
Received 9 January 2024, accepted 5 February 2024, date of publication 22 February 2024, date of current version 8 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3368868

A Novel Voting Model Based on Parity
Check Equations for Blind Detection
of M-Sequences
PING WANG1, QIANG YANG 2,3, YANGHENG HU 2, JIAN XIONG1,
YONG JIA 4, (Member, IEEE), AND DEQUAN GUO2
1School of Network and Communication Engineering, Chengdu Technological University, Chengdu, Sichuan 610731, China
2School of Automation, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
3Key Laboratory of Natural Disaster Monitoring and Early Warning and Assessment of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
4School of Mechanical and Electrical Engineering, Chengdu University of Technology, Sichuan 610225, China

Corresponding author: Jian Xiong (jianxio1@sina.com)

This work was supported in part by the International Joint Research Center of Robots and Intelligence Program under Grant
JQZN2022-001; in part by the School Project of Chengdu Technological University under Grant 2023ZR007, Grant 2023ZR006,
and Grant 2023ZR008; in part by the Sichuan Science and Technology Program under Grant 2023YFN0009, Grant 2022YFN0020,
Grant 2020YFG0177, Grant 2022YFG0360, and Grant 2021YFS0313; in part by the School Project of Chengdu University of
Information Technology under Grant KYTZ202148; in part by the Chengdu Technical Innovation Research Program under Grant
2022-YF05-01134-SN; in part by Science and Technology of Xizang Autonomous Region under Grant CGZH2024000151; and
in part by Opening Fund of Key Laboratory of Natural Disaster Monitoring, Early Warning and Assessment of Jiangxi Province
(Jiangxi Normal University) under Grant JXZRZH202304.

ABSTRACT Anovel acquisition scheme of pseudo-noise (PN) codes is proposed for spreading satellite com-
munication systems relying on the proposed multi-voter model of this paper. Based on the proposed model,
the acquisition of PN codes can be attributed to a voting and selecting mechanism to pick out the erroneous
chips. Although message passing algorithm (MPA) is a feasible algorithm for decoding PN codes, MPA does
not get good detection performance due to the limited number of parity check equations in the acquisition
scheme. To overcome the negative impact of the limited number of parity check equations, this paper pro-
poses single-voter and multi-voter models, which combine chip and sequence estimation on the basis of the
chip-flipping (CF). It is known that the bit-flipping (BF), weighted-bit-flipping (WBF) and other algorithms
based on BF are credible for low density parity check (LDPC) codes. Because of the lack of research, these
algorithms have not been extended to the detection of PN codes. As the same as BF, the inputs of the proposed
CF algorithm are the hard-decision samples. For the proposed CF, there exists an optimal flipping-threshold
which is similar to the random weight of the WBF. Owing to the low computation complexity of CF, the
unlimited number of parity check equations can be enabled in the voting model. The experimental results
show that the detection performance of the proposed method of N > 15 is improved by 2 dB compared with
MAP-based method and 4 dB compared with LEAP-based method at the detection probability 99%.

INDEX TERMS PN codes, voting model, detection algorithm, MPA.

I. INTRODUCTION
PN codes have been widely applied in the spreading satel-
lite communications for unmanned aerial vehicles (UAVs),
radar, vehicles and Internet-of-Things (IoT) [1], [2], [3], [4],
[5]. The acquisition of PN codes is important for spreading
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communications because it is necessary for the receivers to
accurately capture the PN codes [6]. Due to the good pseudo-
random properties, m-sequences are considered as the basic
PN codes [7].

Recently, some methods have been proposed for the blind
detection of PN codes. Reference [27] blindly estimated
the PN codes parameter and the characteristic polynomial
with the repeated patterns, the linearity and the coidentity
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of PN codes and the linear feedback shift register states.
Reference [1] introduced a two-step PN codes estimation
method based on sparse recovery. The proposed method is
able to estimate PN codes from the BPSK signal in serious
electromagnetic environments. Reference [28] proposed to
exploit the finite symbol characteristics of information and
spreading sequences. And then the iterative least square with
projection method was adopted. Reference [29] proposed an
improved estimation algorithm for the feedback polynomial
of the linear PN codes constituting a search process and a
verification process of feedback polynomial candidates to
determine the correct feedback polynomial of the scrambler.
However, these methods are designed for universal PN codes
and the specific characteristics of m-sequences are not tech-
nically analyzed for the improvement.

The conventional method to detect m-sequences is that the
receiver performs a sliding correlation between the received
sequence and the local replica. The receiver synchronizes
with the transmitter when the correlation value is greater than
a given threshold [8], [9]. If the receiver does not save the
local replica, the blind detection process is necessary. In fact,
an m-sequence is a cyclic and linear code which is defined
by a characteristic polynomial [10]. Suitable algorithms were
designed to decode m-sequences blindly in [11], [12], and
[13]. Some good algorithms were initially proposed in the
cryptography [8], [14]. Then some improved algorithms
were extended in wireless communications and navigation
domains [13], [15], [16], [17], [18]. It is a necessary task
for the receiver to decide whether an m-sequence is received,
and if so, restore it [19]. Therefore, this is a joint problem of
capturing and decoding the m-sequence [20]. By applying the
parity check equations for iterations, the MPA-based method
could achieve detecting m-sequence successfully [19], [20].
More specifically, [21] proposed an iterative MPA based on a
redundant graphical model (RGM). In the algorithm, the par-
ity check matrix E concatenates K elementary parity check
matrices. Each elementary matrix is generated by consecutive
cyclic shifts of one parity check equation [21]. With consid-
eration of the computation complexity, the Hamming weight
(number of non-zero coefficients), denoted by t , must be
low. Actually, the detection performance deteriorates with the
growing of t [8], [9], [24], which means that t = 3 is the best
choice to decode m-sequences. In [22], a selection method of
parity check equations of weight t = 3 was proposed. Several
parity check equations are worked out and then applied to
decode m-sequences based on MPA. M-sequences are Ham-
ming codes represented by the characteristic polynomial p(x),
and contain many code words of weight t= 3. Reference [23]
proposed a rapid code acquisition scheme based on MPA.
This scheme is effective in low spreading factor satellite
communication system.

However, the above MPA-based methods are mainly suit-
able for the limited decoding condition, in which only
K elementary parity check matrix of m-sequences are
enabled [22]. In fact, L-1 (L ≫ K ) elementary parity check
matrix can be obtained [9], [26], which means that the above

methods do not make full use of the correlation character-
istic of m-sequences. In [24] and [25], an online supervised
learning machine (LEAP) which aimed to make full use
of the correlation characteristics of the PN sequence was
proposed. However, the LEAP often fails to converge to the
optimum performance and the large learning step may trigger
the instability.

Inspired by the previous works, a novel estimation method
based on CF is introduced for m-sequences. In summary, our
main contribution are listed lie in the following folds:

(1) Based on the above methods, in this paper, we propose
a voting model based on CF and apply it into the field of
m-sequences estimation of spreading signals. Compared to
theMPA, the voting model uses L-1 (L ≫K ) elementary par-
ity checkmatrix instead ofK ones, which can greatly improve
the detection performance of the network. Namely, the voting
model make full use of the correlation characteristic with
L-1 (L ≫ K ) elementary parity check matrix. In the model,
the decoder generates 3(L-1)/2 voters, who votes for the
received chips. When one chip gets more than T votes, the
chip will be flipped by the decoder.

(2) The optimum flipping threshold T determines the
detection performance of the voting model, which is an
important issue in this paper. Based on minimizing out-
putting error chip rate, the optimum flipping thresholds can
be worked out.

(3) The proposed method is verified by Monte-Carlo
simulations. Compared to the MPA and LEAP, the voting-
model-based method has a better detection performance.

To make the novelty of the proposed method more clearly,
the difference among our method and the majority works are
given as follows:

(1) We believe that the abandoned check equations in the
MPA-method be enable for the decoding, hence more priori
information shall help the detection of m-sequences. In this
paper, due the low computation complexity, the hard-decision
chips are considered as the input of our method. Therefore,
the abandoned check equations can be permitted to gener-
ate the parity check matrix in the iterative decoding work.
We establish a single-voter model and a multi-voter model
for enabling more priori information and the performance
benefits are gained from the proposed model.

(2) The MPA-based method is an effective method for
the detection of m-sequences. While applying such method,
a large mount of soft information are necessary to be circu-
larly renewed in the iterative decoding work, therefore the
computation complexity is relatively high. Due to the compu-
tation complexity, only several check equations are employed
to generate the parity check matrix in the MPA-based method
in the works, like [22] and [23].

(3) The LEAP-based method is adaptive to non-stationary
input and requires no priori information of statistical changes
of the input. Since it requires a little of memory or data
storage, the LEAP is very suitable for using in engineering.
However, the small learning step also severely limits its
performance.
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(4) When the TCF-based method is applied for the detec-
tion, it is necessary for the peaks of the TCF to be accurately
searched and this is really difficult to achieve in low SNR
environments, and this method loses its detection perfor-
mance compared with other method in the paper.

This paper is organized as follows. Several basic theories
are presented in Section II and then some relevant conclusions
are derived. The single-voter model and multi-voter model
are established in Section III. Then the decoding scheme
based on the multi-voter model is also proposed in this part.
The Monte-Carlo simulations are performed in Section IV,
in which the proposed method is compared with the baseline
methods.

II. SEVERAL BASIC THEORIES OF THE M-SEQUENCE
An m-sequence can be generated by a linear feedback shift
register (LFSR) sequence generator. The characteristic poly-
nomial of r-stage LFSR can be expressed as follows [26]:

g (D) = grDr + gr−1Dr−1
+ · · · + g1D+ g0,

gi ∈ {0, 1} , 1 ≤ i ≤ r (1)

where g0 = gr = 1. As indicated in [26], the m-sequence
generated by the LFSR generator satisfies the constraint as
follows:

grxk ⊕ gr−1xk+1 ⊕ · · · ⊕ xk+r = 0 (2)

where ⊕ indicates modulo-2 addition and xk denotes the
chip of the m-sequence at time k . The cycle period of the
m-sequence is L = 2r − 1.
The mentioned r-stage LFSR is shown in FIGURE 1. The

feedback taps are given by the characteristic polynomial as
formula (2) with g0 = gr = 1. More specifically, for the
generated m-sequence x = [x0,. . . , xL−1], g(D) is a primitive
polynomial of degree r , in which case the period of the
m-sequence is L = 2r − 1.

FIGURE 1. Fibonacci feedback generator of r-stage LFSR.

Triple correlation function (TCF) is usually used to work
out the parity check equations of weight t = 3 [9], [26]. It is
indicated in [26] that an m-sequence of length L is featured
with L-1 parity check equations of weight t = 3.

Several basic properties of m-sequences are given as fol-
lows [9]:

1) The number of 1 in m-sequences is almost equal to the
number of 0. More specifically, the number of 1 is one
more than the number of 0.

2) The m-sequences are shift-addictive. An m-sequence
can be noted as C [n] and its replica with circle shift
τ1 can be noted as C [n+ τ1]. Modulo-2 addition
between C [n] and C [n+ τ1] generates another shifted
m-sequenceC [n+ τ2]. The shift-addictive property can
be expressed as:

C [n] ⊕ C [n+ τ1] = C [n+ τ2] (3)

Formula (3) shows the check relationship of 3 replicas
(C [n], C [n+ τ1] and C [n+ τ2]), which means that all the
parity check equations of weight t = 3 can be represented by
formula (3). In our paper, τ1 and τ2 in formula (3) are noted
as (τ1, τ2), the number of which is L-1 [26].

All the (τ1, τ2) can be included in a collection, which is
noted as set9 in this paper. According to the rule ofmodulo-2
addition, it can be performed to swap the place of τ1 and
τ2, which means that (τ1, τ2) and (τ2, τ1) represent the same
relationships. In order to avoid the repeated checks, (τ1, τ2)

in set 9 is constrained to 0 < τ1 < τ2 ≤ L. Therefore, the
number of valid check equations (τ1, τ2) ∈ 9 is reduced to
L−1
2 . Thus set 9 has the form as:

9 =

{
(τ1, τ2)

∣∣∣∣ 0 < τ1 < τ2 ≤ L, and
C [n] ⊕ C [n+ τ1] = C [n+ τ2]

}
(4)

For the reduction of the voting model in the following
chapter,C [n+ τ2] in formula (3) and (4) on the right side can
be moved to the left side, and then formula can be expressed
as:

C [n] ⊕ C [n+ τ1] ⊕ C [n+ τ2] = 0 (5)

According to the rule of modulo-2 addition, formula (5)
is only applicable for 0/1 sequence. While the rule of for-
mula (5) is applied to +1/-1 sequence, formula (5) can be
equivalently replaced by the following form:

C [n]C [n+ τ1]C [n+ τ2] = 1 (6)

For any τ1 and τ2 that do not satisfy formula (3), the
relationship of them has the form as:

C [n]C [n+ τ1]C [n+ τ2] = −1 or1 (7)

According to the [9], [25], the triple correlation of
m-sequences can be expressed as follows:

R (τ1, τ2)

=

L∑
n=1

C [n]C [n+ τ1]C [n+ τ2]

=

{
L, for (τ1, τ2) ∈ 9

−1, for (τ1, τ2) /∈ 9
(0 < τ1 < τ2 ≤ L) (8)

Formula (8) shows that all the (τ1, τ2) ∈ 9 can be worked
out by searching the peak points of R (τ1, τ2). In FIGURE 2,
the triple correlation R (τ1, τ2) of length L = 27 −1 = 127 is
showed. In order to avoid the repeated checks, (τ1, τ2) in set
9 is constrained to 0 < τ1 < τ2 ≤ 127. There are 63 peak
points of triple correlation in the figure, which means that the
check equations (τ1, τ2) ∈ 9 can been found with searching
the peak points of R (τ1, τ2).
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FIGURE 2. The triple correlation of the m-sequence with length L = 127.

III. THE DESIGN OF VOTING MODEL
A. THE DESIGN OF THE SINGLE-VOTER MODEL
In this section, variable X , called as a voter, is established
in this paper. The special voter is empowered to propose
flipping suggestion for each hard-decision chip. When chip
s[k] is correct, the voter ought to cast a do-not-flip vote, which
is expressed as 0 in our pater. Similarly, when chip s[k] is
erroneous, the voter ought to cast a do-flip vote, which is
expressed as 1. For the kth hard-decision chip of the received
sequence, the vote of X can be noted as:

X (k) =

{
1, do flip
0, do not flip

(9)

To generate voter X , it is necessary that variable Y should
be established firstly. In our paper, variable Y is defined as:

Y (k) = s [k] s [k + τ1] s [k + τ2] (10)

where s[0], s [1], . . . , s[k], . . . , s[L-1] are the hard-decision
chips of the received sequence over the wireless channel.
Meanwhile, τ1 and τ2 satisfy (τ1, τ2) ∈ 9. Due to the basic
properties of m-sequences, Y (k) will equal 1 if the received
sequence is an m-sequence and there is no erroneous chips
in s [k], s [k + τ1] and s [k + τ2]. Otherwise if any one in
s [k], s [k + τ1] and s [k + τ2] is erroneous, Y (k) will equal
-1. Therefore, it is feasible to apply Y (k) as an indicator to
decide whether s[k] is correct or not.
The mapping in formula (11) is performed in the paper and

voter X is established.

X (k) =

{
1, forY (k) = −1
0, forY (k) = 1

(11)

Thus, the flipping suggestions of voter X for chip s[k]
are related to the 3 chips (s [k], s [k + τ1] and s [k + τ2]).
The do-flip suggestion for chip s[k] will be offered by X (k),
when any one of the 3 chips is erroneous. Therefore, the
single-voter model probably propose a false suggestion for
chip s[k] because s [k + τ1] and s [k + τ2] also have extra
impact on the suggestion as shown in formula (10). In order

to avoid the false suggestions of single voter, the multi-voter
model is derived in the next subsection.

First of all, it is necessary to analyze the efforts of false
suggestions. When chip s[k] is correct, voter X ought to cast
a do-not-flip vote otherwise a false alarm occurs. Similarly,
when chip s[k] is erroneous, the voter ought to cast a do-flip
vote otherwise anmissed detection occurs. Either false alarms
or missed detection causes erroneous output.

It is assumed that chip error rate of the hard-decision
chips is p0. According to the theories of the mathematical
statistics, the error probability of an single chip equals to p0.
As demonstrated in formula (10) and (11), if one of the 2 chips
(s [k + τ1] and s [k + τ2]) is erroneous, voter X will equal
to 1. And then the false alarm occurs although chip s[k] is
correct. The false alarm probability pfa can be expressed as
follows:

pfa = p (X (k) = 1 |s (k) is correct )

= C1
2 × p0 × (1 − p0)

= 2p0(1 − p0) (12)

Similarly, if one of 2 chips (s [k + τ1] and s [k + τ2]) is
erroneous, voterX will equal 0. And then themissed detection
occurs although chip s[k] is erroneous. The missed detection
probability pmiss can be expressed as follows:

pmiss = p (X (k) = 0 |s (k) is wrong )

= C1
2 × p0 × (1 − p0)

= 2p0(1 − p0) (13)

An interesting conclusion can be drawn in (12) and (13),
the false alarm probability pfa and the missed detection prob-
ability pmiss are equal.

B. THE DESIGN OF THE MULTI-VOTER MODEL
In this section, the multi-voter model will be derived.
It can been seen from formula (10) in Section III-A
that 3 voters of s[k] can be worked out from the
transformation of k . Besides (10), one voter Y2 (k) =

s [k − τ1] s [k] s [k + τ2 − τ1] in the multi-voter model can
be worked out from transformation k = k − τ1. Another
voter Y3 (k) = s [k − τ2] s [k + τ1 − τ2] s [k] can be worked
out from transformation k = k − τ2. As presented in the
Section II, the number of (τ1, τ2) ∈ 9 is L−1

2 and then 3(L−1)
2

voters can be obtained. If necessary, all of the voters can offer
flipping suggestions for each received chip at the receiver.

It is assumed that V check equations are extracted from set
9 in one iterative loop, and thenN = 3V voters are generated
through the above transformation. The voting model decides
for each chip whether to flip or not. If chip s[k] gets more
than T do-flip votes, the voting model flips it. The do-flip
thresholds T are worked out for different N below.
When chip s[k] is correct the voter ought to cast a do-not-

flip vote, otherwise the false alarm occurs. More specifically,
a false alarm occurs in the multi-voter model if more than T
voters cast do-flip votes for chip s[k] when the chip is correct.
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In the multi-voter model, when the correct chip is voted by
N voters and the chip gets T do-flip votes, the false alarm
occurs and the false alarm probability can be expressed as
CT
N p

T
fa

(
1 − pfa

)N−T , where pfa is the false alarm probability
of single-voter model in formula (12). Similarly, when the
chip getm (more than T ) votes, the false alarm probability can
be expressed Cm

N p
m
fa

(
1 − pfa

)N−m. Therefore, the false alarm
probability Pf in the multi-voter model can be expressed as:

Pf =

N∑
m=T

Cm
N p

m
fa

(
1 − pfa

)N−m (14)

where pfa is defined by (12), and T is the do-flip threshold,
and Cm

N =
N !

m!(N−m)!
is the formula of permutation and

combination.
Similarly, when chip s[k] is erroneous, the voter ought to

cast a do-flip vote otherwise the missed detection occurs.
More specifically, missed detection occurs if less than T vot-
ers cast do-flip votes for chip s[k] when the chip is erroneous.
In the multi-voter model, when the erroneous chip is voted
by N voters and the chip gets T do-flip votes, the erroneous
chip will be elected to flip and restore, the correct detec-
tion probability is CT

N (1 − pmiss)T p
N−T

miss , where pmiss is the
false alarm probability of single-voter model in formula (13),
and so on. When the erroneous chip gets more T do-flip
votes, the correct detection probability of erroneous chips

is
N∑

m=T
Cm
N (1 − pmiss)m p

N−m

miss . Therefore, the missed detection

probability Pm in the multi-voter model can be expressed as:

Pm = 1 −

N∑
m=T

Cm
N (1 − pmiss)m p

N−m

miss (15)

where pmiss is defined by (13).
As demonstrated in (12), (13), (14) and (15), Pf and Pm are

relevant to p0, N and T .
FIGURE 3(a) shows Pf versus T with the configurations

N = 3, 6, 9, 12, 15. FIGURE 3(b) shows Pm versus Twith the
same configurations for FIGURE 3(a). The chip error rate of
the hard-decision chips is set to p0 = 10%. It can be seen that
Pf increases with the growing of N. Contrarily, Pm decreases
with the growing of N . It can be concluded that Pf and Pm
can not reach the minimum simultaneously.

Since false alarms andmissed detection probably introduce
new erroneous chips, it is necessary to apply an suitable
threshold for flipping the chips.

The do-flip threshold T is worked out by minimizing the
chip error rate Pe, which can be expressed as:

Pe = Pf × (1 − p0) + Pm × p0 (16)

FIGURE 4 shows Pe versus T when the input chip error
rate is set to p0 = 0.1, 0.2, 0.3, 0.4, 0.5. The number of voters
in one iteration is set to (a) N = 15, (b) N = 30, (c) N = 60.
Following conclusions can be drawn from FIGURE 4:
1) FIGURE 4(a) shows that Pe reaches its minimum at the

point T = 9 for all the configurations p0 = 0.1, 0.2,

FIGURE 3. Specific performance of multi-voter model under different
do-flip thresholds T with chip error rate P0 = 10%: (a) the false alarm
probability Pf ; (b) the missed detection probability Pm.

0.3, 0.4, 0.5, when N = 15. It can be seen that Pe is
probably greater than 0.5, when the do-flip threshold is
not suitable and many correct chips are flipped. When
N = 15, the convergence reaches its fastest at point
T = 9, where the minimum of Pe is less than p0.
More specifically, the number of erroneous chips can
be reduced after one voting event, which means that the
erroneous chips can be restored by iterations. In this
paper, the optimal configuration is noted as (N = 15,
T = 9).

2) Similarly, FIGURE 4(b) (c) show that there are other
optimal configurations, i.e., (N = 30, T = 17), (N =

60, T = 32). It can be summarized that the optimal
configurations can be expressed as T = ⌊N/2⌋+2. This
conclusion of themulti-voter model can be applied to the
proposed acquisition scheme of this paper.

3) FIGURE 4(a) (b) (c) show that the minimum of Pe
decreases with the growing of N for a given p0. It is
demonstrated that fewer iterations are needed to restore
the m-sequence when more voters are generated in one
iteration. This will be evenmore visible in the simulation
presented in Section IV.
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FIGURE 4. The output chip error rate Pe versus do-flip thresholds T with
different number of voters: (a) the number of voters is set to N = 15;
(b) the number of voters is set to N = 30; (c) the number of voters is set
to N = 60.

4) FIGURE 4(a) (b) (c) demonstrate that the minimum of
Pe is more faint with a higher p0 for a given N and more
obvious with a largerN for a given p0. More specifically,
a larger N means a faster convergence. The spreading
spectrum system usually works in the low signal-to-
noise ratio (SNR) environments. It can be concluded that
a largeN is more suitable for low SNR environments due
to the high p0. The above conclusion will help the design
of the acquisition scheme based on the voting model.

The parity check matrix of the m-sequenceC[n] is a matrix
E satisfying EyT = 0. The parity check matrix is established
by concatenating K elementary parity check matrices as
follows:

E =

[
ET0 E

T
1 · · ·ETK−1

]T
(17)

where K = 3 (L − 1)/
2. Each matrix Ea is gener-

ated with a reference parity check polynomial ga (x) =∑V
k=0 ga,kx

k (a = 0, 1, . . . , K -1), where V = (L − 1)/
2.

Matrix Ea (a = 0, 1, . . . , K -1) can been expressed as
follows:

Ea =



ga,0 ga,1 · · · ga,V 0 · · · · · · 0
0 ga,0 · · · · · · ga,V 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

ga,V · · · · · · · · · 0 ga,0 · · · ga,V−1
...

. . . · · · · · · 0
. . .

. . .
...

ga,1 · · · ga,V 0 · · · · · · ga,0


(18)

The factors of the reference parity check polynomial can
been noted as ga,0 = 1, ga,τ1 = 1, ga,τ2 = 1 for (τ1, τ2). The
matrix Ea is defined by the parity check equation (τ1, τ2).
ga (x) belongs to set 9, hence Ea has a row weight equals
to t = 3, which represents the 3 voters generated by the
parity check equation (τ1, τ2). It is assumed that the receiver
observes the sequence over its entire length M = L. As a
consequence, Ea is circulant. This assumption will be helpful
to derive the algorithm for generatingN = 3V voters.E is thus
VL ×L(V = 5, 10, or 20) sparse matrix in one iteration. The
concatenation of V elementary matrices defines the graph
on which the decoding algorithm is applied. While the row
weight remains unchanged (t = 3), the V reference polyno-
mials g0 (x), . . . , gV−1 (x) determine the structure of cycles.

C. THE DECODING ALGORITHM BASED THE
MULTI-VOTER MODEL
Based on the multi-voter model, the acquisition scheme can
be designed and the received sequence can be restored by
such scheme.

The optimal algorithm of finding set 9 is not addressed in
this paper, because it has been deeply analyzed in references,
such as [9], [22], and [26]. It is assumed in the paper that
the receiver has already been configured with the optimal
algorithm to find set 9.

Based on the previous derivation, the multi-voter model
can been applied for the design of blind detection and the
blind decoding algorithm can be realized as:

FIGURE 5 shows the voting and flipping process of
the designed decoder. Erroneous chips are restored by the
proposed algorithm based the multi-voter model. For one
iteration, the number of parity check equations is set as V =

20, so the number of voters is N = 3V = 60. The do-flip
threshold for the case can be set as T = 32 based on the
optimal configurations. The transmittedm-sequence is shown
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Blind Decoding Algorithm Based on Multi-Voter Model
Input: hard-decision chips of the received sequence over
wireless channel are taken as the input.
Parameters: For one iteration, the number of parity check
equations is set as V. So the number of voters, who are gen-
erated in one iteration, is N = 3V. The do-flip threshold T for
different case is got from the derived optimal configurations,
the maximum number of iterations is set as IterMax.
1. Work out 9;
2. Work out the do-flip threshold T for the configured N ;
3. k = 0;
4. While k < IterMax;
5. Extract V check equations from set 9;
6. Generate N voters according to (10) and (11);
7. Count the do-flip votes for each chip;
8. Flip the chips who get more than T do-flip votes;
9. Break out of the loop if every chip in the sequence get

0 vote or all the check equations have been extracted
from set 9;

10. End.

in FIGURE 5(a); the received hard-decision m-sequence are
shown in FIGURE 5(b); As showed in FIGURE 5(c), the
do-flip vote of each chip are counted; the erroneous chips are
found out in FIGURE 5(d) by comparing the do-flip votes
of each chip with the threshold T ; the erroneous chips are
flipped in FIGURE 5(e). FIGURE 5 shows that the chips are
completely restored after voting and flipping.

However, not all sequences can be correctly restored in the
low SNR scenarios in one iteration. The iterative process is
necessary for the received m-sequences when the chip error
rate is high. One iteration process can be defined by one
voting and flipping event as shown in FIGURE 5, and thus the
decoder can restore the received m-sequence within several
iterations.

IV. PERFORMANCE
A. THE ANALYSIS OF THE DETECTION PERFORMANCE
In this section, the proposed method is compared with the
MPA- [22], [23], the LEAP- [25] and the TCF-based [26]
methods in the simulations.

The transmitter m-sequence is generated by LFSR of stage
p = 11. The receiver observes L chips (s[0], s[1],. . . , s[L-
1]) of the m-sequence and applies the proposed method for
restoring the chips. To makes full use of the prior informa-
tion of the m-sequence, all the check equations are allowed
to be extracted sequentially from set 9 unless the iterative
detection is stopped. In one iteration, V = 5, 10, 20 parity
check equations are extracted to generate N = 3V = 15, 30,
60 voters, who decide for chips whether to flip or not. For
different N , the do-flip threshold T is set to the value derived
in section III.

The voting-model-based method is defined in Section III.
The iterations will stop when none of the voters cast any

FIGURE 5. The illustration of voting-model-based method: (a) the original
sequence; (b) the erroneous sequence at receiver; (c) the results of
voting; (d) the tabs of the erroneous chips; (e) the restored sequence.

votes or the maximum number of iterations IterMax = 50 is
reached. In this paper, the correct detection probability is
noted as PCD.

FIGURE 6 shows PCD of these schemes versus the
signal-to-noise (SNR).10000 Monte-Carlo simulations are
performed for each scheme.

It can be seen in FIGURE 6 that PCD of the voting-mode-
basedmethod increaseswith the growing ofN and themethod
of configuration N = 60 achieves the best performance.
Indeed, our voting-model- and theMPA- and the LEAP-based
schemes can achieve equally good performance in high SNR
environments. Further more, the voting-model-based method
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FIGURE 6. Comparison of different acquisition methods on detection
probability under different SNRs.

of configuration N = 15 can not obviously outperform the
MPA- and the LEAP- based method in low SNR envi-
ronments. However, when compared with the MPA-based
method in low SNR environments, the voting-model-based
method of configuration N > 15 gets more than 2 dB gain at
the detection probability 99%. The reason is that only one
(in [23]) or several (in [22]) of parity check equations are
used in MPA-based method in consideration of computation
complexity. Thus the prior information of these parity check
equations, which are not used in the detection, is abandoned.
Similarly, the detection performance of the proposed method
of configuration N > 15 is improved by 4 dB at the detection
probability 99% compared with LEAP-based method. The
reason is that whether the learning step is fixed or adjustable,
it is difficult for LEAP-based method to convergent in the low
SNR environments. The above results demonstrate that our
method is better than MPA- and LEAP-based method when
the SNR is low. The TCF-based method is also simulated.
When the TCF-based method is applied for the detection, the
peaks of the TCF are difficult to be accurately searched in low
SNR environments [25], and this method shows bad detection
performance.

As demonstrated in Figure 4 in the above Section III, if the
number of the iteration is large enough, it is theoretically fea-
sible that the received sequence can been completely restored
in extremely harsh environment. However, the simulations in
Figure 6 do not provide the ideal results as the theoretical
ones. It is hypothesized that the erroneous rate of one chip is
restricted to equal the chip error rate of the sequence. This
hypothesis seems reasonable because the m-sequences are
pseudo-noise. However, m-sequences can not be completely
equivalent to noises, thus the algorithm shall divergence occa-
sionally in iterative loops in the extremely harsh environment.

B. THE DETECTION PERFORMANCE OF REAL
DETECTION SCENARIOS
In real detection scenarios, set9 is often found by the thresh-
old algorithm [9]. It is inevitable that some false parity check

FIGURE 7. Comparison of different number of parity check equations V
on the error detection probability PED under SNRs.

FIGURE 8. Comparison of different observation length M on the error
detection probability PED under SNRs when N = 60.

equations are also collected into set 9. The probability of
false parity check equations in set 9 is noted as Pt in this
paper. FIGURE 7 shows the error detection probability PED
(PED=1 - PCD) versus SNR with Pt = 1%.

It can be seen that PED of the voting-model-based method
can stably converge to 0.1%. Therefore, our proposed voting
model for the detection of the m-sequences is suitable for real
detection scenarios when some false parity check equations
emerge in set.

In real detection scenarios, the number of the observed
chips is variable. FIGURE 8 shows the error detection proba-
bility PED when the hard-decision samples are observed over
different length M = L, L/2, L/4. The probability of false
parity check equations is set to 0 and the number of voters
is set to N = 3V = 60 (V = 20).
There is a 3 dB gap between the observed length M = L

and M = L/2 and 3.5 dB gap between M = L/2 and M =

L/4 at 1% error detection probability. The reason is that the
energy of the received sequence is decreased by 3 dB when
the number of the observed chips is reduced by half.
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V. CONCLUSION
The acquisition scheme based on multi-voter model is a sim-
ple but effective solution to restore the erroneous chips of the
received m-sequence. In order to accomplish this target, the
single-voter model and the multi-voter model are proposed
in this paper. Firstly, one parity check equation of weight t
= 3 is used to generate 3 voters in the voting model. In one
iteration, N voters cast their votes for each chip and the
receiver decides whether to flip or not, which is based on
the do-flip threshold. Secondly, based on minimizing the chip
error rate of the chips after one voting and flipping event,
the optimal do-flip thresholds for different configurations are
worked out in the paper. Finally, the voters are sequentially
generated in the iterative loops and propose their flipping
suggestions in decoding process. Due to the full use of
prior information in set 9, The voting- model-based method
outperforms the MPA-, the LEAP- and the TCF-based
method.

It is known that the largerN is more efficient for improving
the detection performance at a cost of more parallel com-
puting time. It can be expected that parallel computing will
become easier with the standardization of LDPC and the
larger N can be enabled for the detection of m-sequences.

The case is not simulated when the number of voters in one
iteration is set to N > 60 and such researches will be carried
out in the future.

A novel concept is proposed for decoding PN codes in the
paper. It can be seen that the proposed model is efficient for
the codes which can been expressed by some parity check
equations. It is possible that the voting model can be extended
to other similar decoding scenarios in which the check matrix
is generated by parity check equations. Notably, there are
other excellent PN codes that have not been pointed out in
this paper, such as Gold codes and Hadamard codes. Owning
to shift-addictive characteristic, m-sequences featured with
many parity check equations and the voting-model-based
method are proposed based on this feature in the paper. How-
ever, the proposed method is not suitable for Gold codes and
Hadamard codes, which are not shift-addictive. This paper
provides an idea for other PN codes that the characteristics of
a specific code type could be deeply analyzed and then new
method could be derived.
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