
Received 15 January 2024, accepted 14 February 2024, date of publication 21 February 2024, date of current version 13 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3368854

Artificial Intelligence-Enabled 5G Network
Performance Evaluation With Fine
Granularity and High Accuracy
QING ZHANG1,2, TAOYE ZHANG2, BIN CHEN2, JI YAN 1,
ZHONGYUAN ZHAO 1, (Member, IEEE), XIAOFEI QIN2, CHAO CAI2, AND XIANKUI LUO2
1School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
2China Unicom Intelligent Network Innovation Center, Beijing 100048, China

Corresponding author: Zhongyuan Zhao (zyzhao@bupt.edu.cn)

This work was supported in part by Beijing Natural Science Foundation under Grant L223026 and in part by the 5G Evolution Wireless Air
Interface Intelligent Research and Development and Verification Public Platform Project under Grant 2022-229-220.

ABSTRACT Network performance evaluation is crucial in ensuring the effective operation of 5G wireless
networks, offering valuable insights into evaluating network status and user experience. However, the
complexity of network conditions, characterized by high dynamics and diverse user requirements across
various vertical applications, presents a significant challenge for generating accurate and detailed evaluation
results using existing algorithms. To provide a feasible solution for this issue, an artificial intelligence-
enabled 5G network performance evaluation scheme for private 5G networks is proposed. First, the
network performance evaluation at different granularities is modeled with the deployment of network
performance evaluation introduced. Furthermore, an intelligent network performance evaluation architecture
based on residual networks with the attention mechanism is introduced, which can generate evaluation
scores based on key performance indicators of reliability, accessibility, utilization, integrity, mobility and
retainability. Additionally, the corresponding training strategies for the intelligent model, catering to different
evaluation granularity, are thoroughly designed. Finally, to validate the effectiveness of the proposed
scheme, comprehensive experiments are conducted using practical 5G network operation system data. The
experimental results demonstrate the scheme’s ability to achieve highly accurate evaluations with fine spatial
granularity. These findings establish the feasibility and efficacy of the proposed artificial intelligence-enabled
scheme in enhancing 5G network performance evaluation.

INDEX TERMS Network performance evaluation, 5G vertical applications, artificial intelligence,
convolutional neural networks, attention mechanism.

I. INTRODUCTION
It is anticipated that the rapid development of the fifth-
generation (5G) mobile communication systems facilitates
various emerging network services [1], which can meet the
demanding requirements of low latency, high throughput
and massive connections [2]. Plentiful advanced technologies
of 5G communication provide great convenience and ben-
efits to support a diversity of creative applications, which
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include industrial automation, distributed energy control,
cloud-based virtual reality (VR), network communication
and so on [3]. For instance, the device-to-device (D2D)
communication technologies of 5G communication enable
terminal devices to circumvent the cellular base station,
thereby facilitating direct information sharing with other tar-
geted devices [4]. Moreover, as introduced in [5], robust and
secure traffic management with lower collision probabilities
can be achieved by the 5G advanced internet of vehicles
(IoV) technologies. In [6], wearable technology is introduced
as a promising 5G application, which can record different
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physiological signals continuously to help health monitoring
and management [7]. In light of the multifarious advantages
and enhanced convenience afforded by 5G technologies
across diverse domains, it becomes imperative to evaluate
the performance of 5G networks [8]. In particular, accurate
network performance evaluation can facilitate monitoring
real-time network operation and maintenance status so as to
detect network anomalies and further adjust resource alloca-
tion, thereby ensuring the efficient network management and
enhancing the user experiences. Moreover, synthetic network
performance evaluation unifies multiple key performance
indicators into single representative evaluation result, making
it more distinctly and directly for network operators to
observe the comprehensive situations of various network
services and applications. Therefore, designing optimal
network performance evaluation schemes of 5G networks has
always been a significant and meaningful research field.

There have existed some related network performance
evaluation methods, the main ideas of which can be roughly
classified into two categories. On the one side, conventional
evaluation algorithms based on linear weighting and regres-
sion scheme are applied. In [9], an evaluation method based
on quality of service (QoS) performance is proposed, which
linearly calculate importance weights of network nodes and
links for performance measurement. In [10], a network
performance evaluation approach is put forward based on
objective weights determination, where the weight of each
network performance parameter is calculated based on linear
calculation. In [11], the concept of Quality of Monitoring
(QoM) is introduced for the evaluation and enhancement
of M-plane data within the context of 5G networks, which
integrates a data-driven algorithm in tandem with a lossy-
compression methodology. In [12], a real-time data measure-
ment methodology based on hardware platform is proposed
to evaluate and analyse the 5G network performance.
In [13], the performance of 5G cognitive radio networks is
assessed, where the numerical analysis of multiple network
performance metrics is conducted to evaluate the Quality of
Service (QoS) under different scenarios. On the other side,
the technologies of artificial intelligence (AI) are utilized for
network performance evaluation. In [14], the performance
of 5G wireless sensor network is evaluated by utilizing
the machine learning. In [15], a graph neural network is
constructed for large-scale network performance evaluation,
which is significantly less time-consuming than traditional
methods. References [16] and [17] center their attention on
the evaluation and prediction of wireless network traffic data
utilizing deep learning networks. In [16], a residual network
amalgamating multiple mechanisms is designed which can
comprehensively capture the spatio-temporal correlation of
the evaluated data. In [17], an enhancedmultilayer perception
deep neural network is designed, exhibiting heightened
accuracy in the realms of data evaluation and prediction.

Although previous research on evaluating the performance
of 5G networks has offered valuable insights, there is a

lack of precise and applicable evaluation methods with
high accuracy across various 5G scenarios. Traditional
linear evaluation methods fall short in capturing complex
correlation features between network data and results. More-
over, targeted AI-based evaluation methods for emerging
5G scenarios are underexplored. To overcome the above
issues, it is feasible to exploit the powerful feature learning
ability of AI technologies [18] to generate accurate and
geographically precise evaluation results directly based on
network indicator data. And as one of the most important
and widely studied technologies, AI has made impressive
achievements in many feature-learning areas [19], including
time series prediction [20], signal identification [21], [22],
image classification [23], [24], object recognition [25] and
so on. In the research fields of wireless communication, AI is
also regarded as an efficient way to address conventional
communication problems. Reference [26] suggests applying
AI to cellular networks and puts forward an AI-empowering
architecture, where an AI controller is introduced as an
independent network entity that can communicate with
core networks (CNs) and radio access network (RAN).
References [27], [28], and [29] utilize the AI technologies
to help improve the efficiency of network routing rules.
In [27], a 3-layer deep neural network is constructed to
classify routing node degree. In [28], a deep belief network
is proposed to determine the next routing node and it is also
employed to construct a software defined router. In [29],
tensors are utilized to represent weights, hidden layers and
biases in deep belief networks, which obtain better routing
performance. Reference [30] and [31] investigate network
scheduling based on deep learning technologies. In [30],
a deep Q learning-powered scheduling mechanism is put
forward, which aims to decrease the energy consumption in
5G real-time systems. In [31], deep Q leaning is used for
scheduling in roadside communication networks.

Since massive research work has confirmed the powerful
capacity of AI applied in the field of communication,
it is appropriate to utilize its splendid learning ability to
evaluate the performance of 5G networks. And compared
with other types of deep learning networks, convolutional
neural network (CNN) can achieve higher learning efficiency
and has more powerful feature learning ability in the
face of massive network data. Therefore, CNN is widely
explored and utilized for network-level and user-level data
analysis [32]. In [33], a CNN-based scheme is proposed for
network-level traffic classification, which aims to recognize
specific protocols or services based on traffic in network.
In [34], CNN is employed to forecast the mobile traffic.
In [35] and [36], CNNs are exploited for efficient mobile
health data analysis and medical data analysis, respectively.
In particular, the applicability of CNNs is explored in the field
of synthetic network evaluation and management. In [37],
a hybrid CNN-based model is proposed to achieve real-time
evaluation and anomaly detection of network data in central
clouds, and the simulation results show that the proposed
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model exhibits an improvement in terms of accuracy. In [38],
CNN is utilized to construct deepQ-network, which evaluates
the user QoS demand data and energy consumption data to
facilitate further network resource optimization. Moreover,
recent research begins to focus on the introduction of
attention mechanism to CNN to further enhance the model
performance when processing large amounts of data [39],
which has been explored in various scenarios including image
caption generation [40], [41], machine translation [42], [43],
speech recognition [44], [45], etc. Reference [47] introduces
the attention mechanism to residual convolutional neural
networks, which is called residual attention network and
the attention mechanism is achieved by stacking attention
modules that can generate attention-aware features. Refer-
ence [46] achieves the attention mechanism of CNN by
adding a squeeze-and-excitation (SE) block, which explicitly
models inter-dependencies between different channels to
adaptively learn channel-wise features and proves to have
a great performance enhancement of learning multi-channel
data features. The attention mechanism-based CNNs have
more powerful capabilities of data analysis and feature learn-
ing, thereby making it highly suitable for the performance
evaluation of 5G networks.

Despite the great success of applying AI technologies
in the research field of communication, there still exist
several key challenges of evaluating the performance of
5G networks, which are elaborated as follows: Firstly,
highly adaptive and practically applicable algorithms of
evaluating the performance 5G networks are lacking, due to
the unavailability of practical 5G network data in different
5G private network scenarios. Therefore, it is hard to
train network performance evaluation models with high
evaluation accuracy based on the practical 5G network
data. Secondly, data labels of collected multimodal 5G
network data are lacking, which poses a great obstacle to the
specific design of the supervised task during the training of
network performance evaluation models constructed based
on CNN. Thirdly, current algorithms focus on the perfor-
mance evaluation of cellular-scale network areas, which
can not achieve geographically precise network performance
evaluation, i.e, the performance evaluation of network areas
with much smaller coverage regions and finer evaluation
granularity.

In this paper, to more accurately and precisely evaluate
the performance of 5G networks, an AI-enabled network
performance evaluation scheme which utilizes attention
mechanism-based CNN is proposed. And the attention
mechanism in the proposed CNN is achieved by SE module
as introduced in [46]. In particular, the proposed scheme
supports cellular-scale and fine-grained network performance
evaluations based on training different types of multimodal
network data, which is elaborated in the following sections.
The main contribution of this paper is summarized as
follows:

• Firstly, both the cellular-scale and fine-grained network
performance evaluation aremodeled and the deployment

of network performance evaluation in 5G network
architecture is introduced to facilitate the achievement of
high-performance network evaluation based on flexible
and efficient 5G network functions.

• Secondly, an intelligent network performance evaluation
scheme is proposed, which takes network performance
data as input, to generate both cellular-scale and fine-
grained network performance evaluation results with
high accuracy. In particular, attention mechanism with
multiple residual blocks is adopted in the proposed
intelligent model to enhance the overall model per-
formance. Moreover, training strategies are designed,
where a weighted sum approach (WSA)-based method
is provided to address the problem of lacking data labels
and loss functions are also designed for network perfor-
mance evaluations with different evaluation granularity.

• Finally, experimental results obtained based on practical
5G network operation system data are presented to
verify the evaluation performance of the proposed CNN-
based model. In particular, evaluation results generated
by the fine-grained intelligent model are transferred into
visible heat maps, which illustrate high geographical
precision of the corresponding evaluation results. And
correlation analysis between output results and input
data is carried out for both the cellular-scale and
fine-grained intelligent models, which shows the high
accuracy of proposed evaluation scheme.

II. SYSTEM MODEL AND DEPLOYMENT OF 5G NETWORK
PERFORMANCE EVALUATION
A. ANALYTICAL SYSTEM MODEL OF CELLULAR-SCALE
AND FINE-GRAINED NETWORK PERFORMANCE
EVALUATION
Conventional network performance evaluation generally
focuses on the overall performance, namely the synthetic
situations of network operation and service behaviors of a
certain 5G network area D, which covers a set of network
cells C = {C1, . . . ,Cn}, i.e.,

⋃n
i=1 Ci = D,Cx

⋂
Cy = ∅

and x ̸= y. And the evaluation score of a specific cell Ci is
calculated based on a series of network performance criteria,
which can be written as follows:

Rci = F (Ni,Ei,Ai) , (1)

where Rci is the corresponding score of Ci. Ni denotes the
cellular network indicator data of transmission including cri-
teria such as latency, bandwidth, packet loss rate, etc. Ei and
Ai denote the energy efficiency data and coverage capability
data of Ci, respectively. Although different conventional
evaluation methods involve different network performance
indicator systems of criteria, the overall performance of a
cellular network area can be adequately evaluated based on
the above three perspectives.

However, conventional network performance evaluation
can not generate evaluation results with fine spacial gran-
ularity to meet the growing demands of geographically
fine-grained 5G network optimization and management.
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Therefore, fine-grained network performance evaluation is
also studied in this section. Consider that the performance of
a 5G network N cee is evaluated with the serving group of
mobile users, i.e.,Mu = {Mu1, . . . ,Mum}, and the coverage
spatial area of it is D. In particular, the spatial domain of the
network area D is partitioned into a collection of equidistant
sub-regions that exhibit no overlap, i.e.,

Dsub = {D1, . . . ,Dk |
n⋃
i=1

Di = D,Dx
⋂

Dy = ∅, x ̸= y}.

(2)

It should be noted that the coverage area of each sub-region
is typically smaller than a network cell, i.e., D(Di) < D(Ci),
in order to facilitate the network performance evaluation of
5G networks with finer granularity.

FIGURE 1. Deployment of proposed network performance evaluation
scheme in practical 5G networks.

Since conventional network performance evaluation as
presented in (1) generates evaluation results on the basis
of network-level data, the fine-grained network performance
evaluation should be implemented based on smaller-scale
network performance data. In the current network operation
systems, the user QoS data can be obtained directly
from network management devices and provide network
performance reference from a more geographically gran-
ular perspective. Without loss of universality, we con-
sider a specific sub-region Di, the performance evaluation
score of it can be obtained based on user QoS data
as:

Rsi = F(Qi1 , . . . ,Qil ),

Mi
u = {Mui1 , . . . ,Muil |Mui1 , . . . ,Muil ∈ D(Di)}, (3)

where Qij represents the QoS data of mobile user Muij ,
Muij ∈ Mi

u, ij = i1, . . . , il, and Mi
u denote a group of

mobile users which distribute in the coverage domain D(Di)
of fine-grained network area Di.

B. DEPLOYMENT IN PRACTICAL 5G NETWORKS
In order to achieve high-performance network performance
evaluation, the deployment of proposed network performance

evaluation scheme in practical 5G network architecture is
applied and elaborated in this section. Owing that different
parts of 5G networks have markedly different functions
and characteristics, deploying different functional modules
of network performance evaluation in corresponding 5G
network interfaces can facilitate the integration of powerful
and complete centralized network management mechanism,
disperse flexible network edge computation capability, and
massive user terminal data. Since the 5G network consists of
5G core network (5GC) and radio access network (RAN), the
deployment of network performance evaluation in practical
5G architecture can be introduced mainly from the above
two perspectives, with different network functional inter-
faces achieving relevant specific operation and management
functions for 5G network performance evaluation.

As illustrated in Figure 1, the 5GC is connected with
the RAN through the NG interface, which is responsible
for the establishment and management of network perfor-
mance evaluation session. Moreover, the NG interface can
also achieve the QoS mapping which maps user-uploaded
multimodal network data such as numerical text, video
and so on to specific QoS data which can be further
evaluated. The 5G RAN mainly consists of 5G base stations
(gNodeBs), inside which a centralized unit (CU) is connected
to multiple distributed units (DUs) through the F1 interface.
In the procedure of 5G network performance evaluation,
the F1 interface is accountable for allocation of computing
resources to facilitate the training of intelligent evaluation
models, and the access management of cellular-scale network
performance data is also achieved by the F1 interface.
What’s more, user experience data collected by DUs is also
forwarded by this interface. The Uu interface of RAN takes
control of the interaction between RAN and user side, as vast
user experience data such as QoS flow is controlled and
managed by the Uu interface, which is crucial for user
data collection and perception so as to further facilitate
fine-grained network performance evaluation. Moreover,
please note that both the cellular data and user experience data
involved in the network performance evaluation are collected
from different scenario-based network services of practical
private 5G network platform.

III. AI-ENABLED 5G NETWORK PERFORMANCE
EVALUATION ALGORITHM WITH FINE GRANULARITY
AND HIGH ACCURACY
In order to achieve high-performance 5G network perfor-
mance evaluation, an artificial intelligence-enabled model
is proposed in this section. In particular, the proposed
intelligent model aims to simultaneously generate both the
conventional cellular-scale and under-explored fine-grained
network performance evaluation results, based on different
types of input data. The concrete modules of relevant data
collection and processing, the specific architecture design and
the corresponding training strategies are introduced in detail
in the following sections.
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A. DATA COLLECTION
Since both the cellular-scale and fine-grained network per-
formance evaluations require numerous network multimodal
data, it is of great significance to efficiently collect network
performance data such as the network-level data and user QoS
data from totally different network devices. The specific data
collecting procedure in each part of the network operation
systems is elaborated as follows:

• Mobile user devices:Amount network terminal devices
in 5G networks are utilized to collect user QoS data,
which can reflect users’ complete perception of network
status and service quality and is the main data of
fine-grained evaluation as introduced in (3). In partic-
ular, the collected user QoS data can be transmitted into
the 5G gNodeB for further storage and utilization.

• 5G base stations (gNodeBs): While the CU in the
gNodeB controls several DUs to achieve edge ser-
vices deployment and relevant physical-layer functions,
each DU takes charge of a certain cellular network
area. Therefore, with the help of these functional
units, network-level performance indicator data of
cellular-scale network performance evaluation can be
collected and further uploaded to the 5GC for massive
data storage and processing.

• Central cloud servers: In the central cloud, massive
global network performance data including user QoS
data and network-level performance indicator data are
stored, which can be utilized for global computing with
high efficiency such as model training and data analysis
based on powerful computing resources of 5G.

B. PREPROCESSING FOR MULTIMODAL NETWORK DATA
In order to facilitate themodel training of proposed intelligent
model and further generation of evaluation results, the
original data of cellular-scale and fine-grained evaluation
should be processed before inputting them into the intelligent
model. As shown in Figure 2, there are several steps to process
the original sampled data collected directly from the network
operation devices, which are as follows:

• Positive conversion: To unify the evaluation trend of
different input data and better facilitate the generation
of accurate performance evaluation results, the pre-
processing layer of positive conversion is set firstly.
And the positive conversion aims to convert the input
different types of criteria to benefit criteria, the larger
values of which represent better indicator performance.
In particular, the positive conversion is conducted on
specific network indicators, i.e,

xp = Pos(xc), xc ∈ {No,Eo,Ao,Qo}, (4)

where xc denotes the specific performance indicator of
sampled network transmission indicator data set No,
energy efficiency data set Eo, coverage capability data
set Ao, or QoS data set Qo. And Pos(·) denotes the
positive conversion function.

• Normalization: In order to equalize the scales of differ-
ent types of input data and prevent themeasurement bias,
which significantly effect the performance of model
training, the normalization of indicator data is employed
to process the original data, i.e.,

xn = Norm(xp), xp ∈ {Np,Ep,Ap,Qp}, (5)

where xn denotes the indicator after the normalization
layer, and Np,Ep,Ap,Qp denote data sets of perfor-
mance evaluation indicator after the preprocessing of
positive conversion corresponding to No,Eo,Ao,Qo,
respectively.

• Vectorization: Due to the demand that the input data
of the deep learning model should be in the form of
vector, vectorization is conducted on the data after the
normalization and positive conversion, i.e.,

xin = vec(T ),
T = {Nn,En,An,Qn}, (6)

where xin denotes the input vector of the intelligent
model and vec(·) denotes the vectorization function
which should be conducted on both the training data and
the validation data. T denotes the indicator set after the
normalization and Nn,En,An,Qn are corresponding to
Np,Ep,Ap,Qp.

Due to the rapid development of data feature engineering,
it is feasible to utilize the existing simulation tools to fast
achieve indicator data preprocessing illustrated in (4), (5)
and (6). The specific procedures of positive conversion,
normalization and vectorization of the cellular-scale and fine-
grained input data are elaborated in the following section of
simulation.

C. THE NETWORK ARCHITECTURE OF PROPOSED
SCHEME
As illustrated in Figure 2, in the proposed CNN-based
network performance evaluation scheme, the network-level
data including network transmission data N, energy effi-
ciency data E and coverage capability data A after data
process are input into the intelligent model to generate the
cellular-scale evaluation results set rc according to (1), while
the user QoS data Q after the data process are fed into the
model to obtain fine-grained evaluation results rs. Please
note that the intelligent models of cellular-scale and fine-
grained evaluation are trained independently with totally two
kinds of different weights but an identical shared attention
mechanism-based CNN structure illustrated in Figure 2,
which mainly includes the following parts:

• Convolution layer for feature extraction: Since the
amounts of both the cellular-scale and fine-grained
input data are huge, leading to extremely complex local
patterns and correlations between input data and final
evaluation results. Therefore, the convolution layer is set
to initially extract the features of input data and reduce
the input data dimension for further learning of data
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FIGURE 2. Proposed AI-enabled network performance evaluation scheme.

distribution by convolution operation, i.e.,

yc = xin ∗ k, (7)

where yc denotes the output of the convolution layer
with the input vector xin. And k is the learning kernel of
convolution operation. In particular, the shape of yc can
be controlled to the desired value by adjusting the size of
convolution kernel, and typically the size of yc is smaller
than xin by convolution operation, which achieves the
dimension reduction of input data features.

• SE network for filtrating better feature channels:
Owing that the convolution operation mainly integrates
different features spatially, the differences between data
features of different feature channels are ignored, which
weakens the feature learning ability of the model.
Therefore, to filtrate most informative channel-level
features and suppress those that are not important,
SE network are employed in this layer with the following
two main functional operations: Squeeze operation is
first achieved by the average pooling (AvgPool) layer,
as shown in Figure 2, to shrink the feature maps ∈

Rw×h×c through spatial dimensions (w × h) and obtain
channel-level global features of the input, i.e.,

zs = Fsq(yc) =
1

h× w

h∑
i=1

w∑
j=1

yc(i, j), zs ∈ Rc, (8)

where zs is the output of the squeeze operation with
the input convoluted yc. Two full connection layers
with the sigmoid activation function are employed
following the AvgPool layer to capture the complex
non-linear correlations between different feature chan-
nels of zs, which is the core of the excitation operation
and can be expressed as

ze = Fex(zs) = Sigmoid(W2W1zs), (9)

where W1 ∈ R
c
r ×c and W2 ∈ Rc× c

r denote the
weights of the first the second full connection layers,
respectively. ze denotes the corresponding output. In par-
ticular, the first full connection layer aims to reduce
the dimensions with the dimension-reducing coefficient
r , while the second full connection layer recover
vector to its original dimensions. Then, features of
different channels are given different weights, which are
multiplied over the original input yc and can make the
model acquire more powerful capacity of distinguishing
between different channel-level features. And the output
of the SE network can be written as

xr = Fscale(yc, ze) = yc · ze, (10)

where xr denotes the output vector of the SE network
which is also the input vector of the next residual blocks.

• Residual blocks for down-sampling: To adequately
learn the feature distribution of input data and gen-
erate accurate and precise evaluation results, multiple
residual blocks in a tandem way are employed for
down-sampling and deep feature learning while avoid-
ing the problem of gradient vanishing by utilizing
residual learning mechanism, i.e,

yr = R(xr ) + xr , (11)

where xr and yr denote the input and output vectors
respectively. And R(xr ) denotes the residual mapping
correlation between the true distributions of the input
and output, which is learned by the residual blocks
layer. As shown in Figure 2, there are two convolution
layers utilized in each residual block, which achieves
feasible outputs of down-sampling while considering
feature distribution correlations between input data
and 5G network performance. Moreover, to guarantee
the convergence of proposed intelligent model during
the training phase, batch normalization layer is added
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following each convolution layer in the residual blocks.
To enhance the expressive ability of the model and
feasibility of convoluted outputs, the activation function
of parametric rectified linear unit (PReLU) is exploited
following the first batch normalization layer.

• Evaluation results output layer based on convolu-
tion: With the down-sampling results provided by the
multiple residual blocks, the final output performance
evaluation results for evaluated 5G networks can be
generated in the form of evaluation numerical scores,
which can be written as

ro = [S1, . . . , Sl] = Conv(ylr ), (12)

where ro denotes the final output performance eval-
uation results set of intelligent model and S1, . . . , Sl
denote the evaluation scores of l cellular network areas
or fine-grained network areas, which depends on the
type of input data. ylr denotes the output vector of the
last residual block and Conv(·) denotes the convolution
operation in the last convolution layer.

D. THE TRAINING STRATEGIES OF PROPOSED SCHEME
In the training phase of the proposed intelligent model, the
training strategy is of great significance to generate accurate
cellular-scale evaluation results and precise fine-grained
evaluation results. However, the following two challenges of
training the proposed intelligent model are existed as:

• First, during the design of specific objective training task
of the model, the labels of input training data, i.e., the
measured cellular or fine-grained evaluation results are
uncertain and lacking, which makes it difficult for the
intelligent model to learn the correlation between the
input original vectors and true performance evaluation
scores.

• Second, due to the differences between the cellular-scale
and fine-grained input training data, which are
cellular-scale performance data collected from the
cloud-edge devices and QoS data collected from the
edge-end devices respectively, the training strategy
including the label calculation as aforementioned and
loss function design should be totally different.

To overcome the above issues, the data labelling
approaches for cellular-scale and fine-grained performance
evaluation are proposed in this section. Besides, the
corresponding loss function designs of each of them are
studied to guarantee the accuracy of generating evaluation
scores.

1) WSA-BASED PERFORMANCE EVALUATION APPROACH
FOR DATA LABELING
Although conventional network performance evaluation
methods can not achieve high precise evaluation results,
it is feasible for them to calculate the labels for training
data of cellular-scale network areas. In particular, owing
that the input training data of cellular-scale and fine-grained

evaluation are quite different, the specific calculation of
labels should be different and designed separately.

In this section, a weighted sum approach (WSA)-based
method is exploited to calculate the data labels, whose core
idea is to generate the performance evaluation scores by aver-
aging the input data. And the corresponding data labelling
procedures of cellular-scale and fine-grained evaluation are
as follows:

• Data labelling for cellular-scale evaluation:As for the
data labelling of cellular-scale evaluation, without loss
of generality, we focus on a specific 5G network area Cn
with the cellular scale, the label of it can be expressed as

Scn =
1
k1

k1∑
i=1

αnni +
1
k2

k2∑
j=1

αeej +
1
k3

k3∑
m=1

αcam, (13)

Algorithm 1 Paradigm of the Proposed Scheme for
Cellular-Scale evaluation
Training phase:
Step 1. Process network transmission data, energy efficiency
data and coverage capacity data by (4),(5) and (6) to obtain
input vector xin.
Step 2. Calculating data labels of the input data by (13) to
obtain sc.
Step 3. Initialize the parameters θ of the intelligent model
with initial training settings.
Step 4. Iteratively train the intelligent model and by
minimizing (15).
Step 5.Return trained parameters θ of the proposed intelligent
model.
Inference phase:
Step 1. Repeat the operations in step 1 for testing data.
Step 2. Input vectorial testing data into trained intelligent
model.
Step 3. Return cellular-scale network performance evaluation
results.

where ni ∈ Nn = [n1, . . . , nk1 ] denotes the
network-level transmission data, ei ∈ En =

[e1, . . . , ek2 ] denotes the energy efficiency data and ai ∈

An = [a1, . . . , ak3 ] denotes the network-level coverage
capability data of Cn. And αn, αe, αc are corresponding
weights. Please note thatNn,En andAn are standardized
numerically and converted positively to guarantee Scn ∈

(0, 100) according to (4) and (5).
• Data labelling for fine-grained evaluation: Similarly,
as for the data labelling for fine-grained network
performance evaluation, we still consider a coarse
cellular network area Cm, which can be constructed
via area aggregation among several fine-grained areas
D1, . . . ,Ds, and the label of it can be calculated based
on WSA method and QoS data as

Ssm =
1
ml

ml∑
i=1

αqqi,
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Mu = {Mum1 , . . . ,Muml |Mum1 , . . . ,Muml ∈ D(Cm)},
(14)

where Ssm is the evaluation score, i.e., the data label of the
network area Cm. And qi denotes the QoS score of the
mobile user Mumi which locates in the coverage region
D(Cm) of Cm.

In the current 5G network operation systems, WSA is
commonly utilized to evaluate the network performance and
quality for cellular-scale network coverage areas with high
accuracy, especially with adequate input data. Therefore,
WSA is selected to calculate the performance evaluation
scores of cellular-scale network area so as to overcome the
challenge of lacking data labels.

2) LOSS FUNCTION DESIGN BASED ON CALCULATED
LABELS
As aforementioned, the goal of proposed network perfor-
mance evaluation scheme is to generate accurate and precise
evaluation results based on the input cellular-scale network
data or user QoS data. And owing that in the previous
section, we obtain data labels of cellular coverage areas with
different types of network data, the specific loss function
designs of training corresponding cellular-scale and fine-
grained attention mechanism-based intelligent models are
different and are elaborated as:

Algorithm 2 Paradigm of the Proposed Scheme for
Fine-Grained evaluation
Training phase:
Step 1. Process QoS data by (4), (5) and (6) to obtain input
vector xin.
Step 2. Calculating data labels of the input data by (14) to
obtain sc.
Step 3. Initialize the parameters θ of the intelligent model
with initial training settings.
Step 4. Iteratively train the intelligent model and by
minimizing (16).
Step 5.Return trained parameters θ of the proposed intelligent
model.
Inference phase:
Step 1. Repeat the operations in step 1 for testing data.
Step 2. Input vectorial testing QoS data into trained intelligent
model.
Step 3. Return fine-grained network performance evaluation
results.

• Cellular-scale model loss function design: During the
loss function design of cellular-scale evaluation, owing
that the scales of the output results, i.e, the generated
evaluation scores of the intelligent model based on
input network-level data, are the same as original data
labels, the distortion between generated output results rco
and the real cellular data labels sc should be minimized
and the euclidean distance is employed in the loss

function which can be expressed as

Lc = ||sc − rco||
2
2, (15)

where rco = [S1, . . . , Sl] denotes the generated
evaluation scores of l cellular-scale network areas. And
sc = [Sc1, . . . , S

c
l ] denotes the data labels of the

corresponding l cellular-scale network areas, which are
calculated by (13)

• Fine-grained model loss function design: Distinct
from the cellular-scale evaluation, the scales of the
generated evaluation results by the intelligent model
trained for fine-grained network performance evaluation
are much smaller than the origin cellular-scale data label
acquired by (14), which makes it difficult to directly
utilize the generated evaluation results to design loss
function. Therefore, we exploit the results generated
by the fine-grained intelligent model to first estimate
the real data labels ss calculated based on conven-
tional methods according to (14), and then minimize
the distance between the estimated ŝs and real label
set ss in the euclidean space. The loss function of
training the fine-grained intelligent model can be written
as

Ls = ||ŝs − ss||22, (16)

where ŝs = [Ŝs1, . . . , Ŝ
s
N ] denotes the estimated data

score set of N cellular-scale network areas constructed
via area aggregation among M fine-grained network
areas where M > N , while ss = [Ss1, . . . , S

s
N ] denotes

the data label set calculated by (14). And as for utilizing
the fine-grained generated results rso = [S1, . . . , SM ]
to estimate the real data labels, we consider a specific
cellular-scale network area Cm which covers s fine-
grained areasD1, . . . ,Ds, the specific estimated label of
it can be calculated as

Ŝsm =
1
s

s∑
i=1

Sj, (17)

where Ŝsm is the corresponding estimated data label
of original data label Ssm acquired by (14). And Sj is
the generated evaluation result of the intelligent model,
presenting the evaluation score of fine-grained area Dj.

In particular, stochastic gradient descent (SGD) algorithm
is utilized to update the proposed intelligent model by
minimizing the loss functions presented in (15) and (16)
for cellular-scale and fine-grained model training, and the
paradigms of the proposed evaluation schemes applying
two kinds of intelligent models with different evaluation
granularity are illustrated in algorithm 1 and 2, respectively.

IV. EXPERIMENTAL RESULTS BASED ON PRACTICAL 5G
NETWORK OPERATION DATA
In this section, experimental results are supplied to present
the network performance evaluation ofmultiple 5G scenarios,
i.e., generating the comprehensive evaluation scores of
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TABLE 1. The platform of 5G vertical applications.

various network areas with different precision. First, the
performance of model convergence is observed to measure
the robustness of the proposed model. Then, to facilitate the
distinct and intuitive observations of generated scores of fine
granularity, we also transfer them into visible graphs. Finally,
to verify the high performance of our proposed intelligent
model, performance assessment based on correlation anal-
yses of both the cellular-scale and fine-grained intelligent
models are conducted.

In particular, in order to enhance the applicability and
effectiveness of the proposed model in the real 5G networks,
we sampled data from the practical enterprise 5G network
platform. As illustrated in Table.1, the sampled data applied
for network performance evaluation from cellular scale
to fine-grained scale is mainly sampled from the central
cloud servers, edge servers in gNodeBs and mobile user
terminals. The number of the central cloud servers of
sampling is more than 1000, while the number of edge
servers is more than 40000. Moreover, the number of mobile
user terminals is more than 500000. Besides, both the
cellular-scale network data and user QoS data after sampling
are preprocessed following Section III-B, and the detailed
settings are provided in Table 3, where max(·) and min(·)
denote functions of obtainingmaximum andminimum values
of input data respectively while np2tensor(·) denotes the
data transformation function which turns numerical matrix to
tensor.

A. DATASETS AND EXPERIMENTAL SETTINGS
As shown in Table.2, we employ sampled cellular net-
work transmission data, energy efficiency data, coverage
capacity data and user QoS data of 5G networks in three
representative 5G empowering scenarios, including smart
treatment, internet of industry and intelligent transportation.
Please note that the involved network data is collected from
practical private 5G network platform, and the specific data
collection devices in practical 5G network architecture has
been aforementioned in III-A. The detailed information of the
datasets are elaborated as follows:

• Internet of Industry: As for the cellular-scale perfor-
mance evaluation in the scenario of internet of industry,
we employ totally 21000 sampled network-level data
including transmission data, energy efficiency data and
coverage capacity data as training data to train the pro-
posed intelligent model, while additional 2000 sampled
data of identical specification are utilized for validation.

And the sampled data are collected every hour from
5G network operation devices continuously for two
weeks. And for training the fine-grained intelligent
model, 80000 QoS data sampled every 40 minutes for
consecutive two weeks are selected as training data,
while the rest 5000 QoS data are used for validation.

• Intelligent Transportation: In the scenario of
intelligent transportation, there are 40000 sampled
network-level data collected every hour for continuous
two weeks used for training the proposed intelli-
gent model to achieve cellular-scale evaluation, and
2000 additional network-level data are set for validation.
And as for the fine-grained evaluation, 80000 QoS data
sampled every 40 minutes for two weeks are used for
training and other 5000 QoS data are set as validation
data.

• Smart Treatment: To train the cellular-scale intelligent
model of the smart treatment, 35000 network-level data
sampled every hour for two weeks are input in the train-
ing procedure and additional 2000 testing network-level
data of the same specification are employed. And when
it turns to the training of the fine-grained intelligent
model, 80000 QoS data sampled every 40 minutes for
two weeks are exploited, while other 5000 QoS data are
used for validation.

In particular, as shown in Table.2, during the iterative training
process of our proposed intelligent model, the number of
training epochs is set as 200, with the initial learning rate set
as 0.01, which is reduced to 0.001 after 100 training rounds.
Moreover, the batch size is set as 128.

B. MODEL CONVERGENCE PERFORMANCE ASSESSMENT
Since the scales of input cellular network data and user
QoS data are extremely large, it is of great significant
to guarantee the model convergence. In particular, as the
loss functions presented in (15) and (16) are customized
and self-designed as the distance measurement between the
real network performance labels and generated evaluation
results, the lower convergence values of loss functions denote
higher performance evaluation accuracy of the proposed
intelligent model. Therefore, the model convergence is first
observed in this paper when training cellular-scale and fine-
grained intelligent models. In particular, in order to facilitate
observation of the loss function curves, the loss values in
each round of training the proposed intelligent model in three
simulated 5G scenarios are averaged equally.
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TABLE 2. Datasets and simulation settings.

TABLE 3. Specific preprocessing of postive conversion, normalization and vectorization.

As shown in Figure.3, Figure.3 (a) denotes loss function
curves of cellular-scale evaluation, where blue solid line
represents training loss curve and orange solid line represents
validation loss curve. And Figure.3 (b) denotes loss function
curves of fine-grained intelligent model, where green solid
line represents training loss curve and blue solid line
represents validation loss curve. In particular, although the
number training epochs is set as 200 in the previous section,
the curves of two kinds of intelligent models converge to
a certain range after approximately 60 rounds. Therefore.
in this section, the loss curves within 100 rounds are
illustrated in Figure.3.

And it is anticipated that the proposed model has a great
convergence performance for both the cellular-scale and fine-
grained evaluation, which denotes the training strategies are
efficient to guarantee the overall model performance and high
accuracy of generating the evaluation results. Moreover, great
convergence performance of the proposed intelligent model
also denotes the model’s robustness and splendid learning
capacity after training. And the validation loss curves fitting
well with the training loss curves as illustrated in Figure.3
also denotes that the proposed intelligent model has a great
generalization performance.

C. VISILABLE EVALUATION RESULTS OF OUR PROPOSED
AI-ENABLED SCHEME WITH HIGH GRANULARITY
Since the fine-grained intelligent model can generate
more geographically precise performance evaluation results,
presenting more details of network performance and user

experience that can not be achieved by conventional evalua-
tion methods. In order to observe the geographical high preci-
sion of generating evaluation results by the intelligent model
more distinctly, visible illustration of the output fine-grained
evaluation scores matched to corresponding fine-grained
network areas is provided. In particular, we transfer the
generated network performance evaluation results of the
selected three representative 5G scenarios into visible heat
maps, which use color gradients to highlight patterns,
concentrations, and variations within the data, making it
easier to present generated results in an intuitive and visually
appealing way. In particular, we present visible performance
evaluation results of fine-grained network areas that are
geographically close and correlated.

Figure 4, Figure 5 and Figure 6 illustrate the visible
fine-grained evaluation results of the simulated 5G scenarios
of internet of industry, intelligent transportation and smart
treatment, respectively. In each depicted figure, we present
visible evaluation results of three groups of fine-grained
network areas, where the deeper color denotes the higher
performance evaluation score. And it can be observed that
the performance evaluation results of sampled fine-grained
network areas in internet of industry and intelligent trans-
portation are higher than those in smart treatment. And
with the proposed fine-grained intelligent model generating
geographically precise evaluation results, more details of
network performance can be observed and further analysed,
which can not be achieved by conventional evaluation
methods.
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FIGURE 3. Loss function curves of training cellular-scale and fine-grained
intelligent models.

Taking the presented fine-grained evaluation results of
intelligent transportation as an example, which is shown in
Figure 5, the network performance of the selected groupD4 is
relatively better than D5 and D6. Moreover, the fine-grained
network areas in D4 with higher scores distribute more
intensively than those in D5 and D6, which denotes the
central-cloud and edge devices deployed in D4 have better
coverage capacity than those in D5 and D6. Similar analysis
is also applied to other 5G network scenarios, which denotes
that the proposed fine-grained intelligent model is beneficial
to the precise network performance analysis and further
network optimization.

D. CORRELATION ANALYSIS RESULTS OF OUR PROPOSED
SCHEME
Owing that the proposed intelligent model generates network
evaluation results based on cellular network data or user
QoS data, the correlation between the output scores and
input indicator data should be strong so as to guarantee
the high accuracy of the proposed intelligent model, i.e.,
for cellular-scale evaluation, the generated results are ought
to be strongly correlated with network-level data including
network transmission data, energy efficiency data and

TABLE 4. Correlation analysis results of our proposed scheme (cellular
level).

coverage capacity data, while for fine-grained evaluation,
the correlation between output results and input QoS
data should be high. Therefore, we carry out correla-
tion analysis for both the cellular-scale and fine-grained
intelligent models, which are elaborated in the following
sections.

1) CORRELATION ANALYSIS FOR CELLULAR-SCALE
EVALUATION
Since the cellular-scale network performance evaluation
results are generated by the intelligent model based on
network-level indicator data, the output scores should be
strongly correlated to them. In this section, three kinds of
widely applied correlation coefficients between the input
network-level data and output scores are calculated, including
Pearson, Spearman and Kendall correlation coefficients.
In particular, we select four groups of cellular network
areas in each 5G scenario, and calculate the above three
kinds of correlation coefficients between the cellular output
results in each group and the corresponding network-level
data. As shown in Table.4, Ni = {Ni,Ei,Ai} (i =

1, . . . , 12) denotes the network-level data including network
transmission dataNi, energy efficiency data, Ei and coverage
capacity data Ai corresponding to cellular network group
Ci (i = 1, . . . , 12), which consists of multiple cellular 5G
network areas.

It is plain to see that in Table.4, the correlation coefficients
between sampled network-level data and corresponding
output evaluation results are relatively high. In the internet
of industry, the maximum correlation coefficient is 0.859 of
Kendall correlation coefficient between N3 and C3, while
the minimum correlation coefficient is 0.758 of Spearman
correlation coefficient between N2 and C2, which denotes
the correlation in this scenario is strong while the correlation
between N3 and C3 is relatively higher than that between
N2 and C2 and the generating accuracy of the intelligent
model applied in this scenario is also proved to be high.
Similar analysis are likewise suitable for the other two
scenarios, where the maximum value of correlation is
0.880 of smart treatment while the minimum value is 0.742 of
intelligent transportation and it can be concluded that the
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FIGURE 4. Visible fine-grained evaluation results of internet of industry.

FIGURE 5. Visible fine-grained evaluation results of intelligent transportation.

FIGURE 6. Visible fine-grained evaluation results of smart treatment.

overall correlation coefficients in the selected 5G scenarios
are high, which indicates that the proposed cellular-scale
intelligent model has a high accuracy and great model
performance.

2) CORRELATION ANALYSIS FOR FINE-GRAINED
EVALUATION
During the procedure of correlation analysis for network
performance evaluation with fine granularity, three kinds of
commonly employed correlation coefficients between gener-
ated results of fine-grained network areas and corresponding
QoS data sets are calculated, which are Pearson, Spearman

and Kendall correlation coefficients. In particular, we select
four non-overlapping groups of fine-grained5G networks
to generate the performance evaluation results in each 5G
scenario, as depicted in Table.5, whereDsubi (i = 1, . . . , 12)
denotes a set of fine-grained network performance evaluation
results corresponding to a group of fine-grained areas which
satisfies Dsubi

⋂
Dsubj = ∅, i ̸= j. And Qi denotes the QoS

data set corresponding to Dsubi .
As illustrated in Table.5, the overall correlation coefficients

in the selected three 5G scenarios are high, especially in the
scenario of smart treatment. Taking the fine-grained areas
Dsub10 as an example, the Pearson, Spearman and Kendall
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TABLE 5. Correlation analysis results of our proposed scheme
(sub-cellular level with fine granularity).

correlation coefficients between Q10 and Dsub10 are 0.873,
0.866 and 0.860 respectively, which denotes the performance
evaluation results of Dsub10 are strongly correlated with
the corresponding QoS data set Q10. The same analysis is
also applied to the other two selected 5G scenarios, where
the maximum correlation coefficient is 0.852 of Pearson
correlation coefficient between Q7 and Dsub7 in intelligent
transportation and the minimum correlation coefficient is
0.785 of Spearman correlation coefficient between Q1 and
Dsub1 in internet of industry, which denotes the trained
intelligent model has great performance and generating accu-
racy when applied to the fine-grained network performance
evaluation.

V. CONCLUSION
In this paper, in order to evaluate the performance of networks
in various 5G empowering scenarios with fine granularity
and accuracy, the network performance evaluation scheme
of 5G network is studied. Inspired by the research field
of computer vision, we propose an intelligent network
performance evaluation scheme, which applies attention
mechanism to give different weights to different channel
features and thus better filtrating task-concentrated features,
thereby enhancing the robustness and learning capacity of
the proposed AI model. Moreover, corresponding training
strategies are provided. Finally, experimental results based on
data collected from practical 5G network operation system
are provided, which illustrates that our proposed model
can generate evaluation results with high accuracy and fine
granularity of various 5G network scenarios.
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