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ABSTRACT Large-scale distributed generation (DG) access to the distribution network brings many
uncertainties to the distribution network, considering the impact of different types of distributed power supply
on the optimization results as well as the uncertainty and correlation of wind energy, photovoltaic power gen-
eration, and load. A metaheuristic algorithm the Improved Beluga Whale Optimization Algorithm (IBWO)
is used to optimize the capacity and location of DG. This algorithm incorporates the elite reverse learning
strategy and cyclone foraging strategy while adjusting the balance factor to enhance the diversity of the
algorithm population and further balance local search capability with global search capability. This study
optimizes the configuration of distributed energy resources considering the uncertainty and correlation
of wind power, photovoltaic power, and load. The optimization objective is to reduce active power loss,
improve voltage stability, and minimize investment and operating costs. By conducting simulations on IEEE
33-bus and IEEE 118-bus test cases, the active power network losses are enhanced by 55.49% and 45.39%
respectively, and the algorithm outperforms other methods regarding other data, demonstrating its superiority
and effectiveness.

INDEX TERMS Distributed generation, distribution network, uncertainty, correlation, improved beluga
whale optimization.

NOMENCLATURE
BWO Beluga whale optimization.
IBWO Improved Beluga whale optimization.
PSO Particle swarm optimization.
DG Distributed generation.
MCS Monte Carlo simulation.
WT Wind turbine.
PV Photovoltaic.
EOBL Elite opposition-based learning.
CFS Cyclone foraging strategy.
WOA Whale optimization algorithm.
MRFO Manta Ray Foraging Optimization Algorithm.

The associate editor coordinating the review of this manuscript and

approving it for publication was Youngjin Kim .

v Wind speed.
vin/vout/vrate Cut-in/cut-out/rated speed of WT.
PrWTG Rated power of WT.
PWT Generated wind power at v.
Ir Rated irradiation intensity.
I Irradiation intensity.
PrPV Rated power of PV.
PPV Generated solar power at vI .
APL Active Power Loss.
IOMC Investment, Operation, and Maintenance

Costs of DG.
PPC Purchased Power Cost from Upper-level

Grid.
VSM Voltage Stability Margin.
Nb The total branch number.
Gk The conductance between bus i and bus j.
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Ui The nodal voltage at bus i.
δij The phase angle between bus i and bus j.
PLoss Active power loss.
xi The type of DG installed at bus i.
CDi/Cri Investment cost / operating cost.
PDGi The installed capacity of DG is installed at

node i.
PW The total capacity of the system.
P∑

DG The total active output of DG.
Tmax The maximum annual load utilization

hours.
Cp.u. The electricity price.
B The first type of voltage stability margin.
Lij The first type of voltage stability index.
Pi/Qi The active/reactive power injected into

bus i.
ei/fi The real/imaginary parts of the voltage at

bus i.
Gij/Bij The conductance/conductance between

bus i and j.
Ui The voltage of bus i.
Uimin/Uimax The upper and lower limits of voltage at

bus i.
Iij The current allowed for the branch.
Iijmax The maximum current allowed for the

branch.
B0 A random number between (0,1).
T Current iteration numbers.
Tmax Maximum iteration numbers.
Bf A balance factor transfer of BWO from the

exploration phase to the exploitation phase.
XT+1
i,j The new position of the ith beluga whale in

the jth dimension.
pj Random number between [1, D].
XTi,pj The positions of the ith beluga whale at the

current iteration.
XTbest The best position of beluga whales.
XTi /XTr The current positions for the ith / a random

beluga whale.
C1 The random jump strength of the Levy

flight strategy.
0 Gamma function.
LF The jump length of the Levy flight strategy.
Xstep The step size of whale fall.
C2 The step factor of whale fall.
Wf The probability of whale fall.
X ei,j/X

e
i,j The elite / inverse individual.

K∗ The dynamic coefficient on (0,1).
αj/βj Dynamic boundary.
Bfmin/Bfmax The lower/upper bounds of Bf .

I. INTRODUCTION
With the advancement of the economy and society, there
will be a significant increase in the energy demand [1].

Conventional methods of power generation such as fos-
sil fuels, nuclear power plants, and hydroelectric power
stations require lengthy construction periods, substantial
investment costs, and contribute to the growing concern
about environmental pollution caused by traditional fos-
sil fuel power generation [2]. In this context, there has
been a rapid development of Distributed Generation, par-
ticularly wind and photovoltaic power generation, due to
their adaptability and environmental friendliness. The inte-
gration of DG into distribution networks on a large scale
has become a prevailing trend [3]. However, the integra-
tion of DG complicates distribution networks, alters net-
work flow to a certain extent, and the optimization and
configuration of DG impact the system’s network losses,
thereby posing significant challenges and complexities to
the operation of distribution networks [4]. Nevertheless,
an inappropriate configuration of DG can lead to reduced
system stability, voltage fluctuations, and increased active
network losses [5], as well as adversely affecting the flex-
ibility of grid scheduling [6]. Therefore, researching the
optimized configuration of DG in the planning of distribution
networks holds immense importance in enabling the distri-
bution network to operate more economically, safely, and
reliably [7].
At present, scholars have done many studies on the optimal

configuration of DG in distribution networks from different
perspectives. They have proposed various DG optimization
models and employed diverse methods to solve them. Liter-
ature [8] establishes an optimal allocation model considering
active network loss cost and user power purchase cost min-
imization and adopts a cat swarm algorithm improved by
using a chaotic search strategy to solve. Literature [9] estab-
lishes an optimal allocation model with active network loss,
voltage deviation, and voltage stability as the optimization
objectives, and adopts an ant-lion optimization algorithm
to solve; and literature [10] considers taking into account
the interests of both the operator and the user, which con-
structs the objective function with active network loss, annual
investment and operation cost, user power purchase cost and
system voltage enhancement, proposes an improved sooty
tern algorithm solution model. Literature [11] proposes an
optimal allocation model of wind and solar energy stor-
age considering the degradation cost of batteries, and the
multi-objective function with the objectives of economy,
voltage stability and network loss is solved in the GAMS
environment. Literature [12] established an objective func-
tion based on the indicators of life-cycle cost, network loss,
and voltage deviation. Considering the integration of flexi-
ble distribution units, an improved sparrow search algorithm
is adopted to solve the model. Literature [13] proposes an
improved equilibrium optimizer to optimize the location
and capacity of photovoltaic systems in the distribution net-
work to reduce active power network loss. Literature [14]
also aims to optimize the location and capacity of photo-
voltaic systems to reduce network loss. However, unlike [13]
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and [14] does not model the uncertainty of photovoltaics
and uses the Kuhn optimization algorithm to solve the prob-
lem. Literature [15] adopts an improved adaptive weighted
multi-objective particle swarm optimization (PSO) algorithm
to optimize the configuration of DG, aiming to achieve the
optimal investment cost of distributed power generation, the
lowest network loss, and the best voltage stability. Litera-
ture [16] optimizes DG in the distribution network using
a hybrid gray wolf optimizer to maximize the reduction
of network loss. Literature [17] optimizes the configuration
of DG and storage systems (SC) by reducing active power
network loss and voltage deviation. Furthermore, an innova-
tive multi-objective MGSA-EE (MMGSA-EE) is proposed
to solve the optimization configuration model based on the
MGSA-EE.

The above literature has established optimal allocation
models with different objective functions from different per-
spectives, and various algorithms have been used to solve
them. However, the aforementioned models did not fully con-
sider the uncertainty and correlation of wind, solar, and load,
which can have a significant impact on the DG in distribution
networks. Therefore, the resulting optimized configuration
may have certain irrationality [18].

Currently, some literature considers the uncertainty and
correlation of DG’s and loads. Literature [19] established an
optimization model with the objectives of distribution net-
work operation cost, pollutant gas emission, and voltage sta-
bility, considered the random fluctuation of source load, and
used the semi-invariant method and the Cornish-Fisher series
expansion to realize the trend calculation; literature [20] con-
sidered the uncertainty of load and tariffs, and established an
optimization model that considered the investment cost and
the operation cost, and used the Monte Carlo sampling for
the scenarios, and the optimization configuration is achieved
using PSO. Literature [21] firstly constructed probabilistic
models for wind, light, and load, and adopted Spearman
rank correlation coefficient matrix to describe the correlation,
and generated samples for correlation using Latin hypercube
and Cholesky decomposition, this paper established a DG
optimization configuration model aiming to minimize the
annual total cost and risk, and used NSGA-II to achieve it.
Literature [22] first modeled the uncertainty of DG output
using an improved conditional deep convolution generative
adversarial networks (DCGAN). In themodel, monthly labels
are introduced to generate wind-solar joint output scenar-
ios. The parameters of the Gaussian mixture model (GMM)
for the distribution model of the scene are generated, and
then a two-layer optimization configuration model for DG
is established, aiming to minimize the social comprehen-
sive cost. Finally, an integer genetic algorithm and a wind
driven optimization (WDO) algorithm are used to solve the
model. Literature [23] models the wind-solar and load using
probability distribution functions and simulates scenarios
with Monte Carlo simulation(MCS). A K-means algorithm,
which incorporates the Davison-Bouldin index (DBI),

is used to reduce the clustering of scenarios. A two-
level optimization model is established, aiming to minimize
the annual comprehensive economic cost and optimize
the voltage index. And an IAGA is used to solve the
model.

Although the above literature considers the uncertainty
and correlation of distributed power sources and uses the
parametric method to simulate the generation of scenarios for
wind, light, and load, it is based on limited data only, and if
the data lack representativeness, the conclusions drawn have
certain limitations.

Therefore, in this paper, considering the uncertainty of
wind turbine(WT), photovoltaic (PV) output, and load in long
time scales, an improved K-means method that considers
the initial centroid selection for massive data is used for
the optimal allocation scenarios of the distribution network
for the aggregation and reduction [24]; while considering
the active network loss, the DG investment and opera-
tion cost, and the power purchase cost of the distribution
network, to improve the voltage quality of the distribu-
tion network, the first type of voltage stability margins
are introduced indicators [25]; considering the economic
indicators with different quantities of active network loss
and voltage stability margin, the dimensionless process-
ing was carried out. On this basis, the Beluga Whale
Optimization (BWO) algorithm is improved accordingly
for the siting and capacity determination problem, which
improves the convergence speed and convergence accuracy
of the algorithm and improves the search capability, and an
Improved Beluga Whale Optimization (IBWO) is proposed
and put forward and apply it to the optimal configuration
problem of DG.

The main contributions of this paper can be summarized as
follows:

1. An optimization model considering the effect of DG
types on the optimal allocation results as well as the uncer-
tainty and correlation of wind, solar and load on a long-time
scale is established, taking into account active power net-
work loss, DG investment and operational costs, distribution
network purchasing costs, and voltage stability as multiple
objectives.

2. An improved K-means clustering algorithm, which
incorporates a spatial distribution for selecting initial cluster
centers, is introduced. The effectiveness of the algorithm in
reducing a massive amount of wind-solar load scenarios is
validated.

3. An improvement is made to the BWO algorithm for
the optimization configuration of distributed generation. This
improvement balances its local and global search capabilities,
further enhancing the convergence speed and accuracy of the
algorithm.

The rest of this paper is organized as follows. Section II
introduces the generation of scenarios considering the uncer-
tainty and correlation of distributed power sources and
loads, as well as the improved K-means clustering method.
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TABLE 1. Summary of the previous approaches conducted in integrating different DG in distribution network.

Section III presents the DG optimization configuration
model. Section IV describes the basic principles of the BWO

and the improvements made to it. Section V provides case
studies. Section VI concludes the paper.
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TABLE 1. (Continued.) Summary of the previous approaches conducted in integrating different DG in distribution network.

II. SCENARIO GENERATION FOR DISTRIBUTED POWER
AND LOAD UNCERTAIN AND CORRELATION
Distributed energy represented by WT and PV is more and
more accessed to the distribution network, while WT and PV
have uncertainty, the wind speed and light intensity and load
in the same area also have certain correlations, in order to
ensure the rationality of the optimized configuration of DG,
it is necessary to consider the uncertainty and correlation of
DG and load.

Currently, there are several main approaches towind speed,
light intensity, and load stochasticity:

(1) The wind speed, light intensity, and load are fitted
by the parametric method, which is considered to obey
Weibull distribution, Beta distribution, and normal distribu-
tion, respectively, besides MCS, Latin Hypercube Sampling,
and other methods are used to sample and generate the sce-
narios [18], [23], however, the data relied on by this method
is usually limited, and if the data lacks representativeness, the
results obtained will have certain limitations.

(2) Fitting wind speed, light intensity, and load by non-
parametric methods, such as using kernel density estimation,
combined with Copula theory to generate scenarios [26], but
the large-scale dataset has high computational complexity.

(3) Based on the prediction error of wind speed, light
intensity, and load, the stochasticity of wind speed, light
intensity, and load is achieved by modeling and sampling
the prediction error [27], [28], but the prediction error brings
more limitations.

Considering that solving the distribution function may
introduce errors and reduce computation, and that there are
natural correlations between wind speed, light intensity, and
load at a certain time in the same region, this paper directly
combines the wind speed, light intensity, and load data at the
same time in the history of a certain place into an original
scenario, and adopts a kind of improved K-means method
that considers the selection of the initial centroids for a large
amount of data to reduce the scenario. for scene reduction.
The specific steps are as follows:

Step 1: Combine the wind speed, light intensity, and load
data at differentmoments, set theK value, and perform bubble
sorting on the combined data.

Step 2: Filter the data, take the center value of each
dimension as the first clustering center, and ensure that this
clustering center is in the middle of the data space.

Step 3: Calculate the Euclidean distance between each
point in the data space and this cluster center.

Step 4: Randomly select the next clustering center in
the data space, calculate the Euclidean distance between it
and the previously selected clustering center, and determine
whether the distance is greater than or equal to the set interval,
or else repeat this step until the requirements are met.

Step 5: Repeat steps 3 and 4 above to select the remaining
clustering centers.

Step 6: Calculate the Euclidean distance between all the
data and the selected K clustering centers and assign the data
to the class cluster closest to the center.

Step 7: Calculate the respective centers of the K class
clusters and recalculate the respective centers of the
class clusters by the arithmetic mean of the respective
dimensions.

Step 8: Calculate the minimization error sum of squares
between the new clustering center and the original center
for each class cluster, and output the clustering results if the
results no longer change or if the upper limit of the number
of iterations is reached.

After scenario reduction, wind speed and light inten-
sity are converted into WT and PV output according
to (1) and (2) [21].

PWT =


0, 0 ≤ v ≤ vinorvout ≤ v

PrWTG
v− vin

vrate − vin
, vin ≤ v ≤ vrate

PrWTG, vrate ≤ v ≤ vout

(1)

PPV =

PrPV
I
Ir

, I ≤ Ir

PrPV , I > Ir
(2)

III. DG OPTIMAL CONFIGURATION MODEL
Firstly, establish an optimization configuration model for DG
by constructing an objective function incorporating active
power losses, investment and operation costs of DG, and sys-
tem voltage stability margin. The constraints include power
balance, nodal voltages, branch currents, and DG installation
capacity. Subsequently, plan and optimize the configuration
scheme.

A. OBJECTIVE FUNCTION
1. Active Power Loss [10]

APL = f1 = PLoss =

Nb∑
k=1

Gk
(
U2
i + U2

j − 2UiUj cos δij

)
(3)
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where Nb is the total branch number, Gk is the conductance
between bus i and bus j, Ui and Uj are the nodal voltage at
bus i and bus j, and δij is the phase angle between bus i and
bus j.

2. Investment, Operation, and Maintenance Costs of
DG [10]

IOMC = f2 =

Nd∑
k=1

xi

[(
r (1 + r)n

(1 + r)n − 1
· CDi + Cri

)]
PDGi

(4)

where xi is the type of DG installed at bus i, r is the annual rate
of return, which is taken as 0.1; n is the number of years of
planning;CDi ,Cri andPDGi are the investment cost, operating
cost, and installed capacity of DG installed at node i.

3. Purchased Power Cost from Upper-level Grid [10]

PPC = f3 =
(
PW − P∑

DG − 1PL
)
TmaxCp.u. (5)

where PW is the total capacity of the system; P∑
DG is the

total active output of DG; 1PL = Ploss − P′
loss is the active

loss before and after optimization, Tmax is the maximum
annual load utilization hours, and Cp.u. is the electricity price.
4. Voltage Stability Margin [25]

VSM = f4 = B = 1 − max {Ln} (6)

where B is the first type of voltage stability margin, The
smaller max {L1,L2, · · · ,Ln} is, the larger B is and the more
stable the distribution network voltage is; the first type of
voltage stability index Lij for the branch between bus i, j is:

Lij = 4

(
PjXij − QjRij

)2
+

(
PjRij + QjXij

)
V 2
i

V 4
i

(7)

5. Objective Function
Considering that each sub-objective function has different

magnitudes and conflicts with each other, it is difficult to
reach the optimization at the same time, so it needs to be
dimensionless.

f ∗
=

f − fmin
fmax − fmin

(8)

F = ω1f ∗

1 + ω2f ∗

2 + ω3f ∗

3 + ω4f ∗

4 (9)

where ωi are weighting factors, ω1 = 0.3, ω2 = 0.2, ω3 =

0.3, ω4 = 0.2.

B. CONSTRAIN
1) POWER CONSERVATION CONSTRAINT

Pi −
N∑
j=1

ei
(
Gijej − Bijfj

)
+ fi

(
Gijfj + Bijej

)
= 0

Qi −
N∑
j=1

fi
(
Gijej − Bijfj

)
− ei

(
Gijfj + Bijej

)
= 0

(10)

wherePi andQi are the active and reactive power injected into
bus i, ei and fi are the real and imaginary parts of the voltage

at bus i, Gij and Bij are the conductance and conductance
between bus i and j.

2) VOLTAGE CONSTRAINT

Uimin ≤ Ui ≤ Uimax (11)

where, Uimin and Uimax are the upper and lower limits of
voltage at bus i.

3) CURRENT CONSTRAINT

Iij ≤ Iijmax (12)

where Iijmax is the maximum current allowed for the branch.

4) DG LIMITS CONSTRAINT∑
PDG ≤ η

∑
PLoad (13)

IV. IMPROVED BELUGA WHALE OPTIMIZATION
A. BELUGA WHALE OPTIMIZATION
Beluga whale optimization (BWO) is an optimization
algorithm proposed by Zhong et al. in 2022 [29]. The
algorithm achieves the solution of the optimization problem
by simulating the swimming, hunting, and whale fall of bel-
uga whales, which has the characteristics of relatively simple,
better global search ability and convergence accuracy. The
basic principle of the algorithm is as follows.

The transfer of BWO from the exploration phase to the
exploitation phase depends on the balance factor Bf , which
is defined as:

Bf = B0 (1 − T/2 ∗ Tmax) (14)

where T and Tmax are the current and maximum iteration
numbers, B0 is a random number between (0,1) at each itera-
tion, whenBf > 0.5, the algorithm is in the exploration phase,
when Bf ≤ 0.5, the algorithm is in the exploitation phase.

1) EXPLORATION PHASE
XT+1
i,j = XTi,pj +

(
XTr,p1 − XTi,pj

)
(1 + r1) sin (2πr2)

, j = even

XT+1
i,j = XTi,pj +

(
XTr,p1 − XTi,pj

)
(1 + r1) cos (2πr2)

, j = odd

(15)

where XT+1
i,j is the new position of the ith beluga whale in

the jth dimension, pj is a random number between [1, D],
XTi,pj and X

T
r,p1 are the positions of the ith and rth beluga whale

at the current iteration, according to the odd or even of the
dimension, the beluga whale is swimming synchronously or
in mirror.
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2) EXPLOITATION PHASE

XT+1
i = r3XTbest − r4XTi + C1 · LF ·

(
XTr − XTi

)
(16)

where XTbest is the best position of beluga whales, X
T
i and XTr

are the current positions for the ith belugawhale and a random
beluga whale, C1 = 2r4 (1 − T/Tmax) is the random jump
strength of the Levy flight strategy.

LF = 0.05 ×
u× σ

|v|1/β
(17)

σ =

(
0 (1 + β) × sin (πβ/2)

0 ((1 + β) /2) × β × 2(β−1)/2

)1/β

(18)

3) WHALE FALL

XT+1
i = r5XTi − r6XTr + r7Xstep (19)

Xstep = (ub − lb) exp (−C2T/Tmax) (20)

where Xstep is the step size of whale fall, C2 = 2Wf ×n is the
step factor of whale fall, Wf is the probability of whale fall,
which is defined as:

Wf = 0.1 − 0.05T/Tmax (21)

B. IMPROVEMENTS TO BELUGA WHALE OPTIMIZATION
The BWO has the advantages of good stability, strong search
capability, and high convergence accuracy. However, it lacks
diversity and has the disadvantages of easily falling into local
optimum and premature convergence. In order to improve
these situations, balance the global and local search multi-
ple abilities, further improve the searchability, increase the
diversity of candidate objects, and increase the consistency,
the following improvements are made to the BWO.

1) ELITE OPPOSITION-BASED LEARNING
Elite opposition-based learning (EOBL) is to construct a
reverse population by elite individuals in the current popu-
lation, constitute a new population consisting of the reverse
population and the current population, and select the opti-
mal individuals from the new population to enter the next
iteration [30].
Introducing the EOBL strategy at the beginning of each

iteration, can expand the search area and increase the diversity
of the population, which can make the algorithm jump out of
the local optimum. It can be expressed by:

X ei,j = K∗
(
αj + βj

)
− X ei,j (22)

where X ei,j, X
e
i,j are the elite individual and the inverse individ-

ual, K∗ is the dynamic coefficient on (0,1), αj = min
(
Xi,j

)
,

βj = max
(
Xi,j

)
are dynamic boundary.

2) BALANCE FACTOR
In the BWO, Bf is a balancing factor between the exploration
and exploitation phase, and the size of Bf has a great impact

on balancing the global and local search capabilities. There-
fore, iterative modification of Bf is performed to enhance the
exploration and development phases of BWO.

Bf = Bfmin +
(
Bfmin − Bfmax

)
· exp

(
ln

(
Bfmin
Bfmax

)
·

T
Tmax

)
(23)

where Bfmax , Bfmin are the upper and lower bounds of Bf
respectively.

From (23), as the number of iterations increases, Bf
decreases exponentially.Bf declinesmore gently at the begin-
ning of the algorithm iteration, which facilitates the algorithm
to perform a global search; it declines more at the end of the
iteration, which enhances the local search capability.

3) CYCLONE FORAGING STRATEGY
Cyclone foraging strategy (CFS) is a foraging behavioral
strategy observed in the field of animal behavior, in which
individual animals forage in a cyclone-like motion. It has
been demonstrated in the Whale Optimization Algorithm
(WOA) and theManta Ray Foraging Optimization Algorithm
(MRFO) [31]. To further enhance the development phase
of the BWO, the cyclone foraging strategy in the MRFO is
introduced to improve this phase. The updated formula for
the improved exploitation phase is:

XT+1
i =



XTbest + r8
(
XTbest − XTi

)
+β · C1 · LF

(
XTbest − XTi

)
, i = 1

XTbest + r8
(
XTi−1 − XTi

)
+β · C1 · LF

(
XTbest − XTi

)
, i = 2, . . . , n

(24)

β = 2er9
T−t+1
T · sin (2πr9) (25)

C. THE PROCEDURE OF IBWO
The flow chart and pseudo code of the IBWO to solve the
optimal configuration of distributed generation are shown in
FIGURE 1 and TABLE 2. The specific optimization steps are
as follows:

(1) Initialize the maximum iterative number, population
size, Bfmax and Bfmin and other related parameters, initially
generate the initial position of the beluga whale population,
and calculate the fitness value according to the objective
function.

(2) Further optimize the position of beluga whale popula-
tions according to the EOBL strategy and calculate the fitness
value after position update.

(3) Calculate Bf andWf by (23) and (21), if Bf > 0.5, then
enter the exploration phase and update the population position
according to (15), otherwise enter the exploitation phase and
update the population position according to (24); Calculate
the fitness value and keep the optimal solution of the current
cycle.
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FIGURE 1. Process of IBWO.

(4) If Bf < Wf , then enter the whale fall, update the
position according to (19), calculate the fitness value, and
keep the optimal solution of the current cycle; otherwise, skip
this process.

(5) Determine whether the current iteration reaches the
maximum iteration, if it does, output the optimal solution and
end the program; otherwise, return to step 2.

V. CASE STUDIES
A. SCENARIO REDUCTION RESULTS
Select the 2021 annual wind speed, light intensity and load
data (one point per hour) of the region where a place in China
as a sample (As shown in FIGURE 2 ), taking into account the
calculation speed and accuracy of the clustering is reduced to

four typical scenarios, in order to the wind turbine and photo-
voltaic model in (1) and (2), using the abovementioned wind
turbine and photovoltaic-related parameters, the wind speed
and light intensity data are converted into the wind and light
out of the power, and finally, the wind, light and load scalar-
ization is obtained by taking into account the correlation of
the wind, light and load of the scenarios. The reduction of the
corresponding scenes before and after the reduction is shown
in FIGURE 3.

In terms of the correlation of win light and load, they
in each scenario show a certain correlation. Scene a and
scene b have the characteristics of higher wind speed, long
sunshine time and high light intensity, although they also
have summer characteristics from the view of wind and light
output, but the load of scene a is lower and the load of
scene b is higher, which can be seen that scene b is the
summer season, and scene a is the transition season; scene c
has higher wind speed and higher light intensity, which
can be seen as the characteristics of the transition season;
scene d shows the characteristics of winter in the place. less
wind and low light intensity and higher loads. It can be
seen that the typical scenarios generated by the improved
K-means method based on the long time scale historical
wind speed, light intensity and load scenarios can better
simulate the stochasticity and correlation of wind speed,
light intensity and load in the region, which is conducive
to the optimal allocation of DG access to the distribution
network.

B. BASIC PARAMETERS
Based on generated typical scenarios, this paper conducted
tests on IEEE 33-bus and IEEE 118-bus distribution systems,
as shown in FIGURE 4 and 5.

Each distributed power source is treated as a negative PQ
node, and is connected to the distribution network using
constant power factor control, with the power factor taken
as 0.9, the planning period of 20 years, the maximum annual
load utilization hours = 3200 h, and the unit electricity price
C = 0.5 yuan/kWh. It is assumed that the DGs have the
candidate installation locations of nodes 3, 6, 8, 13, 17, 19,
and 31 and that the rated capacity of a single DG is 50 kW,
and the number of accesses to each node is capped at 10 units.
The upper limit of the number of accesses at each node is
10 units.

The cut-in wind speed of WT is vin = 3.5m/s, the
rated wind speed of WT is vrate = 9.5m/s, the cut-out
wind speed of WT is vout = 20m/s. The rated light
intensity of PV is Ir = 1000W/m2. The investment
cost of WT and PV is 6300 yuan/kW and 8000 yuan/kW
respectively, and the operation and maintenance cost of
fan and photovoltaic is 0.27 yuan/kWh and 0.28 yuan/kWh
respectively.

The algorithm parameters were set as follows: to verify the
superiority and effectiveness of IBWO in solving problems,
IBWO, standard BWO, and PSO were tested and compared.
In the IEEE 33-node case, the population size of the three
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TABLE 2. The pseudo-code of IBWO.

FIGURE 2. Wind speed, light intensity and load data.

algorithms was set as 100, and the maximum number of
iterations was set as 100. The inertia weight of the PSO

algorithm was set as 0.95, and the learning factors were set
as 2. In the IEEE 118-node case, the population size of the
three algorithms was set as 100, and the maximum number of
iterations was set as 200. The inertia weight of the PSO was
set as 0.95, and the learning factors were set as 2.

C. IEEE 33-BUS
The data for the IEEE 33-bus system is referenced from
the case_ieee33 file in Matpower 7.1. The total load of the
system is 3715kW and 2300kvar, Without the installation
of DG, the active power network loss is 211.92 kW, the
minimum voltage is 0.913 p.u., and the average voltage
is 0.948 p.u. It is assumed that the DGs have the candi-
date installation locations of nodes 3, 6, 8, 13, 17, 19, and
31 that the rated capacity of a single DG is 50 kW, and
the upper limit of the number of accesses at each node
is 10 units.

Combined with the generated typical scenarios, three algo-
rithms, namely IBWO, standard BWO algorithm and PSO,
are run for DG optimization configuration calculation respec-
tively, the optimization results of different algorithms are
shown in TABLE 3, and the comparison of optimization
effect is shown in TABLE 4.
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FIGURE 3. Scenes before and after clustering.

FIGURE 4. IEEE 33 bus distribution network.

FIGURE 5. IEEE 118-bus distribution network.

FromTABLE 3, it can be concluded that the active network
loss of the system after DG access to the system using the

TABLE 3. Optimization results of different algorithms.

TABLE 4. Comparison of optimization effects of different algorithms.

IBWO algorithm is reduced from 211.92 kW to 94.323 4 kW,
loss decreases by 55.49%, which is a significant reduction in
active network loss. While applying PSO and BWO active
network loss is reduced by 51.77% and 50.47% respectively,
which are smaller than IBWO. The investment operation cost
when IBWO is applied is significantly higher than the other
two algorithms, which is due to the fact that the number
of DGs accessed is higher than the number of DGs in the
other algorithms. In terms of the power purchase cost of the
distribution network after accessing DGs, the power purchase
cost when using IBWO is lower than applying the PSO and
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FIGURE 6. Bus voltage profile.

FIGURE 7. Convergence characteristics curves of different algorithms.

the BWO. FIGURE 4 shows the scalar values of the bus
voltages of each bus with different algorithms for the optimal
configuration of DGs before and after accessing the DGs,
and the bus voltages of the distribution network are improved,
with the lowest voltage being 0.946 7 p.u. and the average
voltage being 0.972 2p.u. From the comparison of the voltage
stability margin values in TABLE 4 as well as in FIGURE 6,
IBWO has the best degree of improvement of the system
voltages. The convergence characteristic curves of the three
algorithms are shown in FIGURE 7, which shows that the
PSO stabilizes around the tenth iteration, the IBWO similarly
stabilizes around the tenth iteration, while the BWO stabi-
lizes in the twentieth iteration, with the slowest convergence
speed, which indicates that the elite inverse learning curves
introduced in this paper to the BWO improves the quality
and diversity of the populations, which makes the algorithm
converge at a higher speed at the beginning of iteration, and
the improvement of the balancing factor helps to balance
the exploration stage and the development stage, it helps

TABLE 5. Comparison of simulation time for different algorithms.

TABLE 6. Optimization results of different algorithms.

to balance the global and local searches. The convergence
speed is higher, and the improvement of the balancing factor
helps to balance the exploratory stage and the development
stage of the algorithm, i.e., it helps to balance the global
and local search. Meanwhile, it is easy to see that IBWO
has the highest convergence accuracy due to the introduction
of the cyclone foraging strategy of the manta ray foraging
optimization algorithm, which enhances the algorithm’s local
search capability. Twenty simulations of IEEE 33-bus are
performed by three algorithms and the results of simulation
time are shown in TABLE.5 and the stability is indicated by
the variance of the 20 simulation times. IBWO is better than
the remaining two algorithms in terms of average simulation
time, minimum simulation time, maximum simulation time
and stability.

D. IEEE 118-BUS
The data for the IEEE 118-bus system is referenced from
Zhang [32]. The total load of the system is 22,709.7 kW
and 17,041.1 kvar. Without installing DG, the active
power network loss is 1,298.0916 kW, and the mini-
mum voltage value is 0.8688 p.u. The average voltage
is 0.9556 p.u.

In the IEEE 118-bus case, assuming no designated loca-
tions for DG, it is assumed that three nodes will install WT
and four nodes will install PV. The rated capacity of each DG
is 100 kW, and the maximum number of DGs connected to
each node is 30.

Three algorithms, IBWO, standard BWO, and PSO, are
respectively run for DG optimization configuration calcu-
lation, the optimization results of different algorithms are
shown in TABLE. 6, and the comparison of optimization
effect is shown in TABLE. 7.

31010 VOLUME 12, 2024



J. Li et al.: Optimal Configuration of DG Based on an IBWO

FIGURE 8. Bus voltage profile.

FIGURE 9. Convergence characteristics curves of different algorithms.

TABLE 7. Comparison of optimization effects of different algorithms.

The active network loss of the system is reduced from
1298.0916kW to 704.245 8kW after the DG is con-
nected to the system using the IBWO, and the active
network loss decreases by 45.39%, while the active net-
work loss of the PSO and the BWO decreases by 30.39%

and 25.29%, respectively, and the voltage stability margin is
smaller than that of the IBWO.

Minimum voltage raised from 0.8688 p.u. to 0.9421 p.u.
and the average voltage is raised to 0.9690 p.u. FIGURE. 8
shows the voltage distribution of 118-bus and it can be seen
that there is a considerable enhancement compared to the
schemes given by BWO and PSO. FIGURE.9 gives the con-
vergence curves of IBWO, standardBWO, and PSO and it can
be seen that the convergence speed and convergence accuracy
of IBWO are better than the other two algorithms. TABLE. 5
gives 20 simulation times of the three algorithms under IEEE
118-bus. IBWO is better than the remaining two algorithms in
terms of average simulation time, maximum simulation time
and stability.

VI. CONCLUSION
In this paper, considering the stochasticity and correlation of
wind speed, light intensity and load, based on the historical
data of long time scale, and considering the amount of data
and computation, a kind of improved K-means square for
massive data is used to cut down the scenarios, and the typical
scenarios generated by this method can better simulate the
stochasticity and correlation of wind speed, light intensity and
load of the planning area.

We consider constructing an optimal allocation model
of DG with active network loss, investment and operation
cost of DG, power purchase cost of distribution network
and voltage stability indexes, and transforming it into a
single-objective problem for solving under satisfying con-
straints after normalization.

This paper proposes to improve the beluga optimiza-
tion algorithm for the distribution network optimization
allocation problem, incorporating the elite reverse learn-
ing strategy, the cyclone foraging strategy, and improving
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the balance factor of the beluga optimization algorithm,
which improves the convergence speed and convergence
accuracy of the algorithm. The simulation in IEEE 33 and
118-bus system shows that the constructed model can effec-
tively improve the voltage distribution of the distribution
network, reduce the active network loss, reduce the power
purchase cost of the distribution network, and improve the
economics of the distribution network operation. IBWO
has a clear superiority in solution quality, accuracy and
simulation time.

There are some limitations to the current study. For
example, the data selected in this paper is only for
one year, which makes it difficult to take into account
the increase in load demand due to economic growth,
as well as the impact of extreme weather in various situ-
ations. In the subsequent study, we will fully consider the
impact of these factors and further improve the optimal
allocation of DG.
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