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ABSTRACT Aiming at the YOLO (You Only Look Once) algorithm’s low detection accuracy caused by the
complex background environment and large target scale difference in the detection of optical remote sensing
images, the Deformable Convolutional Fusion Attention mechanism based DCH-YOLOv7 (Deformable
Convolutional Hybrid-YOLOv7) target detection algorithm is proposed in this paper. In this algorithm,
deformable convolution is introduced in order to meet the detection of optical remote sensing images with
different scale, and at the same time, two modules, PELAN and PMP, are added to effectively improve the
network’s ability to accurately localize the target features; secondly, a hybrid attention module (ACmix) is
used, which effectively enhances the network’s sensitivity to the small targets and improves the detection
accuracy; lastly, the CIoU loss function is replaced by theWIoU loss function, which, through the adjustment
of theweights, improves the detection accuracy of the high-quality anchor frames, and reduces the probability
of missed and false detection. Finally, experiments were conducted on publicly available datasets, namely
DIOR. Experimental results indicate that the DCH-YOLOv7 algorithm achieved an impressive detection
accuracy of 90.6% in mAP@0.5, demonstrating a remarkable improvement of 3.1% over YOLOv7. These
results demonstrate that DCH-YOLOv7 algorithm has a certain improvement in the effectiveness of target
detection in optical remote sensing imagery, and can better cope with the problems of the dense distribution
of small targets, the large differences in target scales, and the complex background.

INDEX TERMS Target detection, deformable convolution, attention mechanism, loss function.

I. INTRODUCTION
Remote sensing image target detection has a wide range
of applications [1], including geological exploration, intel-
ligence reconnaissance and urban planning and other fields.
Different from traditional natural images, target information
in remote sensing images presents fragmented distribution
and complex and variable background [2]. This characteristic
leads to a large amount of interference information on the
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feature map, while the dense distribution of individual feature
targets further increases the difficulty of target detection in
remote sensing images. In comparison, traditional algorithms
are less effective in target detection, with low accuracy and
easy to miss under complex conditions [3].

With the continuous development of artificial intelli-
gence technology, especially the application of deep learning,
researchers have made important breakthroughs in the field
of remote sensing image target detection [4], [5]. However,
there are still many difficulties in the recognition process of
remote sensing images. On the one hand, the background of
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remote sensing images is complex. Due to the relatively high
shooting height of remote sensing images and the complex
spatial and geographical environment, the phenomenon of
dense occlusion is more common in remote sensing images,
which leads to incomplete and discontinuous phenomenon
in target detection of remote sensing images. To address this
problem, foreground and background segmentation is usually
adopted to reduce the background noise and background
segmentation to reduce the background noise and highlight
the target information, in order to improve the target detection
accuracy and generalization ability [6]. On the other hand,
remote sensing images have small and clustered targets to be
detected. Remote sensing images are taken farther away from
the ground, and the targets to be detected are smaller in size
and have fewer available features compared to remote sensing
images. Therefore, it is easy to miss or misdetect in detection.
To address this problem, feature fusion of high-level semantic
information and low-level semantic information is usually
used to improve the detection ability of small targets [7].
Currently, the commonly used target detection algo-

rithms mainly include one-stage target detection algorithms
and two-stage target detection algorithms. Among them,
the one-stage target detection algorithms are the detection
algorithms represented by YOLO series [8] and SSD [9],
which use regression strategy to realize target detection. The
two-stage target detection algorithms, on the other hand, are
target detection algorithms represented by algorithms such
as R-CNN [10], Fast R-CNN [11], and Faster R-CNN [12].
This class of algorithms generates a fitted region based on
the original image and utilizes convolutional neural networks
for feature extraction to achieve target classification and
detection. From the existing research results, the single-stage
target detection algorithm does not need to generate a large
number of candidate regions. This reduces the detection time
and improves the real-time target detection. And it has cer-
tain advantages in engineering applications and has achieved
better research progress. For example, in 2016, in response to
problems such as the slow detection speed of existing target
detection, Redmom et al. proposed the YOLOv1 algorithm
that allows real-time detection. The core idea of the algorithm
is to transform target detection into a regression problem,
using the whole image as the input to the network, and then
using a convolutional neural network to obtain the location
of the bounding box and the category it belongs to. However,
it is difficult to predict targets in complex backgrounds and
irregular or different sized objects. To further improve the
detection accuracy of the algorithm, in 2017, Redmom et al.
proposed YOLOv2 [13] based on YOLOv1. The previous
YOLOv1 algorithm uses a fully connected layer to obtain
the location information of the bounding box, which has
poor localization robustness. However, the YOLOv2 network
model uses the anchor frame mechanism of the fast RCNN,
which can cluster and analyze the target bounding boxes
of the training set to find the appropriate size and ratio
of the anchor frames and improve the detection accuracy.
Subsequently, Redmon et al. proposed the YOLOv3 [14]

model in 2018. The model obtains the dimensions of the
three prior frames and the ratio of the three prior frames
through dimensional clustering, and employs independent
logistic regression instead of the original softmax function to
support multi-label prediction. Although the YOLOv3 model
has improved the detection accuracy compared to previous
models, it is still difficult to detect targets in complex back-
grounds. In 2020, Bochkovskiy et al. proposed the YOLOv4
real-time detection model by replacing the backbone net-
work with the CSPDarkNet53 network [15] and adding the
SPP [16], Feature Pyramid Network (FPN) module [17] and
PAN (Path Aggregation Network) module [18] to improve
the detection accuracy of the network, but the robustness
of the YOLOv4 network model to light changes, occlusion
and complex backgrounds is relatively low. In these complex
scenarios, misdetections or missed detections may occur.
From the research results at this stage, based on the YOLO
target detection algorithm, by introducing the feature pyramid
structure and multi-scale prediction head, it is able to detect
targets of different scales with strong adaptability. However,
it is prone to target overlapping and missed detection, so the
detection accuracy of the model for dense targets needs to be
further improved.

With the continuous development of deep learning algo-
rithms, more and more algorithms have been applied to
detect optical remote sensing images. Guo et al. [19] pro-
posed a unified convolutional neural network (CNN) by
fusing a multiscale target suggestion network and a multi-
scale target detection network, which improves the detection
accuracy of small targets in high-resolution satellite images.
Jiang et al. [20] effectively solved the problem of too narrow
bounding boxes for small targets in remote sensing images by
combining a dual-lens neural network combined with a stag-
gered localization strategy to effectively solve the problem
of overly narrow bounding boxes of small targets in remote
sensing images. Yao et al. [21] generated high-quality seman-
tic features by introducing an extended bottleneck structure
in the backbone network, thus significantly improving the
prediction ability of multi-scale objects. Zhang et al. [22]
generated multiple by introducing a new activation function
in the backbone network and fusing different layers of fea-
tures, Zhang et al. generate multiple receptive field features,
which effectively improve the detection accuracy of dense
small targets in remote sensing images. Yang et al. [23]
propose a multi-task rotating region convolutional neural
network-based detection model by fusing multilayered fea-
tures with effective anchor sampling, which improves the
accuracy of detecting ships with arbitrary orientations in
remote sensing images. Therefore, how to more accurately
extract information from remote sensing images under com-
plex backgrounds has become an important research topic in
the current field of remote sensing images.

In order to improve the detection accuracy of targets
in complex backgrounds in optical remote sensing images,
this paper proposes an optimization algorithm based on
deformable convolutional fusion attention mechanism for
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YOLOv7 [24]. First, a deformable convolution (DCNv2 [25])
mechanism is used in the backbone feature extraction net-
work. This mechanism enables the network model to better
adapt to targets with different shapes in optical remote sens-
ing images. And based on this, PELAN and PMP modules
are added to make the target localization more accurate.
Secondly, the ACmix [26] attention mechanism is introduced
into the YOLOv7 network model to suppress the interfer-
ence of complex background and noise, thus enhancing the
network’s ability to extract target features under complex
background. Finally, the WIoU loss function [27] is utilized
as the loss function of bounding box regression as an alter-
native to the original CIoU loss function [28], which helps
to accelerate the convergence speed of the training process,
reduces the probability of misdetection and omission, and
improves the detection accuracy of the model.

II. BASIC MODEL OF THE YOLO ALGORITHM
YOLOv7 is one of the more advanced target detection
algorithms, which integrates strategies such as cascade
model-based model scaling, Extended Efficient Long-Range
Attention Network (E-ELAN), and convolutional reparam-
eterization [29]. Compared to other known target detection
algorithms, YOLOv7 exhibits higher speed and accuracy over
a speed range of 5 to 160 frames per second. It succeeds
in achieving a good balance between detection speed and
accuracy and is therefore widely used in scenarios where
small devices are detected in real time. The YOLOv7 network
is composed of four parts: the input (Input), the backbone
network (Backbone), the neck (Neck), and the detection head
(Head), as shown in Figure 1.

FIGURE 1. Schematic diagram of the YOLO algorithm framework.

After the input module (Input) of YOLOv7 performs a
series of, e.g., Mosaic data enhancement algorithms on the
input images, the images are uniformly adjusted to the default
size (640 × 640 × 3) to meet the input requirements of
the backbone network, further enhancing the generalization

ability and robustness of the model, so that it can be better
adapted to different scenes and changes [30].
The role of the backbone network (Backbone) in YOLOv7

is to extract the feature information in the image and prepare
the data for subsequent feature fusion and target detection.
It mainly consists of CBS module, ELAN module and MP
module. These modules and the way they are connected to
each other are designed to efficiently capture semantic infor-
mation at different scales in an image and provide rich feature
representations that can help the YOLOv7 network have bet-
ter target detection performance and accuracy. Among them,
the CBS module consists of a convolutional layer, a batch
normalization layer and an activation function layer, which
plays the role of feature extraction and channel transforma-
tion in YOLOv7. The ELAN module splices the feature map
through branches of different depths, controlling the shortest
and longest gradient paths, allowing deeper layers of the
network to learn and converge efficiently. The MP module
is mainly used for downsampling, which fuses the feature
maps obtained through the maximum pooling downsampling
branch and the convolutional downsampling branch in a
way that preserves as much feature information as possible
without adding extra computation. These modules play an
important role in the backbone network and help to improve
the performance and accuracy of target detection.

Neck (Neck) plays the role of feature fusion in target detec-
tion and it is mainly composed of Path Aggregation Feature
Pyramid Network (PAFPN). As the network extracts and
abstracts more image features, the semantic information in
the feature map gradually becomes apparent, while the loca-
tion information may become less precise. The main function
of PAFPN is to fully fuse the precise location information
at the bottom layer and the abstract semantic information
at the top layer, so that the semantic information and the
location information in different levels of feature maps can be
fully fused. This can further improve the model’s accuracy in
localizing multi-sized targets, especially in identifying small
targets in a large context.

The detection head (Head), on the other hand, uses three
different sizes of feature map branches output from the neck
for multiscale prediction. In order to speed up the inference of
themodel, a reparameterization block (RepVGGBlock, REP)
is used for acceleration. This module reduces the amount of
model calculations and improves the efficiency of reasoning.
With this structural design, the model can better perform the
target detection task and achieve high accuracy prediction at
different scales.

III. MODELING ANALYSIS OF THE DCH-YOLOv7
ALGORITHM
Despite the remarkable success of the YOLOv7 algorithm
in the field of general-purpose target detection (e.g., vehi-
cle and pedestrian detection) [31], however, there are still
some challenges in applying it directly to optical remote
sensing image target detection. For example, the problem of
the complex background of optical remote sensing images,
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in the complex environment, remote sensing image targets
and the surrounding environment is difficult to clearly dis-
tinguish [32]; the wide range of scale changes of the target
in the remote sensing image, so that the small targets in
the large background show sparse distribution; compared to
the general detection of the image, optical remote sensing
images are mostly from the satellite or aircraft overhead
view, direct application of the horizontal detection frame
of the YOLOv7 algorithm will result in the loss of the
orientation information of the remote sensing image target,
which reduces the localization accuracy, and even leads to
the problem of the omission of the dense target in the post-
processing [33]. In order to solve the above difficulties,
this paper proposes a DCH-YOLOv7 optimization algorithm
that introduces deformable convolution and fused attention
mechanism, and the overall structure of the algorithm is
shown in Figure 2. From the figure, it can be seen that
deformable convolution is embedded in the last MP and
ELAN modules in the backbone feature extraction network
(Backbone) part and named as PMP module and PELAN
module, which improves the model’s ability to adapt to the
target deformation and spatial variations, and enhances the
model’s ability to perceive the target boundaries and details,
and also introduces the ACmix attentional mechanism in the
Neck part, which improves spatial correlations, emphasizes
the important regions, suppresses the noises and interferences
as well as improves the details of the boundaries, so as to
increase the model’s accuracy of detecting the optical remote
sensing images.

FIGURE 2. Network structure of DCH-YOLOv7 algorithm.

A. ELAN MODULES BASED ON DEFORMABLE
CONVOLUTIONS
In order to solve the problem of complex background and
difficulty in accurately distinguishing the target from its sur-
roundings in remote sensing images, as well as the challenge
of difficulty in accurate recognition due to the wide range of

variation in the target scale, this paper proposes an improved
method. The method embeds a deformable convolution mod-
ule with offset learning capability in the ELAN and MP
modules of the backbone network by dynamically adjusting
the shape and size of the sensory fields sampled by the con-
volution to adapt to targets of different scales. The structure
of the deformable convolution-based DCNSmodule is shown
in Figure 3.

FIGURE 3. Deformable convolution based DCNS module, in which
deformable convolution is used to better adapt to targets of different
scales, BN is used for normalization and Silu activation function is
introduced to further improve the performance of the model.

The traditional convolution operation is a regular convolu-
tion, which can only process fixed-size samples. Deformable
convolution, on the other hand, has a more flexible receptive
field and can adaptively change the size and shape of the
receptive field according to the different shapes and sizes of
the target objects in the remote sensing image. Deformable
convolution interacts with the local or global context by intro-
ducing offsets, and has the ability to model long distances to
capture awider range andmore complex features. At the same
time, deformable convolution has a similar capability of adap-
tive spatial aggregation. This adaptivity allows deformable
convolution to better adapt to different target objects and
extract more accurate feature information in different sce-
narios. In this paper, deformable convolution is used and a
multigroup mechanism is introduced to enhance the expres-
sive power of the operator, while the method reduces the
complexity of the algorithm by sharing convolutional weights
and improves the stability of the training process by normal-
izing the modulation scalar. In remote sensing image target
detection tasks, since the scale and shape of the target may
change significantly, this can cause covariate bias problems
within the network. As shown in Figure 3, the DCNS module
proposed in this paper employs a BN for normalization in
order to normalize each small batch of inputs. This approach
makes the network more robust to changes in the input data,
thus improving the generalization ability of the model. At the
same time, the DCNS module also effectively reduces the
problem of internal covariate bias during training, making
it easier for the network to learn a consistent feature repre-
sentation of the target. In the DCNS module, an added Silu
activation function is introduced to better capture the complex
relationships between features. This activation function helps
to improve the expressive and fitting ability of the network,
which further improves the performance of the model. The
improved ELAN module is shown in Figure 4.
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FIGURE 4. Deformable convolution based PELAN module.

B. MP MODULES BASED ON DEFORMABLE
CONVOLUTION
In remote sensing image target detection, the use ofmaximum
pooling can lead to some information loss and blurring due
to the complex background, thus affecting the detection accu-
racy [2]. However, by embedding a deformable convolutional
layer, the size and position of the sensing field can be adap-
tively adjusted during the convolution process, allowing the
sampling positions around each position to adaptively change
as well. In this way, the deformable convolutional layer can
better adapt to the shape and size of the target, thus improving
the overall detection accuracy, and the improved MP module
is shown in Figure 5.

FIGURE 5. Deformable convolution based PMP module.

C. INTEGRATION OF THE ACMIX ATTENTION MECHANISM
In optical remote sensing imagery, especially in complex
backgrounds such as nearshore, sea and land boundaries are
often mixed together, making it difficult to distinguish ship
targets from the background. This leads to the difficulty for
the model to extract the target portion of interest from the
whole image. To solve this problem, researchers have pro-
posed a variety of attention mechanisms. By introducing the
attention mechanism, the model is able to automatically learn
which regions are more important for target detection and
allocate more attention and computational resources to these
regions. In this way, the model is able to better understand
complex scenes and accurately extract relevant features of the
target from the image.

In this paper, we introduce theACmix attentionmechanism
into the YOLOv7 network, which combines the two parts
of convolution and self-attention to improve the network’s
attention to small andmedium-sized targets in remote sensing
images. Its principle is shown in Figure 6.
First, the input features are projected using three 1×1 con-

volutions to divide them into N parts, resulting in 3N mapped
intermediate features. In the first branch, the convolution
operation is used to obtain the feature information of the
local receptive field. The intermediate features are shifted and
aggregated after passing through the fully connected layer,

FIGURE 6. ACmix module.

and then, the input features are convolved to obtain features
of size H×W×C. In the second branch, the self-attention
mechanism is used to obtain the global receptive field and
more attention is paid to the important regions. Here the
3N intermediate features correspond to three feature maps,
which are Query, Key and Value. These features follow
the principle of multiple self-attention modules, and after
convolutional processing the features of size H×W×C are
obtained. Finally, the outputs of the above two branches are
summed and two learnable scalars are used to control the
weights between them. As shown in equation (1).

Fout = αFatt + βFconv (1)

In the ACmix module, the final output is labeled as
Fout. Meanwhile,Fatt and Fconv denote the outputs on the
self-attention path and the convolutional path, respectively.
In this case, the values of both α and β are set to 1.
ACmix integrates convolutional and self-attention modules
and applies them to the neck (Neck) part of the YOLOv7
network, which utilizes the attention mechanism to weight
the prediction results of different bounding boxes. By dynam-
ically adjusting the importance of different bounding boxes
based on information such as the feature representation or
confidence level of each bounding box, ACmix is able to
increase the attention to small targets and reduce the possi-
bility of the network model to produce a missed detection
situation when detecting small targets. This in turn improves
the overall detection accuracy.

D. IMPROVEMENT OF THE LOSS FUNCTION
The loss function is used to measure the difference between
the predicted results and the actual labels, and a good loss
function can accelerate the convergence of the network and
improve its accuracy. The original YOLOv7 model uses a
CIoU loss function, which takes into account the effect of
the aspect ratio between the predicted frame and the real
frame, the centroid distance, and the overlap area on the loss
function. However, for some anchor frames with low labeling
quality, when the aspect ratio between the height and width of
the predicted and real frames is close to a linear proportion,
the relative proportion penalty in the CIoU [22] loss function
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degenerates to 0 and no longer works, and the CIoU loss
function does not achieve convergence well. The relevant
formula for CIoU is as follows:

LCIoU = LIoU +
(x − xgt )2 + (y− ygt )2

W 2
g + H2

g
+ αν (2)

LIoU = 1 − IoU = 1 −
WiHi

wh+ wgthgt −WiHi
(3)

α =
ν

LIoU + ν
(4)

ν =
4
π2 (arctan

w
h

− arctan
wgt
hgt

)2 (5)

In the CIoU loss function, Wi and Hi denote the dimensions
of the overlapping parts of the two frames, Wg and Hg denote
the dimensions of the smallest enclosing frame, is the weight
coefficient, and is used to compute the similarity of the two
frames in terms of aspect ratio metrics.

As can be seen from the above formula, the CIoU loss
function mainly considers three factors, namely, the overlap
area between the two frames, the distance between the cen-
troids and the aspect ratio, which effectively improves the
convergence speed of the loss function. However, when the
aspect ratios of the anchor and target frames are the same
(i.e. w:h = wgt: hgt), the penalty term for the aspect ratio
will lose its effect. Loss functions such as CIoU, GIoU [34],
and DIoU [35] all aim to enhance the fitting ability of the
bounding box, which implies that they require high labeling
quality for the training set. However, in the actual training
set, the labeling quality of target objects may be incon-
sistent, especially for the labeling of small target objects,
there are cases of poor labeling. If we blindly emphasize
the regression of the bounding box on low-quality targets,
we may damage the detection performance of the model.
In order to improve the localization ability of the model,
this paper introduces the WIoUv1 loss function, which is
designed based on the dynamic non-monotonic focusing
mechanism. The dynamic non-monotonic focusing mecha-
nism uses ‘‘outliers’’ instead of the traditional IoU to evaluate
the quality of the anchor frames, and adopts a more efficient
gradient gain allocation strategy, which makes the model
pay more attention to the low-quality anchor frames. In this
way, the model can localize the target more accurately, which
improves the performance of the model. The relevant formula
of the WIoUv1 loss function is as follows:

LIoU = 1 − IoU (6)

LWIoUv1 = RWIoULIoU (7)

RWIoU = exp

(
(x − xgt )2 + (y− ygt )2

(W 2
g + H2

g )∗

)
(8)

where Wg and Hg denote the dimensions of the minimum
enclosing box. With superscript ∗ indicates that by separating
Wg, Hg from the computational graph and changing them
from variables to constants, the RWIoU can be prevented from
generating gradients that prevent convergence. According to

Eq. (8), we can get the value range of RWIoU as [1, e). This
item amplifies the LIoU of normal quality anchor frames by
an attention-based approach. Whereas, according to Eq. (3),
LIoU takes values in the range of [0, 1]. LIoU reduces the
influence of RWIoU on the results when the anchor frame is of
high quality and reduces the attention on the centroid distance
when the anchor frame overlaps with the target frame better.
Compared with the traditional CIoU method, WIoUv1 can
effectively avoid the over-penalization of the network by the
geometric terms, which enhances the generalization ability of
the algorithm. This means that we can reduce the requirement
on the quality of dataset labeling and further improve the
convergence speed and accuracy of the model.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS
A. DATA SETS AND EVALUATION INDICATORS
To verify the effectiveness of the improved YOLOv7
algorithm in detecting remote sensing images, this paper
designs experiments and performs training and evaluation on
the publicly available dataset DIOR [36]. The DIOR dataset
is a widely used remote sensing target detection dataset pro-
vided by Northwestern Polytechnical University. The dataset
contains remotely sensed images from different regions and
scenes and is intended to provide a more diverse sample of
targets for detection. The DIOR dataset contains a total of
23,463 images of 800 pixels × 800 pixels size. Each image is
finely labeled with the location and category information of
the target object in the image. The dataset covers 20 different
target categories including airplanes, airports, baseball fields,
basketball courts, bridges, chimneys, dams, highway ser-
vice areas, highway toll booths, golf courses, athletic fields,
harbors, overpasses, boats, stadiums, storage tanks, tennis
courts, train stations, vehicles, and windmills. These cate-
gories are denoted by C1-C20, respectively. In order to ensure
the validity and reliability of the dataset, a strict division
of the DIOR dataset is used in this paper. Specifically, the
training set contains 5,862 images, the validation set contains
5,863 images, and the test set contains the remaining 11,738
images. Such a division is intended to ensure that the training,
validation, and test data are similarly distributed so that the
performance of the remote sensing target detection algorithm
can be accurately evaluated. Figure 7 presents some images
in the DIOR datasets.

B. EXPERIMENTAL SETUP
The optimized algorithmic model in this paper is based on
Pytorch 1.8.0 framework, Python version 3.7, the software
environment for the experiment is Windows 11, CUDA 11.1;
the hardware environment is CPU: Intel Core i7 -12700K,
32 G of RAM; GPU: NVIDIA GeForce RTX 3080, with
a video memory of 10 G; the following parameters are
used for training, the number of training rounds is set to
300, the batch size is set to 16, and the input image size
is 640 × 640 pixels, and the specific parameters are listed
in Table 1.
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FIGURE 7. Images from the DIOR datasets.

TABLE 1. Experimental parameter setting.

C. ANALYSIS OF EXPERIMENTAL RESULTS
In order to verify whether the algorithm in this paper is
effective or not, in this section, we mainly focus on the per-
formance of the YOLOv7 optimization algorithm based on
deformable convolutional fusion attention mechanism pro-
posed in this paper compared with the performance of target
detection algorithms based on convolutional neural networks
in recent years, and from the comparison results, we can see
that the target detection algorithm proposed in this paper has
a better performance on small target detection.

1) PERFORMANCE COMPARISON ON THE DIOR DATASET
In order to evaluate the performance of the proposed model,
the previously mentioned training parameters and datasets
were used. In the improved YOLOv7 network, the officially
provided data enhancement method was used and the image
size was effectively resized to 640×640 and 1280×1280 for
validation in the input network structure. After validation, the
image size of 640 × 640 was finally selected as more effec-
tive and was used as the selected image size for this paper.
Then several experiments were conducted on the improved
YOLOv7 model and all the experimental results converged
and good precision and recall were obtained.

In order to verify the effects of PELAN module, PMP
module, ACmix attention mechanism and WIoU loss func-
tion on the target detection performance of remote sensing
images, this paper conducts ablation experiments on the
DIOR dataset to validate the effectiveness of each of the
improvement methods proposed in this paper. The results
of the ablation experiments are shown in Table 1. Table 1
mAP (mean Average Precision) that is, the mean average

precision is the average of all kinds of average precision
values detected under the premise of the intersection ratio
of positive and negative sample regions is 0.5, Fps indicates
the number of images that the algorithm can process per
second, which is not only related to the algorithm model, but
also the hardware configuration of the experiment. Several
experiments were conducted on the DCH-YOLOv7 model
and all the experiments converged and good precision and
recall were obtained. Compared with the original YOLOv7
model, the mAP (IoU of 0.5) improves from 87.5% to 90.6%,
which is a 3.1% improvement. The PR curves before and
after the improvement are shown in Figure 8. As can be
seen from Table 2, the mAP value of the improved YOLOv7
network model exceeds that of the other combinations when
inputting images of the same size, which effectively improves
the detection accuracy.

To verify the effectiveness and authenticity of the proposed
DCH-YOLOv7 algorithm, ablation experiments were con-
ducted on the DIOR datasets. These experiments evaluated
the impact of various modules and techniques on the overall
performance of the algorithm. The experimental results are
listed in Table 2,where the symbol ‘‘

√
’’ indicates the use of

a specific moduleor technique.
From Table 2, we can see that the first group is the original

Yolov7 algorithm with 87.5% mAP and 37.2M parameters;
the second group is replacing part of the ELAN module with
the PELAN module, with 87.5% mAP and 32.7M param-
eters. Although the mAP is not improved, these changes
bring about a reduction in the number of parameters and
computation, which makes the model lighter; the third group
is the replacement of some MP modules with PMP modules,
with a mAP of 89.7%, an increase of 2.2%, and a parameter
number of 39.8M, an increase of 2.6M; the fourth group
is adding the ACmix attention mechanism, with a mAP of
89.8%, an increase of 2. 3%, and a parameter number of 38.3,
an uptick of 1.1M; The fifth group is to replace the CIoU loss
functionwith theWIoU loss function, whichmakes themodel
pay more attention to the anchor frames of ordinary quality,
the mAP is 89.4, which is improved by 1. 9%, and the number
of parameters is 33.8M, which is reduced by 3. 4M, which
makes themodel’s detecting speed improved; The sixth group
is to replace part of the MP module with the PMP module on
the basis of the second group, the mAP is 90. 1%, which is
improved by 2. 6%, and the number of parameters is 50.7M,
which is increased by 13.5M; The seventh group is based
on the sixth group with the addition of the ACmix attention
mechanism, the mAP is 90.4%, which is improved by 2. 9%,
and the number of parameters is 50.9M, which is increased
by 13.7M; the eighth group is the final algorithm proposed
in this paper, and the mAP is improved by 3. 1% compared
with the original Yolov7, and the number of parameters is
50.7M, which is increased by 13.5M, these results fully
proved the effectiveness of the DCH-YOLOv7 algorithm,
which is shown to outperform YOLOv7 in various modules
and configurations when evaluated on the challenging DIOR
dataset.
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FIGURE 8. Comparison of PR curves before and after improvement.

TABLE 2. Ablation experiments for each module.

TABLE 3. Comparison of object detection performance on different objects between YOLOv7 and DCH-YOLOv7 using the DIOR Dataset.

In Tables 3, regardless of the consideration of target
size, DCH-YOLOv7 consistently outperforms other models,
achieving higher AP and AR values across various IoU
thresholds. When we factor in the target size, DCH-
YOLOv7’s superiority becomes even more apparent, with
significantly higher AP and AR values compared to
YOLOv7. To elaborate further, DCH-YOLOv7 attains
remarkable AP values of 52.4% for small object detection,
showcasing improvements of 1.4%, respectively, compared to
YOLOv7. The AR values for DCH-YOLOv7 in small object
detection reach impressive figures of 67.4%, demonstrat-
ing substantial improvements of 7.0%, respectively. These

experimental results confirm the effectiveness of DCH-
YOLOv7 in detecting small objects within optical remote
sensing image.

Table 4, on the other hand, shows the comparison of the
experimental results between the algorithms in this paper
and the recent convolutional neural network-based target
detection algorithms on the DIOR dataset. The experimen-
tal results of these algorithms are on the same hardware
resources using the training and validation sets in DIOR as
the training set. As can be seen from the results listed in
Table 4, the detection accuracy is improved by 37.3%, 20.6%
and 14.2% compared to several classical two-stage target
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TABLE 4. Comparative experiments of the DCH-YOLOv7 algorithm on the DIOR dataset.

FIGURE 9. Visualization comparison on the DIOR dataset.

detection (R-CNN, Fast R-CNN and Faster R-CNN), and the
speed of detection has increased dramatically. There is also
a 13.4% improvement in detection accuracy compared to the
more popular one-stage algorithm SSD. The detection accu-
racy is improved by 13.9%, 7.2%, 7.9% and 5.7% compared
to YOLOv3, YOLOv4, YOLOv5s and YOLOX of the YOLO
family, and by 3.1% from 87.5% to 90.6% compared to the
original YOLOv7 model. Although YOLOv7-tiny demon-
strates high real-time detection speed, its detection accuracy

lags. In contrast, DCH-YOLOv7 achieves an impressive
improvement of 11.8% in mAP@0.5. Additionally, when
compared to YOLOv8s, one of the latest algorithms in
the YOLO series, the proposed DCH-YOLOv7 algorithm
achieves a superior balance between detection accuracy and
speed, leading to an improvement of 6.4% in mAP@0.5.

The improved YOLOv7 network shows significant accu-
racy improvement in deep learning detection methods, which
makes up for the shortcomings of the original network in
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small target detection and further improves the robustness of
the network. In conclusion, compared with other mainstream
algorithms, the algorithm proposed in this paper has higher
accuracy in target detection in remote sensing images.

2) COMPARISON OF THE ACTUAL DETECTION EFFECT OF
DIFFERENT DETECTION METHODS
Figure 9 compares the detection effect of YOLOv5s,
YOLOv7, YOLOv8s and DCH-YOLOv7 algorithms on
DIOR datasets. From the results displayed, the performance
of the YOLOv5s is insufficient, and there is an obvious
phenomenon of missing detection. the YOLOv7 algorithm
and YOLOv8s algorithm are adjusted and optimized based
on YOLOv5 algorithm, and although they alleviate the miss-
ing detection phenomenon to a certain extent, they are not
effective in detecting overlapping targets and incomplete
targets. And the YOLOv7 optimization algorithm based on
the introduction of deformable convolutional fusion attention
mechanism in this paper can effectively improve the detection
performance of small targets in optical remote sensing images
under complex background.

V. CONCLUSION
Object detection has always been a popular direction in
computer vision and digital image processing, widely used
in fields such as aviation, transportation, and industry. The
DCH-YOLOv7 algorithm proposed in this paper can adapt
to image features of different scales and better perceive
spatial position information in feature maps. Therefore, the
DCH-YOLOv7 algorithm can be used for target detection in
military monitoring, traffic planning, pollution control and
other fields.

In order to improve the detection accuracy of targets
in complex backgrounds during target detection in optical
remote sensing images, this paper proposes a YOLOv7 opti-
mization algorithm based on deformable convolution fused
attention mechanism. On the basis of the YOLOv7 algorithm,
improvements are made in three places: the deformable con-
volution is introduced and the PELAN and PMP modules are
proposed, the fusion attention mechanism ACmix, and the
replacement loss function. Firstly, deformable convolution is
embedded in the backbone feature extraction network to help
the model better adapt to image features with different scales,
rotations or distortions. Based on this, PELAN module and
PMP module are proposed to improve the model’s ability
to recognize complex scenes. Secondly, the ACmix atten-
tion mechanism is introduced into the YOLOv7 network to
suppress the interference of complex background and noise,
so that the network can better perceive the spatial location
information in the feature map and enhance the ability to
extract target features under complex backgrounds for bet-
ter detection of small targets. Finally, the loss function is
replaced with WIoU to further increase the focus on common
quality anchor frames, which leads to more accurate anchor
frame prediction and effectively reduces the probability of
missed and false detections. The experimental results show

that the improved YOLOv7 algorithm proposed in this paper
has achieved remarkable results in optical remote sensing
image target detection.

After experimental verification, the mAP value of the
algorithm reaches 90.6% on the DIOR optical remote sensing
target detection dataset, which exceeds the current main-
stream target detection algorithms. This finding indicates that
the algorithm has high accuracy and feasibility, and has some
generalization value in practical applications. The DCH-
YOLOv7 algorithm proposed in this paper can effectively
extract the feature information of optical remote sensing
images of different scales, and can suppress the interference
of complex background and noise. This helps to improve
the detection accuracy of the algorithm. However, the DCH-
YOLOv7 algorithm does not fully consider the scale of the
algorithm, resulting in slightly poor processing speed. Our
future work will investigate how to increase the speed of the
algorithm without decreasing the accuracy.
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