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ABSTRACT Confronted with the challenges posed by climate change and the ongoing energy transition,
solar energy is one of the important new energy sources, and the tower solar power plant has become
an innovative solution to promote clean energy development. The optimization of heliostat field layout
constitutes a crucial aspect in enhancing the operational efficiency of a concentrated solar power tower
plant. Currently, the optimization of heliostat field layout has garnered widespread attention. In this paper,
we propose the swarm optimization algorithm with niching and elite competition called NECSO to solve the
large-scale heliostat field layout optimization. First, aiming to increase diversity and heterogeneity within
the population, we employ a random grouping strategy to partition the population into distinct sub-swarms.
Then, we design a niching and elite competitionmechanism to harmonize the performance of the exploration.
The niching competition is carried out within any sub-swarm to enhance the explorability of particles. The
elite competition occurs between the elites which select from each sub-swarm to improve the convergence of
particles. Additionally, we develop a mathematical model for the optimization of heliostat field layout. This
model employs currently advanced computational methods, facilitating prompt and precise calculation of the
optical efficiency in the heliostat field layout. To evaluate the performance of NECSO, we design 15 practical
cases of heliostat field layout with varying scales. And then, we conduct comparative experiments with
eight currently mainstream and excellent algorithms. The results indicate that NECSO exhibits competitive
performance in solving the heliostat field layout optimization, particularly in large-scale cases.

INDEX TERMS Heliostat field layout, large-scale optimization, competitive swarm optimization, niching
strategy.

I. INTRODUCTION
In recent years, the rapid surge in energy demand, paired
with progressively stringent environmental regulations [1],
has propelled the swift advancement of clean energy sources.
Significant attention has been paid to tower solar thermal
power plants, which is a representative of renewable energy
technology. This technology stands out for its cleanliness,
high efficiency, and energy storage capabilities, rendering
it a pivotal choice for future energy demands [2]. The
U.S. Department of Energy’s (DOE) Office of Solar Energy
Technology (SETO) launched the HelioCon Consortium and
presented a roadmap study to advance heliostat technology
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[3], demonstrating the strategic value of solar thermal power
plants.

A typical solar tower plant comprises various components,
including heliostats, support structures, the receiving tower,
heat transfer systems, thermal storage, and electricity gen-
eration components [4]. Among these, the heliostat field
which concentrates sunlight onto a heat receiver positioned
at the top of a tower is a critical subsystem of the solar
tower plant. It often represents 50% of the total cost [5] and
results in approximately 40% of power losses. Consequently,
optimizing the layout of heliostats becomes a substantial
challenge to enhance the overall efficiency.

The optical efficiency is a pivotal metric for evaluating
a heliostat field [6]. However, a solar field with a heliostat
typically comprises over 5000 heliostats [7], and each
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heliostat needs to have its optical efficiency calculated.
This task imposes a considerable computational burden,
exacerbated by the dimensional complexity introduced by
size parameters and positional variables of the mirrors.
Consequently, optimization algorithms must grapple with
the challenges inherent in managing large-scale features [8],
[9]. The high dimensionality of the problem results in an
exponential expansion of the search space, leading to a
pronounced degradation in the optimization performance of
algorithms [10]. The arrangement of heliostats in the field
significantly influences these optical indicators. Addressing
the large-scale optimization of mirror field design becomes
imperative for enhancing the energy efficiency of solar energy
systems.

A. MODEL OF THE HELIOSTAT FIELD
Various models for heliostat field layouts have been devel-
oped since the late 1970s. Many researchers have explored
the optical efficiency calculation and the design of heliostat
field layouts.

Optical efficiency typically comprises reflection effi-
ciency, cosine efficiency, interception efficiency, shading
and blocking efficiency, and atmospheric transmission
efficiency [11]. Among these, the shading and blocking
efficiency are the key index of the optical efficiency.
In the discretization model proposed by McFee [12], the
mirror surface is partitioned into numerous small regions,
and each region is scrutinized individually for shading to
determine the blocking efficiency. However, a drawback
of this approach is its high demand for computational
resources. To address this drawback, the Sassi Method [13]
employs solid analytic geometry. It minimizes the quantity
of tests sent to the computer by determining overlapping
portions through the division of the side faces of surface
blocks rather than their areas. In addition, the method of
using projection to calculate shading and blocking efficiency
has gradually attracted the attention of researchers. In the
CRS4-2 method [14], Leonardi and D’Aguanno calculated
the projection of adjacent heliostats in the mirror direction
and combine it with center distance filtering to obtain results.
In 2014, Elayeb et al. [15] provided analytical expressions
for the geometric shapes of projections and developed
numerical iterative techniques for their solution. Other
models, including HELIOS, MIRVAL, and DELSOL [16],
[17], [18], have evolved into more contemporary software
tools like SOLTRACE, FIATLUX, and HFLCAL [19], [20],
[21]. Designers of heliostat fields can input parameters
into these software tools to obtain optimized simulation
results. However, in practical engineering projects, due to
the diversity of scenarios and the complexity of heliostat
fields, software simulations still incur significant time costs
for optical efficiency calculations [22].
Building upon existing methods for optical efficiency

calculations, researchers are also attempting to explore
breakthroughs in heliostat field layout. They aim to find

a heliostat field layout model that can be expressed using
normalized parameters, transforming design optimization
into adjustments of specific parameters and thus reducing the
dimensionality of design variables. In 1978, [18] compared
four common layouts, including radial cornfields, radial
staggers, N.-S. cornfields, and N.-S. staggers. They con-
cluded that the straggers model outperformed the cornfield
model in terms of performance. Nevertheless, these models
had constraints in reducing shadow losses arising from the
overlapping of adjacent heliostats. To overcome this chal-
lenge, Collado and Guallar [23] introduced the ‘‘CAMPO’’
model in 2012, which features a radial staggered layout
for the heliostat field. Furthermore, recent developments
have explored biomimetic layouts inspired by principles
from photosynthetic plants, such as using ‘‘phyllotaxis spiral
patterns’’ [24] as a basis for heliostat layout. Through
simulation andmodeling, these patterns have proven effective
in enhancing the system’s optical efficiency. Belaid et al. [25]
compared the performance of the CAMPO model and a
biomimetic model using the heliostat field data from the
PS10 solar power plant in Spain. They concluded that the
CAMPO radial staggered layout exhibited better efficiency
and minimized land usage. Furthermore, some researchers
have proposed sequentially adding heliostat layout schemes
and design layouts suitable for non-circular heliostat fields
during the design process [26], [27].

In addition to the basic calculation of optical efficiency,
the researchers also considered a number of factors that
affect the energy conversion rate of Heliostats Feild. For
example, the heliostat field of the ultra-high-concentration
solar tower facility in Móstoles, Spain, has developed
a contamination model [28] to reduce reflectance loss
assessment time by combining measurements within the
local heliostat and the average contamination ratio between
different heliostats with different tilt angles. In addition,
for the wind-induced heliostat tracking bias, an analytical
model is proposed in [29], which can estimate and predict
the wind-induced tracking bias with less computational
resources. While [30] investigated the effectiveness of the
mesh grid in the perimeter fence and edge mounting device
of the heliostat field for reducing the wind load of the
heliostat.

B. HELIOSTAT FIELD LAYOUT OPTIMIZATION
METHODOLOGY
On the basis of determining the basic layout and heliostat
field model, researchers have turned their attention to
further optimizing heliostat fields. In the early days, the
optimization of the layout of heliostat fields relied mainly on
experimentation and experience. Engineers and researchers
used an iterative trial-and-error approach to determine the
angle and position of the heliostat to achieve optimal
optical efficiency. This method was crude and relied on
experience, resulting in inefficient of heliostat field. With
the advancement of computer technology, various algorithms
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TABLE 1. Overview of references.

have been introduced to address this problem. In mainstream
optimization methods, they can be broadly categorized into
two main types: non-heuristic algorithm optimization and
heuristic algorithm optimization. Specifically, the references
are shown in Table 1.

Non-heuristic algorithms focus on utilizing physical meth-
ods and mathematical techniques to narrow down the search
space for optimization. AGM-I and AGM-II [40] are two
concise yet accurate geometric analytic methods capable of
identifying heliostats with the potential for shadowing or
blocking, allowing for efficient recognition in heliostat fields.
The alternating directionmethod [32] split the solar-weighted
optical efficiency into two components: shading and blocking
efficiency, non-shading and non-blocking efficiency. It then
performed layout optimization based on physical gradients.
To circumvent the high computational cost of ray tracing, Raj
and Bhattacharya [34] designed a dual-filtering algorithm.

This algorithm checks each grid from the edge to the center
in a sequential manner, obtaining an approximate solution
with lower computational cost. Grigoriev et al. [33], on the
other hand, approached the problem from the perspective of
heliostat density. They avoided parameter optimization and,
instead, found the optimal distribution of heliostat density by
solving a variational problem.

Heuristic algorithms, due to their inherent advantages in
handling large-scale problems, can provide good solutions
for parameter optimization in heliostat fields. In 2016, the
Particle Swarm Optimization (PSO) algorithm was intro-
duced to address the optimal layout problem in dual-tower
heliostat fields [31]. Its optimization results showed certain
advantages over other methods. In 2021, [40] proposed an
enhanced Grey Wolf Optimization (GWO) algorithm based
on the optical efficiency model for optimizing the parameters
of heliostat fields. They improved the convergence factor and

VOLUME 12, 2024 31591



Y. Zou et al.: Heliostat Field Layout via Niching and Elite Competition Swarm Optimization

weight updating formula, effectively avoiding local optimal
issues. Building upon existing biomimetic spiral and Campo
radial-staggered layouts, Belaid et al. [25] employed the
Grasshopper Optimization Algorithm (GOA) to evaluate the
efficiency of heliostat fields. Rizvi et al. [35] consolidated
various advanced heuristic algorithms, including Particle
Swarm Optimization, Genetic Algorithm, Whale Optimiza-
tion Algorithm, and Gravity Algorithm, to accomplish the
optimization process for biomimetic heliostat field design.
Meanwhile, Arrif et al. [36] conducted a comparative
analysis of eight metaheuristic algorithms approach to
optimize the radial-staggered heliostat field at the PS10
plant, and a hybrid GA-GOA algorithm was proposed. This
study presents the optimization process of a biomimetic
heliostat field design using different heuristic optimization
algorithms, namely advanced particle swarm optimization,
genetic algorithm, whale optimization algorithm, and grav-
itational search algorithm. Additionally, The development
of quantum computing has introduced new possibilities for
algorithmic efficiency. Pisani et al. [37] utilized a quantum
annealing algorithm in the Multi-tower model, revealing
significant advantages over traditional annealing algorithms.
Reference [38] combines engineering optimization and
heuristic algorithm optimization to propose a co-optimization
method based on coupling instantaneous optical, thermal and
mechanical models, and then uses the obtained system model
for design optimization based on genetic algorithm. A genetic
algorithm (GA) based on rejection sampling [39] to optimize
the field layout has also been applied to the heliostat field
in Quetta, Pakistan, and this method has been shown to be
effective in reducing the number of heliostats and improving
efficiency.

C. CONTRIBUTION OF THIS WORK
In this paper, we endeavor to address the challenges
associated with the large-scale optimization of heliostat
layout. Initially, for rapid evaluation of the heliostat field
layout, we constructed a model to assess the optical
efficiency of the heliostat field. The model can accurately
calculate the optical efficiency of the heliostat field in a
limited time. Secondly, to enable the application of the
heuristic algorithm in optimizing the heliostat field layout,
we formulate a coding scheme for the problem. Lastly, opti-
mizing the heliostat field layout presents a high-dimensional
challenge as it requires simultaneous consideration of all
heliostat positions. To mitigate the declining efficacy of
heuristic algorithms in large-scale problems, we introduce
the Niching and Elite Competition Swarm Optimization
(NECSO) algorithm. Consequently, it efficiently and accu-
rately addresses the large-scale optimization of heliostat field
layout. Specifically, the contributions of this paper are as
follows:

1) Optical efficiency modeling of heliostat field: The
model contains almost all the metrics that affect the
optical efficiency of the heliostat field. Addition-
ally, to enhance algorithmic efficiency, we simplify

metrics with minimal impact factors, such as spec-
ular reflectance and atmospheric transmittance. For
metrics with substantial influence factors, we adhere
rigorously to mathematical methods for derivation and
calculation. Consequently, these endeavors enable the
swift and accurate calculation of optical efficiency in
large-scale heliostat fields.

2) Niching and elite competition swarm optimization:
In our quest to enhance algorithmic performance in
addressing large-scale problems, we introduce the
Niching and Elite Competition Swarm Optimization
(NECSO). First, we employ a random grouping
strategy to partition the population into distinct sub-
swarms. Subsequently, we devised a niching and elite
competition mechanism to harmonize the exploratory
and convergent aspects of particles. Niching compe-
tition occurs within each sub-swarm, where particles
are randomly selected to compete, amplifying the
exploratory characteristics of the particles. Elite com-
petition transpires between sub-swarms, with each
sub-swarm selecting the best particle as the elite
participant for competition, thereby augmenting the
convergence of the particles. Through these endeavors,
the algorithm’s performance in optimizing heliostat
field layout is significantly enhanced.

We designed 15 cases to test the NECSO. At the same time,
we compare the results with some classical heuristics and
mathematical methods. The experimental results demonstrate
that NECSO is competitive in solving the optimization of
heliostat field layout, especially in the large-scale cases.

The remainder of the paper is organized as follows.
Section II introduces the problem and the model for
calculating optical efficiency. Section III delineates the
competitive mechanism of the NECSO. Section IV describes
the experimental cases, comparative algorithms, and exper-
imental results. Section V analyses a small-scale case and
convergence analysis. The final section summarizes the paper
and presents future work.

II. PROBLEM STATEMENTS AND MATHEMATICAL
MODELS
In this section, we first introduce the problem of heliostat field
layout, then introduce the symbols used in this paper, and
finally propose a mathematical model to solve the problem.

A. PROBLEM STATEMENTS
The area and geographical position of the heliostat field are
known. In addition, we also know the height of the absorber
and the height of the collector. Under the condition that the
output thermal power of heliostat field reaches the standard,
we need to design the number and position of heliostats
so that the average optical efficiency of the heliostats field
is maximum. Moreover, the problem to be solved has the
following assumptions:

1) The heliostat sites are located in areas with flat terrain.
2) All the heliostats are in working order.
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3) Each ray in the solar cone model carries the same
amount of solar energy.

B. NOTIONS
R : radius of the heliostat field.
Rb : radius of plant layout centred on the absorption tower.
H0 : height of absorption tower.
Hc : height of collector.
Dc : diameter of collector.
η : optical efficiency of the heliostat field.

ηsb : shadow occlusion efficiency.
ηcos : cosine efficiency.
ηat : atmospheric transmittance.

ηtrunc : truncation efficiency.
ηref : reflectivity of mirrors.
DNI : the solar energy received by the surface of the earth

per unit time when the sun’s rays are perpendicular to
a certain plane.

H : total number of heliostats.
LW : width of the heliostat.
LH : length of the heliostat.
h : mounting height of the heliostat.

hxi : horizontal coordinates of the i-th heliostat.
hyi : vertical coordinates of the i-th heliostat.
S : rated annual average output thermal power of

heliostat field.
lmax : maximum value of the length of the heliostat.
lmin : minimum value of the length of the heliostat.
wmax : maximum value of width of the heliostat.
wmin : minimum value of width of the heliostat.

C. MATHEMATICAL MODELS
The η represents the optical efficiency of the heliostat field.
In general, optical efficiency η is defined as follows [23],
[31]:

η = ηsbηcosηatηtruncηref (1)

Thermal output power of heliostat field Efield can be designed
as follows:

Efield = DNI ·
N∑
i

Aiηi (2)

Atmospheric transmittance [41] ηat can be designed as
follows:

ηat = 0.99321− 0.0001176dHR
+ 1.97× 10−8 × d2HR (dHR ≤ 1000) (3)

1) CALCULATION METHOD OF DNI
The solar altitude angle αs calculation:

sinαs = cos δ cosϕ cosω + sin δ sinϕ (4)

The solar azimuth γs calculation:

cos γs =
sin δ − sinαs sinϕ

cosαs cosϕ
(5)

FIGURE 1. The solar altitude angle αs and solar azimuth γs.

where, the north latitude of the circular heliostat field ϕ, the
definition of the solar altitude angle αs, and the definition of
the solar azimuth γs are shown in Fig. 1.

The solar hour angle ω is calculated as follows:

ω =
π

12
(ST − 12) (6)

where, ST is the local time.
The solar declination angle δ is calculated as follows:

sin δ = sin
2πD
365

sin
( 2π
360

23.45
)

(7)

DNI can be approximated by the following formula:

DNI = G0

[
a+ b exp

(
−

c
sinαs

)]
a = 0.4237− 0.00821(6− H )2

b = 0.5055+ 0.00595(6.5− H )2

c = 0.2711+ 0.01858(2.5− H )2 (8)

2) COSINE EFFICIENCY CALCULATION MODEL
In order to ensure that the light reflected from the center of
the heliostat points towards the center of the solar collector,
it is necessary to continuously adjust the orientation of
the heliostat in real-time, such that the incident sunlight
direction is not perpendicular to the heliostat mirror surface
but forms a certain angle with the incident light. This,
in turn, results in a reduction of the projected surface
area of the mirror in the direction of the vertical incident
light. As a result, the effective radiation received by the
heliostat is reduced, leading to cosine losses. Therefore,
the key to calculating cosine efficiency lies in determining
the angle of incidence based on the orientation of the
heliostat.

For a single heliostat Mi (i represents the i-th heliostat in
the heliostat field), without considering the thickness of the
heliostat, if the center coordinate of its mirror is (xi, yi, hi),
hi represents the installation height of the i-th heliostat,
the horizontal and vertical coordinates of the center of the
bottom surface of the absorption tower are (x0, y0), and H0 is
the height of the absorption tower. The height difference
between 1Hi = H0 − hi. The distance between the center
of the i-th heliostat and the center of the collector surface

is dHR,i =
√
(H0 − hi)2 + d2Hr,i and the projected distance
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FIGURE 2. Cosine efficiency calculation model.

between two central points in the XOY plane is dHr,i =√
(xi − x0)2 + (yi − y0)2 −

Dc
2
.

The i-th heliostat azimuth ψi which represents the angle
between the normal direction of the heliostat and the direction
due south (XOZ plane) is calcuated as follows:

ψi = arcsin(xi + dHR,i cosαs sin γs)/

(
√
(xi + dHR,i cosαs sin γs)2 + (yi + dHRi cosαs cos γs)2)

(9)

The i-th heliostat pitch angle µi which represents the
angle between the normal direction of the heliostat and the
horizontal plane (XOY plane). is calcuated as follows:

µi = arccos
dHR,i sinαs +1H1

2 · dHR,i cos θi
(10)

where, θi is the angle formed by the incident light of the sun
and the normal vector of the i-th heliostat.

The angle of i-th heliostat tilt ρi which rpresents the angle
between the normal direction of the heliostat and the YOZ
plane is calcuated as follows:

ρi = ψi +
π

2
(11)

Cosine efficiency refers to the ratio of the meridional cross
section area and total area of the heliostat in the direction of
the incident light due to the inclined incidence of sunlight,
which is equal to the cosine value of the angle θ formed by
the incident light and the normal vector of the heliostat. That
is the cosine efficiency ηcos:

ηcos = cosθ (12)

where, the incident angle θ calculation diagram is shown in
Figure 2. The formula is as follows:

θ =
1
2
arccos

−→
SM ·
−→
TM∣∣∣−→SM ∣∣∣ · ∣∣∣−→TM ∣∣∣ (13)

FIGURE 3. The shadow occlusion efficiency calculation model.

3) SHADOW OCCLUSION EFFICIENCY CALCULATION MODEL
In the construction of large-scale solar fields, shadowing
efficiency is a critical parameter that influences the layout
density of heliostats and the overall design of the solar
field. Due to the possibility of both incident and reflected
sunlight being obstructed by neighboring heliostats and the
potential interception of sunlight by receiver towers during
the incident process, this paper divides the shadow points
during the incident process and the obstruction points during
the reflection process to calculate the ineffective collection
area on individual heliostat surfaces where sunlight cannot
reach the collector.

A rectangular coordinate system was established with
the center of the circular mirror field as the origin. The
X -axis forward direction was due east, the Y -axis forward
direction was due north, and the Z -axis forward direction was
perpendicular to the ground. The calculation diagram of the
area of shadow points and occluded points caused by shadow
occlusion is shown in Fig. 3.

By solving the attitude parameters, solar azimuth angle
γs and solar altitude angle αs of the heliostat obtained,
the coordinates of the intersection point between the solar
incident light and the plane where the cross-section of the
absorption tower is located are as follows:

xt = x − y · tan γs
yt = 0

zt = z+ y ·
tanαs
cos γs

For a point (x, y, z) on a heliostat mirror, if its inverse
projection corresponding to (xt , yt , zt ) ∈ TOWER, where
TOWER represents the point set formed by all points on the
cross-section of the absorption tower, then the incident light
at (x, y, z) is blocked by the absorption tower.
In the same way, the intersection of the sun incident light

and its surface of the heliostat is:
x ′ = x + λ · sin γs
y′ = y+ λ · cos γs
z′ = z+ λ · tan γs
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where, λ is defined as follows:

λ =
z+ (yj − y) sin ρj tanµj − (xj − x) cos ρj tanµj
tanαs + cos γs sin ρj tanµj − sin γs cos ρj tanµj

If (x ′, y′, z′) ∈ {Mj|j ̸= i}, then the incident light at (x, y, z) is
blocked by other heliostats. In total, the area of shadow points
in the incident process of the i-th heliostat is

∑
dSshad,i.

The light reflected by the mirror to the heat absorbing
surface of the collector may be blocked by the heliostat near
the tower on its inner side, so the solution method in the
incident process is used to calculate any point (x, y, z) on the i
th heliostat. The center coordinate of the rectangular mirror is
(xi, y− i, zi), and the center of the other mirror is (xj, y− j, zj).
The intersection point of the reflected light of a single mirror
on the plane where the mirror of any other mirror is located
can also be obtained:

x ′′ = x + λ · xi
y′′ = y+ λ · yi
z′′ = z+ λ ·1Hi

If (x ′′, y′′, z′′) ∈ {Mj|j ̸= i}, then the reflected light at
(x, y, z)is blocked by other heliostat. Thus, the sum of the area
occupied by the occlusion point of the i − th heliostat in the
reflection process is obtained:

∑
dSblock,i.

Take
∑

dSshad,i and
∑

dSblock,i two point set and set
invalid lighting area of point set

∑
dSi. Set the angle between

the diagonal of the helioscope and its width to be β, and
the rectangular area to be 2RM2

i sin 2βi, thus the calculation
formula of shadow occlusion efficiency ηsb is as follows:

ηsb =

∑
dSi

2RM2
i sin 2βi

(14)

4) COLLECTOR TRUNCATION EFFICIENCY MODEL
The sunlight reflected by the heliostat is not completely
concentrated to the collector, because in fact the sunlight itself
is a beam of conical light with a certain angle, and any point
of the reflected light on the heliostat is also a beam of conical
light, which leads to a part of the sunlight scattered into the
atmosphere, this scattering is called the truncation of the loss
or overflow loss.

The solar cone is a figurative description of the process
of concentrating light to a certain point with the sun’s cross-
section as the bottom disc of the cone, taking a light-gathering
point on the mirror surface of the sun-setting mirror as the
apex of the cone, and presenting two different cones to the
direction of incidence and reflection. This paper does not
separately discuss the truncation efficiency formula in the
‘‘shadow blocking loss of energy’’, but only to be able to
reflect light from the mirror to judge the effectiveness of the
collector heat absorption one by one. Collector truncation
efficiency calculation schematic diagram in Fig. 4.
The equation of the collector in the ground level coordinate

system is:  x2 + y2 = R2

z ∈ [H0 −
h
2
,H0 +

h
2
]

(15)

FIGURE 4. The collector truncation efficiency model.

For the solar incident light cone in the light that can be
reflected from the mirror, solve the equation of the straight
line where the reflected light is located, and the cylinder
equation,. If the equation system has a solution, the energy of
the light is absorbed by the collector, the collector produces an
effective reception of energy Eval . Otherwise, it is an invalid
light, and the ineffective energy dissipated is Einv. In order to
further observe the distribution of the energy flow density on
the collector, the heat absorption area Sr on the columnar side
of the collector is divided into a rectangular grid of m × n,
and the number of effective energy-absorbing intersections
in each grid is counted, which is equivalent to the energy
received by the collector in this grid.

For the grid matrix Fm×n in the i-th row and j-th column,
if there are a total of K valid intersections in the grid, then the
energy flow density Fi,j is:

Fi,j = mn ·

∑K
k=1 dEk
Sr

(16)

The collector receives energy Eval as:

Eval =
∑

Fi,j ·
Sr
mn

(17)

The collector truncation efficiency ηtrunc is calculated as:

ηtrunc =
Eval

Eval + Einv
(18)

D. OBJECTIVES AND CONSTRAINTS
The objective function F is to maximize the optical efficiency
of the heliostat field.

F = max η (19)

The constraint function C includes:

• Constraints on rated annual average output thermal
power of heliostat field,

Efield ≥ S (20)

• Constraints on values for height and width of heliostats,

LH ∈ [lmin, lmax] ,LW ∈ [wmin,wmax] (21)
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• Constraints on values for the mounting height of
heliostats,

h ≥
LW
2

(22)

• Constraints on the distance between heliostats,

sqrt((hxi − hxj)2 + (hyi − hyj)2) ≥ min(wi,wj),

∀i, j ∈ H , i ̸= j (23)

III. PROPOSED ALGORITHM
In recent research, certain scholars have addressed heliostat
field layout optimization through linear programming or
geometric approaches. Their objective is to develop easily
computable methods applicable to multiple heliostat fields.
However, this approach often results in decreased optical
efficiency for certain heliostat fields, leading to resource
wastage. This issue is particularly pronounced in large-scale
heliostat fields. Therefore, in this paper, we propose nich-
ing and elite competition swarm optimization (NECSO).
It utilizes the optical efficiency of a heliostat field as the
optimization objective to maximize resource utilization.

In the subsequent subsections, we initially present a
comprehensive overview of the overall framework, followed
by an exposition on the competitive mechanisms involving
niches and elites.

A. OVERALL PROBLEM-SOLVING FRAMEWORK
Algorithm 1 shows the overview framework of NECSO,
and combining a niching and elite competition mecha-
nism proposed in this paper based on competitive swarm
optimization [42]. Before presenting the details of the
framework process, the coding scheme of the algorithm is
first introduced.

The coding scheme is a representation of the solution to
the problem, and it is also critical to the efficiency of the
algorithm. The coding scheme of the NECSO consists of two
parts. The first part represents the attribute of the heliostat,
which is common to all heliostats. The second part is the
coordinates of each heliostat. All the parts have a total of
2n + 4 elements. In the first part, LH represents the length
of the heliostat, LW represents the width of the heliostat,
h represents the mounting height of the heliostat, and n
represents the number of heliostats. In the first part, all the
basic parameters of the heliostat are included. The second part
represents the coordinates of the heliostats, which is the key
part to be optimized, this part is extremely important for the
optical efficiency of the heliostat field. In general, this coding
scheme makes the problem solving well carried out.

The details of NECSO are as follows. First, we initialize
the population to obtain a set of candidate solutions (line 1).
References [43] and [44] indicates that the quality of
the initial population can improve the performance of
population-based stochastic search algorithms. Therefore,
we use layout based on Campo [23] to initialize the layout
of the heliostat field to make the initialised population closer

to the optimal solution. Then, we evaluate the fitness of each
particle (line 2) and finally optimize the layout of the heliostat
field by the NECSO (line 3 - line 9). At each iteration,
we randomly divide the particles into k sub-swarm (line 4).
Subsequently particles update velocity and position with
niching competition (line 5) and elite competition (line 6).
Finally, we limit the position and velocity of each particle
(line 7) and evaluate each particle (line 8). The flowchart
illustrating the solution to the optimization of the heliostat
field layout is depicted in Fig.5.

Algorithm 1 The Niching and Elite Competition
1: Initialize the population P.
2: Evaluate each particle in population P.
3: while Termination conditions not met do
4: Randomly divide the population P into k niches.
5: The niching competition (Algorithm 2).
6: The elite competition in (Algorithm 3).
7: Limit the velocity and position of each particle.
8: Evaluate each particle in population P.
9: end while

FIGURE 5. The flowchart for the heliostat field layout optimization.

B. THE NICHING AND ELITE COMPETITION MECHANISM
To balance the population diversity and convergence, we pro-
pose a niching and elite competition combined with CSO
to solve the heliostat field layout. NECSO is divided into
niching competition and elite competition. As shown in
Fig. 6, first, we use a random grouping strategy [45] to divide
the population into sub-swarm. Then, the competition within
the niching enhances the exploration ability of particles, and
elite competition makes the population convergence speed
increase. The specific niching competition mechanism and
elite competition mechanism are described below.

1) THE NICHING COMPETITION
Each particle engages in competition with others within the
niching. Initially, each particle is sequentially chosen within
the niching. Subsequently, a particle is randomly selected
in the niching for the competition. Particle positions and
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FIGURE 6. The niching and elite competition mechanism. (a) Indicates
competition within the niching. (b) Indicates elite competition. The losers
learn from the winners.

velocities are updated according to equations (24) and (25).
The purpose of the random grouping is to increase the
diversity of the population, and the competition within
the niching makes the exploration space of the particles
expand further. The specific implementation of the niching
competition is detailed in Algorithm 2.

vnl,t+1 = r1vnl,t + r2(xnw,t − xnl,t )+ ϕr3(x1 − xnl,t ), (24)

xnl,t+1 = xnl,t + vnl,t+1, (25)

where r1, r2, r3 ∈ [0, 1]D are three random vectors following
a uniform distribution, x1 is the average position of all
particles in the sub-swarm, ϕ is a parameter used to control
the effect of x, xnw and vnw denote the position and velocity
of the winning particle in the sub-swarm, and xnl and vnl
denote the position and velocity of the losing particle in the
sub-swarm.

Algorithm 2 The Niching Competition
1: for each niching m in total nichings do
2: for each particle i in the niching m do
3: Randomly select particle j in the niching
4: if fitnessi ≥ fitnessj then
5: Update the velocity and position of i and j.
6: Winner’s collection P1← i.
7: Loser’s collection P2← j.
8: else
9: Update the velocity and position of i and j.
10: Winner’s collection P1← j.
11: Loser’s collection P2← i.
12: end if
13: end for
14: end for

2) THE ELITE COMPETITION
For each niching, we choose the elites in each niching to
compete. First, we choose the best fitness particle in each
sub-swarm to be the elite. Subsequently for each elite, one
from the set of elites is randomly selected for competition.
Finally, the particles update the velocity and position by Eqs.
(26)(27). The elite competition allows the better particles to
learn from each other, which leads to faster convergence of

the population. The detail of elite competition is illustrated in
Algorithm 3.

vel,t+1 = r1vel,t + r2(xew,t − xel,t )+ ϕr3(x2 − xel,t ), (26)

xel,t+1 = xel,t + vel,t+1, (27)

where x2 is the average position of all particles in the elite,
xew and vew denote the position and velocity of the winning
particle in the elite, and xel and vel denote the position and
velocity of the losing particle in the elite.

Algorithm 3 The Elite Competition
1: for each niching i in total nichings do
2: Finding the best particle in niching i.
3: The elite’s collection L ← i.
4: end for
5: for each particle i in the elite’s collection L do
6: Randomly select particle j in the niching
7: if fitnessi ≥ fitnessj then
8: Update the velocity and position of i and j.
9: Winner’s collection P1← i.
10: Loser’s collection P2← j.
11: else
12: Update the velocity and position of i and j.
13: Winner’s collection P1← j.
14: Loser’s collection P2← i.
15: end if
16: end for

IV. NUMERICAL EXPERIMENTS
This section conducts testing of the NECSO across 15 distinct
heliostat field sizes. Initially, detailed data for the test cases
is presented. Subsequently, we describe the comparison
algorithms, concluding with the presentation of experimental
results. The algorithms are implemented and executed using
MATLAB 2023a. Execution of the algorithms takes place
on a Mac computer featuring a 2.3GHz Core i7 processor
and 16GB RAM. The code for NECSO can be found at
https://github.com/EvoNexusX/2024ZouNECSO.

A. CASE GENERATION
To validate the validity and accuracy of our proposed
model and algorithm, we generated 15 different cases.
The parameters for these cases are presented in Table 2,
where C1-C5 represent small-scale cases, C6-C10 represent
medium-scale cases, andC11-C15 represent large-scale cases.
Additionally, the heliostat’s length, LH , varies within the

range of [2, 6], while the width, LW , is constrained to [2, 4].
The height of the tower, H0, is fixed at 80m. The collector
is characterized by an external cylindrical light-receiving
structure with a height, Hc, of 8m and a diameter, Dc, of 7m.
The heliostat field is positioned at 40 degrees north latitude
and 100 degrees east longitude.

To enhance the accuracy of optical efficiency calculations,
we select five specific time points each day: 8:00, 10:00,
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TABLE 2. Parameters for the 15 cases used to test the algorithm.

12:00, 14:00, and 18:00. We then compute the average
optical efficiency across these moments to determine the
daily optical efficiency of the heliostat field. On a monthly
basis, we choose the 1st, 10th, 20th, and 30th days to calculate
a four-day average, representing the optical efficiency for
that month. Subsequently, we calculate the yearly average
optical efficiency and utilize it as the optical efficiency for
the heliostat field.

B. COMPARISON ALGORITHMS
To showcase the advantages of NECSO in addressing
the optimization of a heliostat field layout, we devised
a comparative experiment. The algorithms for comparison
encompass six heuristic algorithms and a mathematical
planning algorithm, each described as follows.

1) CSO [42]: CSO is particularly well-suited for handling
large-scale problems owing to the competitive nature
of its particles, which exhibit high exploratory capa-
bilities. In this study, CSO serves as a comparison
algorithm, specifically utilized to assess and contrast
the large-scale performance of NECSO.

2) PSO [46]: PSO demonstrates rapid convergence.
In low-dimensional problems, PSO is known for its
swift convergence and ability to easily identify the
global optimal solution. In this research, the algorithm
serves as a comparative benchmark, employed to
illustrate and evaluate the convergence performance of
NECSO.

3) GA [47]: GA is a classical heuristic algorithm known
for its robust global search capabilities. GA, by retain-
ing multiple solutions and iteratively enhancing them
through genetic operations, typically exhibits a strong
ability to explore the global solution space. In this
study, GA is employed as a comparative algorithm
to illustrate and assess the global search capability of
NECSO.

4) CAMPO [23]: CAMPO employs a mathematical
programming model to optimize the layout of the

heliostat field. In this research, CAMPO serves as
a comparative algorithm to highlight the advantages
of the heuristic algorithm NECSO in addressing the
optimization challenge associated with the heliostat
field layout.

5) HSJOA [48]: HSJOA is a variant of Joint operations
algorithm (JOA) based on hierarchical structure with
excellent performance in global optimization prob-
lems. This paper employs it as a benchmark algorithm
for comparative analysis.

6) PSE-DE [49]: PSE is an enhanced framework based
on population state evaluation. This paper incorporates
PSE into differential evolution(DE) [50] as a compara-
tive algorithm.

7) DCDE [51]: DCDE is a novel variant of DE, based on
dynamic composite mutation operators and a two-level
parameter adjustment strategy. DCDE demonstrates
strong performance in optimizing global problems, and
this paper utilizes it as a benchmark algorithm for
comparative analysis.

The running parameters of all the algorithms are shown in
Table 3. In addition, each algorithm has the same number of
evaluations, 200∗n, in each testing round. Each test case runs
with different random numbers ten times.

TABLE 3. Parameters of the algorithms.

C. RESULTS DISPLAY
We conduct experimental tests based on the aforementioned
cases, and the specific results are presented in Table 4.
The values bolded in the table indicate that the algorithm
is the optimal choice under these specific circumstances.
The penultimate line, denoted as (+/=/−) represents the
comparative results between seven algorithms and NECSO.
‘‘+’’ denotes that NECSO outperforms the algorithm, ‘‘=’’
indicates that NECSO performs equally to the algorithm,
and ‘‘−’’ signifies that NECSO is inferior to the algorithm.
The final line provides the ranking of all algorithms in this
experiment through the Friedman test [52]. For clarity in
presenting the results, Figure 7 illustrates the best-fit values
of the eight algorithms and the standard deviation of the seven
heuristic algorithms.

Upon analyzing Table 4, it is evident that NECSO
outperforms the other seven algorithms, trailing behind
only in cases C2, C3, C6, C9, C10 and C14. In the small-
scale cases (C1-C5), the slower convergence of particles in
NECSO is attributed to the competition within the niching,
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TABLE 4. Best fitness obtained by the eight algorithms under the same evaluation model and compared with NECSO.

FIGURE 7. Best fitness for eight algorithms and standard deviation of the seven heuristic algorithms.

which enlarges the search space. This phenomenon results
in slightly lower performance in cases C2 and C3. In the
case of middle-scale cases (C6-C10), In cases C6 and C10,
NECSO falls behind HSJOA, while in case C9, it lags
behind PSE-DE. Additionally, in case C10, NECSO trails
behind DCDE. In the case of large-scale cases (C11-C15),
competition among elites enables NECSO to converge faster
than CSO. Consequently, NECSO outperforms CSO in the
majority of cases, with only a slight lag observed in C14.
Overall, NECSO demonstrates superior performance across
all cases, with a minimal performance gap even in cases
where it lags behind.

Comparing NECSO with the other seven algorithms, espe-
cially with the mathematical planning algorithm CAMPO,
reveals NECSO’s superior performance, particularly in
larger-scale cases. This can be attributed to the strong

environmental adaptability of the heuristic algorithm. In com-
parison with CAMPO, it exhibits robust performance,
particularly in larger-scale heliostat fields. CSO is designed
to address large-scale problems, but due to the competition
among elites in NECSO, leading to faster convergence,
NECSO outperforms CSO in small to medium-scale cases.
PSO, a classical particle swarm algorithm, tends to fall
into local optima. As the problem size increases, PSO’s
performance rapidly declines. NECSO’s niching competition
mechanism expands particle search space, reducing the likeli-
hood of falling into local optima, significantly outperforming
PSO in medium and large-scale problems. GA, a classical
heuristic algorithm, performs poorly for high-dimensional
problems like optimizing the heliostat field layout, lagging
far behind NECSO. Despite HSJOA, PSE-DE, and DCDE
being currently high-performing heuristic algorithms, their
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FIGURE 8. Shading Efficiency in heliostat fields at 2:00 PM Beijing time.

performance tends to decline when confronted with problems
of dimensions in the order of thousands.

In the Friedman test, NECSO achieved a ranking of
1.73, surpassing the other algorithms. The algorithm that
follows NECSO closely is HSJOA, with a ranking of 2.93.
CAMPO had the lowest ranking at 7.30. This demonstrates
the superiority of NECSO in addressing large-scale heliostat
fields.

Additionally, some noteworthy conclusions emerge.
Heuristic algorithms consistently outperform the mathe-
matical planning algorithm CAMPO, with GA being the
only exception, lagging behind CAMPO in some small and
medium-scale cases. HSJOA, PSE-DE, and DCDE, as the
currently high-performing algorithms, outperform CSO,
PSO, and GA in terms of their performance. Furthermore,
NECSO and CSO maintain their superior performance over
other algorithms when addressing ultra-large-scale problems.

In summary, NECSO exhibits significantly higher overall
performance and stability than the other seven algorithms
across various cases.

V. DISCUSSION
In this section, we first analyse the correctness of the
NECSO in solving the problem. Then we discuss the NECSO
convergence speed. Finally, we analyze the experimental
parameters and results.

A. A CASE STUDY
In this section, we select case C1 for validation to ensure
the accuracy of our proposed model. The shading efficiency
is a crucial component of the optical efficiency calculation.
We specifically computed the shading efficiency at 2:00 PM
Beijing time in the local afternoon, as illustrated in Fig. 8.

In Fig. 8, the visual representation indicates a clear shadow
cast by the tower, and the shading efficiency of the heliostat
field exhibits symmetry about the absorption tower. This

FIGURE 9. Initial layout of the heliostat field.

FIGURE 10. The convergence curve for this case.

observation closely aligns with the outcomes of light-cone
modeling. Consequently, the model demonstrates a high level
of accuracy in calculating the shading efficiency.

The initial layout of the NECSO is depicted in Fig. 9,
representing a standard interphase layout model. Notably,
a strategic design choice involves reducing the number of
heliostats in the shadow of the tower, aiming to enhance the
overall optical efficiency of the heliostat field. The calculated
optical efficiency for this initial layout is 0.678.

Fig. 10 illustrates the optimization curve for NECSO.
As the iterations progress, the optimal adaptation value
steadily increases until convergence. The solution for this
case is determined by selecting the best particle from the last
generation.

Our analysis of case C1 demonstrates that NECSO con-
sistently moves toward the anticipated objective at each step
in problem-solving. In summary, the reliability of NECSO in
addressing this problem can be confidently affirmed.

B. CONVERGENCE ANALYSIS
In this section, we analyze the convergence of NECSO
using a comparison shown in Fig. 11. We select two cases
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FIGURE 11. Convergence curves for three algorithms.

in each scale, totaling six cases. The horizontal axis of
each graph indicates the progression of algorithmic runtime,
while the vertical axis represents the best adaptation value
corresponding to each generation.

As depicted in Fig. 11, NECSO, CSO, and PSO
all begin with the same initial value to ensure a fair
comparison. In small-scale cases (C1 and C5), NECSO
converges much faster than CSO, attributed to the com-
petition between elites that enables a quick population
convergence, making NECSO superior to CSO. Although
the convergence speed of NECSO is slower than PSO, the
particles in NECSO exhibit greater exploratory behavior,
resulting in an overall superior performance compared to
PSO.

In medium and large scales, the strong exploratory
nature of particles in NECSO and CSO becomes evident.
PSO, on the other hand, converges prematurely in medium
and large-scale problems, leading to suboptimal solutions.
In contrast to CSO, NECSO demonstrates accelerated
convergence, markedly enhancing the quality of the opti-
mal solution achieved within a constrained number of
iterations.

In general, the convergence speed of NECSO lies between
that of CSO and PSO. The niching and elite compe-
tition mechanisms in NECSO strike a balance between
exploratory and convergent properties of particles, result-
ing in better overall performance compared to CSO and
PSO.

FIGURE 12. For a given value of ϕ equal to 0.1, the best fitness of each
cases under different values of k .

C. PARAMETER ANALYSIS
In the NECSO, there are two crucial parameters, i.e, ϕ and k .
Extensive experiments in [42] demonstrate that the optimal
empirical value for ϕ is 0.1. In this section, we analyze the
impact of different values of k on the optimal fitness of cases
through experiments. We selected representative cases C1,
C6, and C11 from various scales, with k values set to 5, 10,
20, 30, and 50.

Fig. 12 represents the impact of different k values on
the optimal fitness of cases. The values of k have a certain
impact on cases of different scales, but the influence is not
significant, with only a small difference observed. In the
small-scale case C1, the best solution is obtained when k is
set to 10. However, in the large-scale case C11, the optimal
solution is achieved with k set to 50. As the problem scale
increases, the range of solution distribution becomes broader.
With more particles in the groups, NECSO’s search space
expands. Therefore, larger values of k lead to higher-quality
solutions.
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TABLE 5. Results obtained by the Wilcoxon test for algorithm NECSO.

D. STATISTICAL ANALYSIS
In this section, we employed the Wilcoxon test [53] for
non-parametric statistical analysis, and the analysis results
are presented in the table as shown in Table 5. VS represents
the comparison between NECSO and the algorithms in the
table. R+ represents the extent to which NECSO outperforms
the respective algorithm. A higher R+ value implies superior
performance on certain problems. R− represents the extent
to which an algorithm performs less favorably than NECSO.
A higherR− valuemay suggest relatively poorer performance
on other problems.

The Table 5 indicates that NECSO demonstrates statisti-
cally significant superiority over the compared algorithms.
For instance, when compared to CSO, NECSO exhibits
a substantial R+ value of 117.0, implying a significant
outperformance. Similar patterns are observed with PSO,
GA, HSJOA, PSE-DE, DCDE, and CAMPO, where NECSO
consistently achieves higher R+ values, indicating superior
performance across a range of problems. The P-values further
validate the statistical significance of these findings, with
most Exact and Asymptotic P-values being less than 0.05.

In summary, the results of the Wilcoxon test demonstrate
the outstanding performance of NECSO in addressing the
optimization of heliostat field layout.

Based on the experimental results and analysis, NECSO
shows excellent performance in optimizing large-scale
heliostat field layout. The experimental numerical analysis
further proves the superiority of NECSO. Compared to
the other seven algorithms, especially in large-scale cases,
NECSO shows higher convergence speed and superior
solution quality. Firstly, the niching competition mechanism
ensures diversity within different types of particles in
the niches, expanding the search space of particles and
preventing premature convergence to local optima in large-
scale cases. Secondly, the leader competition mechanism
accelerates the convergence of the population by fostering
competition among elite individuals, ensuring the entire
population converges more rapidly to superior solutions.
This guarantees effective performance not only in large-scale
scenarios but also in medium and small-scale problems.
Through these competitive mechanisms, NECSO achieves
a balanced performance across various problem scales,
excelling not only in large-scale cases but also demonstrat-
ing commendable capabilities in medium and small-scale
scenarios.

Despite the advantages of NECSO in optimizing the layout
of heliostat fields, the model and algorithm still have certain
limitations, as follows:

1) In the model section, we assumed that all components
in the heliostat field would operate normally, without
considering the impact of uncertainties in the environ-
ment. For instance, we did not consider scenarios where
some heliostats are damaged or where geographical
factors may result in the malfunctioning of certain
heliostats.

2) In the algorithmic section, firstly, NECSO demon-
strates suboptimal performance in certain problem
instances, potentially influenced by the initial param-
eter settings and characteristics of the problems, result-
ing in considerable performance fluctuations. This is
attributed to the varied optimal values of parameters
such as ϕ and k arising from diverse problem char-
acteristics, impacting the algorithm’s overall efficacy.
Secondly, under specific circumstances, NECSO may
exhibit slower convergence rates compared to other
algorithms, particularly evident in small-scale prob-
lems. This phenomenon stems from the limited number
of evaluations in small-scale problems, where internal
competition within niches impedes the population from
converging effectively. These limitations underscore
the necessity for more refined tuning or enhancements
in NECSO, particularly in varying problem scales,
to bolster its robustness and performance.

VI. CONCLUSION
This paper has introduced the niching and elite competi-
tion swarm optimization (NECSO) algorithm as a novel
approach to tackle the optimization challenges associated
with large-scale heliostat field layout. Our methodology
encompasses several key steps. Firstly, we have estab-
lished a comprehensive model for evaluating the optical
efficiency of the heliostat field, providing a foundation
for quick and accurate calculations. Subsequently, designed
to harmonize the explorability and convergence of parti-
cles is a mechanism incorporating both niching and elite
competition. The core of our contribution lies in the
NECSO mechanism. This algorithm incorporates a new
strategy, utilizing niching competition to enhance particle
explorability and elite competition to expedite particle
convergence. The niching competition operates within sub-
swarms, fostering diversity and exploration, while elite
competition occurs between different sub-swarms, promoting
convergence towards optimal solutions. Finally, in our exper-
imental evaluation, we have compared the performance of
NECSO against several mainstream heuristic algorithms. The
results demonstrate the superior efficacy of NECSO across
various cases,especially in large-scale, showcasing its ability
to outperform these established algorithms. Importantly,
NECSO exhibits stability and correctness even in small-scale
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cases, further establishing its versatility and reliability in
addressing heliostat field layout optimization challenges.

In the future, our research will explore large-scale heliostat
field optimization in uncertain environments. Additionally,
we aim to extend the application of NECSO to other domains
such as blockchain problems [54], global optimization
problems [55], and distributed computing problems [56].
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