
and weeds are extracted, such as shape, color, texture, and

spectral features. Then, the extracted feature matrix is fed
into the machine learning algorithm to identify specific
classifications. Machine learning algorithms include decision
trees, support vector machines, and Bayesian decision theory.
Zou et al. [19] proposed an algorithm that combined color and
texture features with support vector machines. The algorithm
first extracts six colors and five texture features, and then
uses a support vector machine as the final classifier. Finally,
the segmentation accuracy was 90%. Golzarian et al. [20]
combined three types of features, including color, texture,
and shape, which were then reduced to three descriptors
using Principal Component Analysis (PCA). The results
showed accuracies of 88% and 85% in the differentiation of
ryegrass and brome grass from wheat, respectively. Under
ideal scenarios and during specific phases of plant develop-
ment, these approaches yield accurate segmentation results.
However, the accuracy of these approaches can be affected
by multiple factors, such as the type of plants, distribution
of weeds, diverse lighting conditions, overlap of crop and
weed leaves, and growth stages of the plants [21], as these
factors are constantly changing in the actual field. Therefore,
it is necessary to develop an economical, efficient, and robust
algorithm for this complex environment [22].
In recent years, Convolutional Neural Networks (CNNs)

have been rapidly developed and achieved excellent results
in various fields [23], [24], [25], [26], [27], [28], [29]. It can
automatically learn multi-dimensional feature information
with a distinguishing degree between crops and weeds from
input images. Owing to its advantages, CNNs are also widely
used in the agricultural field to solve various practical prob-
lems including weed identification [30], [31], [32], [33].
Zou et al. [34] proposed a U-Net variant network for

FIGURE 1. Data collection in sugarcane field and weed dataset construction.

VOLUME 12, 2024 31169



C. Sun et al.: Improved Transformer Network With Multi-Scale Convolution

segmenting wheat and weeds on digital images. Overlapping
dilation convolutions are added to the network to obtain
continuous new information on the features of larger recep-
tive fields. Dilated convolutions can cause chessboard. The
network yielded a mean intersection over union (MIOU)
of 88.98%. Das and Bais. [35] constructed a novel net-
work, named DeepVeg, in which the pyramid pooling module
was introduced into the encoder and decoder network to
extract multi-level resolution features. The MIOU and accu-
racy of the DeepVeg model are 0.76 and 0.97, respectively.
Jin et al. [36] introduced the CBAM module into the Mask
R-CNN network to focus on effective features, suppress
invalid features, improve the sensitivity of the model to weed
boundaries, and improve the efficiency of model feature
learning. The Intersection over Union (IoU) and mean pixel
Accuracy (Acc) reached 50% and 94.8% for the beet and
miscellaneous vegetable datasets, respectively. CNNs have
achieved good results in weed segmentation. However, owing
to the intrinsic locality of CNNs, they generally demonstrate
limitations in explicitly modeling long-range dependencies.

Recently, models based on transformers have been rapidly
developed and are widely used to handle computer vision
tasks. In convolutional neural networks, due to the fixed size
of the convolutional kernel, there is a local receptive field, and
the converter can use attention blocks to capture long-range
dependencies in the data, which can solve the problem of
crops andweeds being very similar and difficult to distinguish

in the local receptive field. Jiang et al. [37] explored the
training results of three different transformer models, includ-
ing Swin-transformer, Segformer, and Segmenter. The results
showed that Swin-transformer had the best performance, but
had the highest number of training parameters. In contrast,
Segformer has performance close to its performance, but the
number of training parameters is only one-seventh that of it.
Although the transformer can capture long-range dependency
information, its ability to handle detailed boundary informa-
tion is still insufficient. So, in this article, we explore amethod
of combining convolutional modules with transformer mod-
ules. First, the convolutional module is used to obtain
more local feature information, and then the transformer is
used to capture long-range dependency information between
pixels.

In conclusion, the aim of this study is to present an
enhanced Segformer model that can achieve precise segmen-
tation of crops and weeds from RGB images. Specifically,
this study focuses on three aspects. First, in order to obtain
multi-scale local information, we designed a multi-scale fea-
ture extract and fusion module with multiple depth-wise
convolution paths. Afterward, we introduce the Global
Response Normalization (GRN) block to extract more useful
feature information. In addition, we embedded the remaining
connections into the transformer layer of Segformer to accel-
erate the transmission of long-range dependency information
between the layers.

FIGURE 2. Structure of the proposed network.
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FIGURE 3. Multi-scale feature extraction and fusion module.

II. RELATED WORKS
Recently, models based on transformer have attracted great
attention in the field of computer vision. However, there are
few research achievements applied to the identification of
crops and weeds. In this section, we briefly overview the
Transformer model and its applications in computer vision,
and review existing weed recognition methods based on
convolutional neural networks.

A. THE EVOLUTION OF MODELS BASED ON
TRANSFORMER
Transformer was first proposed in the field of Natural
Language Processing (NLP). It calculates the correlation
between each patch based on the self-attention mechanism.
Because the input of the transformer is multiple patches,
while the input of the convolutional layer is a single image,
it is difficult to apply the transformer to the field of computer
vision. Carion et al. [38] use ResNet as the backbone of the
network, gradually reducing the input image size, and then
feeding it into an encoder-decoder composed of transform-
ers. The experimental results indicate that the transformer
can achieve good results in the field of object detection.
Subsequently, Ranftl et al. [39] proposed a universal vision
backbone based on the transformer, which can apply various
computer vison tasks. Firstly, the input image is divided into
multiple patches, and then the patches are input into the trans-
former encoder. By using skip connections, the up-sampling
output of the decoder is fused with the output of the cor-
responding layer in the encoder to generate a fine-grained
prediction Liu et al. [40] proposed a Swin-transformer block,
which consists of two parts: windowmulti-head self-attention
(W-MSA) and shifted windowmulti-head self-attention (SW-
MSA). W-MSA calculates the self-attention of all pixels
within the window. In order to solve the problem of not
being able to calculate the self-attention of pixels on the
boundaries of the window and other windows, SW-MSA
was proposed. The Swin-transformer not only achieves near
global attention capability, but also reduces the computational
complexity from a square relationship of image size to a
linear relationship, greatly reducing computational complex-
ity and improving model inference speed. Xie et al. [41]
designed an effective self-attentionmodule, which effectively

reduced the computational complexity of self-attention.
Specifically, a hyperparameter R is introduced in the effective
self-attention module, which down-sampling the input patch
by R times, thereby reducing the computational complex-
ity of the self-attention module. Niu et al. [13] proposed a
novel HSI-TransUnet, which combines convolutional mod-
ules with transformers and can fully utilize the rich spatial
nuclear spectral information of drone HSI data, achieving
good results.

B. APPLICATION OF CONVOLUTIONAL NEURAL
NETWORKS IN THE FIELD OF AGRICULTURE
Due to the unique advantages of convolutional neural net-
works, they have developed rapidly in the field of agriculture.
Numerous research papers have proven its effectiveness
in identifying crops and weeds. Next, we provide a brief
overview of previous research based on this method.

Training deep neural networks requires a large number
of labeled samples, and the labeled samples of semantic
segmentation networks require pixel by pixel annotation of
images, which consumes a lot of manpower and material
resources. Zou et al. [18] modified the U-Net network by
fusing more low-dimensional semantic information from the
decoder with the feature information of decoder using a skip
connection structure, enhancing the segmentation accuracy
of the model. In addition, a data augmentation method was
proposed to increase the number of pre-trained datasets.
The collected images are segmented into weeds using the
minimum error segmentation algorithm, and then the weed
image is used as the ‘‘foreground’’ and other images are
used as the ‘‘background’’ to synthesize pre-trained images.
Kim et al. [42] proposed a multi-task semantic segmen-
tation convolutional neural network. Specifically, the task
was divided into two steps to achieve. The first step was to
segment images that removed the background but included
crops and weeds from the image, and the second step was
to segment crops and weeds from the output of the previous
step. In addition, different loss functions were used in the
two segmentation tasks. Nasiri et al. [43] improved U-Net
by adding residual connections to the convolutional layer of
the encoder, preserving more detailed information. In order
to optimize the problem of data imbalance and small area
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FIGURE 4. Multi-scale feature extraction and fusion module.

precise segmentation, the combination of dice and focal
losses is used as the loss function of the model. These meth-
ods are all aimed at obtaining more detailed information to
optimize precise boundary segmentation.

In this article, we explore the combination of convolutional
module and transformer module, utilizing convolutional
module to extract rich low dimensional semantic information,
and then capturing long-range dependency information with
transformer to establish complete boundary information of
the target.

III. EXPERIMENTAL DATA AND METHODS
A. DATA ACQUISITION AND PROCESS
In this research, a digital camera (Nikon Z5) was used to
collect images of the crops and weeds. In order to obtain
sufficient real-scene images of crops and weeds, we collected
images in multiple time periods, different weather conditions,
and multiple growth stages of sugarcane. Specifically, the
images were taken from 9:00 to 18:00 during the period from
May 26, 2022, to June 1, 2022; and from 9:00 to 18:00
from July 26, 2022, to July 28, 2022, from 9:00 to 18:00
during the period from September 19, 2022, to September 21,
2022, at Guangxi University Agricultural and Animal Hus-
bandry Industry Development Research Institute in Guangxi
Autonomous Region (107◦47′, 22◦31′). The original resolu-
tion of the image we collected was 6016× 4016 pixels, which
was too large and required a GPU device with a large graphics

memory for training. Considering the future practical applica-
tion of equipment parameters and reduction of experimental
costs, it is necessary to split the original image into smaller
sizes. In order to preserve the boundary information of the
images, we use an overlapping cropping method to crop the
image into 1024 × 1024 pixels, with overlapping parts in
steps of 512 pixels. In total, 23100 images were obtained.
All images were manually labeled pixel by pixel using EISeg
annotation software [44], and each image took more than an
hour. In the annotated image, the background, sugarcane, and
weeds were labeled 0, 1, and 2, respectively. Furthermore,
their pseudo-colors were black, red, and green, respectively.
The training dataset consisted of 80% of the images and their
corresponding pixel-level labels, while the remaining 20%
was used to test the model. The description of the dataset is
shown in Figure 1.

B. THE PROPOSED NETWORK STRUCTURE
In this section, we describe the details of the proposed
network, as shown in Figure 2. The transformer module
is used to calculate the attention of each pixel and other
pixels in an image. This calculation method takes a lot of
time in a single image, resulting in a slow training process.
In Segformer, an efficient multi-head self-attention module
is proposed to reduce the computational complexity of the
original transformer module. Specifically, the original calcu-
lation of attention required the input of Q, K , and V as the
three parameters. The improved method is to down-sample
K with hyperparameter R, with R set to 8, 4, 2, and 1 in
each of the four stages. That is to say, only calculate the
self-attention before the pixels in the patch and the pixel
points generated after down-sampling the patch. Good results
can be achieved in super-resolution image segmentation.
However, some details were lost in the complex environment
of sugarcane fields. To address this issue, we have proposed
some improvement methods. Concretely, the encoder part
consists of a multi-scale feature extraction and fusion module
(MFEF), Global Response Normalization (GRN), and resid-
ual transformer block (RTB). The MFEF uses multi-scale
convolution to capture the feature information of multi-scale
receptive fields, playing a role in dynamically changing the
size of the convolution kernel, that is to say, dynamically
selecting the optimal convolution kernel size that best rep-
resents nearby pixels. GRN aims to strengthen the contrast
and selectivity of channels. The RTB is designed to transmit
the long-range dependency information extracted between
layers. As for the decoder part, a semantic segmentation clas-
sifier was added on top of the original lightweight decoder.

1) ENCODER STRUCTURE
The encoder part plays an important role in semantic seg-
mentation networks. Its main responsibility is to extract
rich abstract feature information from the input image
layer by layer. Convolutional neural networks typically use
fixed-sized convolutional kernels. In order to obtain a large
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receptive field, researchers typically use pyramid pooling
and dilated convolution. However, the former may overlook
some detailed information, whereas the latter may lead to
a chessboard effect. Inspired by [45] and [46], we built a
multi-scale feature extraction and fusion module, as shown
in Figure 3, which adopts a mixed-size convolutional kernel
to capture abundant low-level details. First, a 1 × 1 con-
volution was used to reduce the number of channels in the
feature map, thereby reducing the computational complexity.
Then, it is split into three branches; the 3 × 3, 5 × 5,
and 7 × 7 depth-wise convolutions (dwConvs) are used to
increase the multi-scale local information extraction of our
network. Finally, we used a 1 × 1 convolution to restore the
number of feature map channels to the original number of
input channels. Besides, we used deep separable convolutions
instead of comm convolutions to reduce computational com-
plexity. In [47], introducing a GRN enhances inter-channel
feature competition. GRN improves representation quality by
enhancing feature diversity. The results obtained were better
than those obtained using SE [48] and CABM [49] mod-
ules. Inspired by this, we added this module to our network
to enhance feature competition between channels. Actually,
there are four stages that are stacked by multiple transformer
modules in the original network. A deeper network structure
can cause some problems, including slowing down the speed
of the network and the vanishing gradient problem during
loss back-propagation. To alleviate this issue, we introduced
a Residual Attention Layer Transformer in the structure of
the stacked transformer layers of the last two stages in the
Segformer [41], as shown in Figure 4.

2) DECODER STRUCTURE
In order to fuse the low-level semantic information from
encoder in the decoder part of the network structure to
make the segmentation boundary more accurate, we made
a modification on the basis of traditional network encoders,
integrating the outputs of the four stages of the encoder
into the decoder. First, the hierarchical feature information
generated by the encoder is up-sampled to the size of W

4 ×
H
4

using bilinear interpolation. Then, we concatenated feature
map in channel direction. Next, the fused feature maps are
feed into a 1 × 1 convolution layer to unify the channel
dimension, and a 4 times up-sampling operation to the size
of H × W. Finally, the up-sampled fused feature map is
processed through another MLP layer to predict the classes
result with a resolution of H × W×Ncls, where Ncls is the
number of classes.

C. PARAMETER CONFIGURATION DURING NETWORK
TRAINING
The hardware environment was an Intel Xeon W-2235 CPU,
64 GB memory, and NVIDIA GeForce RTX 3090 with
24GB of video memory. The software environment was
Windows 10, CUDA 11.3, Python 3.8, and PyTorch 1.11.0,
as shown in Table 1.

TABLE 1. Detailed information of the experimental platform.

TABLE 2. Hyperparameter initialization settings.

In this section, many parameters were initialized and set,
as shown in Table 2. AdamW is used as the optimizer of the
training network, the range of the β parameter is 0.9-0.999,
the weight decay was 10−4. The initial learning rate was
10−5, the attenuation function of the learning rate is cosine
function, the batch size is 8, and the training epoch is 100.
In the initial stage of training, it was difficult for the model to
maintain parameter stability. Warm-up technology has been
widely used to accelerate the convergence rate of the network
and reduce instability training [50]. The Cross-entropy loss
function is used as the network loss function.

To prevent overfitting of the model, data augmentation
was performed on the input image. There are many methods
of data augmentation, such as rotation, mirror image, and
increasing noise [51]. We used scaling jitter, horizontal flip-
ping, and color jitter to enhance the original image, thereby
increasing the diversity of the input image and improving the
robustness of the network. Specifically, scaling jitter is the
process of randomly resizing to within the range of [0.5, 2.0],
followed by randomly cropping out the 1024 × 1024 sized
image. Secondly, flip the input dataset horizontally with a
probability of p = 0.5. Finally, for color jitter, first convert the
image to the HSV color model, then change the saturation and
hue of the image with a probability of p = 0.5, and then con-
vert the image to the BGR color model. In addition, dropout
is also introduced in the encoder to prevent overfitting of the
training result.

D. EVALUATION METRICS
We used five metrics to evaluate the performance of the
proposed network, including pixel Accuracy (Acc), Precision
(Pr), Recall (Re), Intersection over Union (IoU), and Fscore,
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FIGURE 5. Accuracy and loss curves of the proposed and Segformer.

as shown in formulas (1)-(5).

Acc =

∑
TP+

∑
TN∑

TP+
∑
TN+

∑
FP+

∑
FN

× 100% (1)

Pr =

∑
TP∑

TP+
∑
FP

× 100% (2)

Re =

∑
TP∑

TP+
∑
FN

× 100% (3)

IoU =

∑
TP∑

TP+
∑
FN +

∑
FP

× 100% (4)

Fscore =
2 × Pr×Re
Pr+Re

(5)

where TP, TN, FP, and FN are respectively true positive, true
negative, false positive, and false negative. In this study, each
pixel was divided into one of three classes (soil, sugarcane
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and weed). So, the Mean Intersection over Union (MIoU) is
the average of Intersection over Union for three classes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. ACCURACY EVALUATION RESULTS
Figure 5 shows the training loss and accuracy graphs for the
proposed model and Segformer. As shown in Figure 5(a),
the loss graphs show a rapid decrease in the loss values
during the first 10 epochs. Our model gradually stabilized
after 58 epochs, surpassing 65 epochs of Segformer, and
eventually converged to a very small value. This indicates
that our model is effective and has strong feature extraction
capability stability. In addition, throughout the entire training
process, the loss function value of the proposed model was
less than that of the Segformer. In Figure 5(b), the accuracy
graphs converge to a sufficiently large value as the number
of training epochs increases. Overall, the accuracy function
curves of the two networks are very similar, with a final
accuracy exceeding 96%. To be precise, the accuracy value
of the proposed network changed slightly less than that of
the Segformer, and the final accuracy was slightly higher.
From table 3, it can be seen that our network achieved
MIOU, Acc, Fscore, Pr, and Re values of 94.13%,96.97%,
96.88%, 97.01%, and 96.97, respectively. This indicates that
our network has good segmentation results in crop weed
segmentation and exceeds those of the benchmark network.

In addition, we used ROC-AUC curves to specifically ana-
lyze the accuracy of each category predictions. ROC-AUC
curve is a tool used to evaluate the accuracy of classification
models, where the horizontal axis represents false positive
rate (FPR), the vertical axis represents true positive rate
(TPR), and the area under the curve is AUC. The closer its
value is to 1, the better the classification accuracy. To enable it
to be used for the analysis of the results of multi-classification
semantic segmentation, when calculating the FPR and TPR
of each category, we set the current category in the label to
1 and other categories to 0. The ROC-AUC curve is shown in
Figure 7. From the graph, it can be seen that the AUC values
of background, sugarcane, and weed are 0.9989, 0.9974, and
0.9983, respectively. Overall, all three values are close to 1,
indicating that the accuracy of the current model segmenta-
tion results is sufficient.

Finally, in order to more intuitively display the segmen-
tation performance of our network in each category and
the distribution of error segmentation results, we used the
confusionmatrix to visually analyze the segmentation results,
as shown in Figure 6. In the Confusion matrix, each row
represents the true category, each column represents the
prediction category, and the value on the diagonal represents
the accuracy of the prediction category. It is obvious that in
the prediction results of each category, there is error data for
predictions of other categories. However, in the prediction
results of each category, there are errors in predicting data for
other categories. In the background of the picture, there are
some straws, dried leaves, etc., which can lead to incorrect

FIGURE 6. Network segmentation results in confusion matrix.

predictions. In the picture, there are some weed texture
features that are very similar to crops, which can lead to
incorrect predictions between crops and weeds. In addition,
at the tip of crop and weed leaves, due to their very slender
and weak features, there will be a small amount of predicted
background data, as shown in Figure 6.

B. COMPARISON BETWEEN THE PROPOSED AND OTHER
NETWORKS
Some comparative experiments were conducted, andwe com-
pared the performance between the proposed model and seen
from Table 5 that the proposed model exhibits the highest
performance when compared with the state-of-the-art model.
On the test set, the MIOU, Acc, Fscore, precision, and recall
of our proposed network were 94.13%, 96.97%, 96.88%,
97.01%, and 96.97%, respectively. U-Net was constructed
using at the convolutional neural networkwithout transformer
module. Its segmentation accuracy is the worst compared to
the other four models. The MIOU, accuracy, Fscore, preci-
sion, and recall on the test set were 92.11%, 95.11%, 95.8%,
96.54%, and 95.11%, respectively. Swin-transformer had
built a pure transformer backbone network that can be used
for various downstream tasks. Its MIOU, accuracy, Fscore,
precision, and recall on the test set were 93.41%, 96.01%,
96.54%, 97.09%, and 96.01%, respectively. ConvNeXt V2
is an upgraded version of ConvNeXt [43] that proposes a
fully convolutional masked autoencoder framework and a
new Global Response Normalization (GRN) based on it. Its
MIOU, accuracy, Fscore, precision, and recall on the test
set were 93.33%, 96.43%, 96.49%, 96.57%, and 96.43%,
respectively.

In addition, we also analyzed each model from three indi-
cators: parameter quantity, computational complexity, and
FPS. The size of parameter quantity of model reflects the
complexity of model and the memory space required for
training the model. FPS represents the number of images that
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TABLE 3. Performance comparison table of the proposed network and Segformer.

FIGURE 7. ROA-AUC Crop and weed identification results.

TABLE 4. Comparison of relevant indicators of different models.

model can process per second during the prediction phase.
From Table 4, it can be seen that the network composed
of convolutional modules has a relatively large computa-
tional load, reaching over 800GFLOPS, and the prediction
speed is also relatively slow. Our network is relatively small
in terms of parameters, reducing it by 25% compared to
baseline. Greatly saving memory requirements in practical
applications. In addition, they also achieved the best results
in predicting speed. It has to be said that although the com-
putation of our network has increased, it only affects the time
required for the training process.We deem that it is acceptable
under improving the performance of other indicators.

In Figure 8, the segmentation results of five network
images in complex environments are shown, including the
situation of leaf crossing and occlusion of sugarcane and
gramineous weeds, and sugarcane and broadleaf weeds. From
the results, it can be seen that our proposed network improves
the ability to identify weeds. More accurate boundary recog-
nition for sugarcane and weeds.

Although good results were achieved in the experiment,
there are also some issues that need to be optimized. In actual
fields, there are weeds that are very similar to sugarcane,
which can affect the accuracy of the model. It is neces-
sary to train the model model with images of large weeds
surrounding the sugarcane scene to improve the accuracy
of identifying similar weeds. In addition, the model has a
relatively large number of parameters and the input images
are also large, which makes it impossible to set a larger batch
size to train the model and a longer training time.

C. TESTING ON BONIROB DATASET
To verify the universality of our network, we performed addi-
tional experiments on the BoniRob Dataset [52]. The whole
BoniRob Dataset records the growth records of a sugar beet
farm near Bonn in Germany for the past three months, includ-
ing all data recorded three times a week. We used a dataset
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FIGURE 8. Crop and weed identification results with the proposed method.

TABLE 5. Performance comparison for different models.

consisting of 1865 images with a size of 1296 × 966 pixels.
The training dataset consisted of 80% of the images and their
corresponding pixel-level labels, whereas the remaining 20%
were used to test the model. The experimental results indicate
that ourmodel can performwell on publicly available datasets
and outperform other models, as shown in Table 5.

Due to our added module structure being able to obtain
multi-scale feature information, it has good robustness for
different datasets. In the comparative experiment, although
BoniRob only had a small dataset, the MIOU also reached
88.7%,which is better than the adaptability of other networks.

D. ABLATION STUDY
In this section, as the proposed network is an improvement on
Segformer, ablation experiments are performed to verify the
effectiveness of various parts of the network. Specifically, the
four networks were trained separately. of each modification.
Specifically, this section considers the following models.

1) The original Segformer, which utilizes stacked trans-
former block as encoder.
Model-a, which replaces the first two transformer
stages of Segformer by the proposedmulti-scale feature
and fusion module.

2) Model-b, which adds GRN module to the multi-scale
feature extraction module based on Model-a.

3) The proposed network, which introduces residual con-
nections in the last two transformer stages based on
Model-b.

4) Model-b, which adds GRN module to the multi-scale
feature extraction module based on Model-a.

5) The proposed network, which introduces residual con-
nections in the last two transformer stages based on
Model-b.

All the above models had the same parameter configuration
during training. Table 6 shows that compared to the baseline,
our proposed network has slightly improved segmentation
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FIGURE 9. Comparison of weed identification performance among various networks.

TABLE 6. Comparison of proposed and different models on BoniRob Dataset.

TABLE 7. Performance comparison for different module configurations.

performance. Specifically, the baseline shows the worst pre-
dictions with a MIOU of 93.77%. The main reason for this
result is that the four transformer stages of the encoder of
the Segformer adopt reduction ratios of 8, 4, 2, and 1 time,
respectively, to reduce the computational burden of multi-
head self-attention. A large reduction ratio can disrupt the
texture information of crop and weed and ignore some details
that affect the encoder’s ability to extract more feature infor-

mation. As for model-a, it exploits the multi-scale feature
extraction and fusion module instead of the first two trans-
former stages of Segformer which could further refine the
texture computation, resulting in aMIOU andAcc increase of
0.3% and 0.12%, respectively. In order to enhance the ability
of the feature extraction module to obtain more useful fea-
tures, we introduced the GRN module to improve MIOU and
Acc from 94.07% to 94.11%, and from 96.88% to 96.92%,
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FIGURE 10. Comparison of weed identification performance among various networks.

respectively. Finally, adding residual connections in the trans-
former layers can accelerate the transfer of long-range depen-
dency information between layers, and increase the MIOU
and Acc of model-b from 94.11% and 96.92% to 94.13% and
96.97%, respectively. On the whole, the ablation experiments
have proven that each modification is effective, with a total
increase of approximately 0.36% in the MIOU and a reduc-
tion of 9.14M in parameter quantity compared to the original
Segformer. Importantly, the baseline network had poor seg-
mentation performance at the boundaries, intersections, and
overlaps between sugarcane and weed. On the contrary, our
proposed network achieved good segmentation results. The
specific segmentation results are shown in Figure 9.

V. DISCUSSION AND CONCLUSION
The weed identification model is crucial for automatic weed
control systems. We choose to use a network based on
self-attention mechanism, which has higher accuracy than
convolutional neural networks. In the real environment,
weeds and sugarcane are not fixed in size, and plant size fluc-
tuates greatly. We need flexible receptive fields to improve
the accuracy of weed identification. In this study, we pro-
posed an improved semantic segmentation model for crop
and weed segmentation. First, we designed a multi-scale
feature extraction and fusion module to extract and aggregate
abundant low-level features. Second, we introduce a Global
Response Normalization block to enhance inter-channel fea-
ture competition so that more useful feature information can
be extracted. Thirdly, we embedded residual connections into

the stacked Efficient Transformer layers to accelerate the
transfer of long-range dependency information between lay-
ers alleviate the vanishing gradient issue. In the experimental
section, we conducted many experiments by adjusting hyper-
parameters. When the batch size is increased, the accuracy
improvement isminimal, and the cost ofmemory calls is high,
requiring training on more expensive devices. In addition,
in cases where the data volume is small, fixing the training
epoch and increasing the batch size will increase the risk
of overfitting. However, when the batch size is reduced,
the accuracy will decrease. So, the current setting is the
most suitable. The experimental results demonstrate that our
proposed model is effective for crop and weed segmenta-
tion with an average accuracy of 96.97%. Compared with
Segformer, the proposed model has improved segmentation
accuracy by 0.36%, the training speed has been accelerated,
and the number of parameters has been reduced by 9.14M.
And the proposed network has better segmentation results for
the boundary, intersection, and occlusion parts of sugarcanes
and weeds. Moreover, our model also achieved good seg-
mentation results on the BoniRob Datasets with an average
accuracy of 94.07%. Future research could further reduce the
complexity of the model, improve the speed of segmentation,
and enable it to run on an embedded system.

VI. LIMITATIONS AND FUTURE WORK
Although our proposed semantic segmentation model
achieved good performance in weed recognition tasks, there
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are still some shortcomings that need to be further addressed
in future work.

First, we only identified crops, weeds, and backgrounds,
without specifically identifying the types of weeds. Although
this is sufficient for mechanical weed control systems, iden-
tifying specific types of weeds is of great help for precise
agricultural spraying. It also provides various options for
farmers to select agricultural combinations. This is a problem
that needs to be addressed in future works. When anno-
tating data, it is necessary to accurately label each weed
species, which requires sufficient in-depth research onweeds.
Incorrect annotation of images can affect the accuracy of
the model in identifying weeds. Therefore, experienced
agronomists were required to assist in annotating the data.

Second, transformer network and its variants are extremely
sensitive to data and require a large amount of training data.
In the agricultural field, relatively few publicly available
datasets and they contain a single variety of crops and weeds.
To train a universal weed recognition network, a combi-
nation of machine learning and deep learning methods are
considered for identifying weeds in the future.

Third, our proposed model showed good results for crop
and weed segmentation performance. However, the aver-
age processing speed during the prediction process is only
13.8 images per second. On the one hand, this is because of
the large size and high resolution of our input images; on the
other hand, this is because our network has a large number
of parameters and computational complexity. Therefore, it is
necessary to study the impact of input image resolution
on performance, and further optimize the network struc-
ture without reducing performance, reduce computational
complexity, and increase the FPS in the prediction stage
to meet the requirements of weed identification in actual
environments.

Fourthly, due to limited data, we only validated the gen-
eralization of our network on the BoniRob dataset, and
experimental results showed that our network has good gener-
alization performance. In the future, further validation will be
conducted on other crop datasets, and our goal is to develop
a universal weed identification network.

The above is a solution proposed for the limitation, and
the most important issue is that in actual farmland, weeds
and crops usually grow together, and they are very similar.
So, I will consider using covered object detection networks
to detect weeds.
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