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ABSTRACT The traditional active suspension system controlled by fuzzy PID fails to consider external road
information adaptively, lending to low control precision. To solve this problem, this novel variable universe
fuzzy PID control strategy, which combines road recognition and chaotic particle swarm optimization
(CPSO), is proposed. Firstly, a dynamic model of four degree of freedom vehicle suspension is established
based on the half-vehicle model. Secondly, the Back Propagation (BP) neural network is optimized by Tent
Sparrow Search Algorithm (Tent-SSA) to construct a road recognition model. When the road recognition
module is constructed, the suspension control system can convert the suspension vibration signal into road
information, and dynamically adjust the scaling factors of the variable universe fuzzy controller based on
the road information. Thirdly, a modified coefficient is added to adjust the parameters obtained from the
road recognition model, and the CPSO algorithm is used to optimize it to enhance control precision. Passive
suspension, FPID control, and this novel control are constructed and simulated in MATLAB. The results
indicate that this novel control strategy has improved in comprehensive performance by 28.47% compared
to fuzzy PID control strategies.

INDEX TERMS Active suspension, CPSO, road recognition, tent sparrow search algorithm.

I. INTRODUCTION
To satisfy the demands of vehicle smoothness and stabil-
ity, the Active suspension system (ASS) has emerged. The
ASS [1], [2] collects road and vehicle status information
through sensors and actively generates the control force
between tires and vehicle by actuator based on control strat-
egy. Therefore, the main object of this paper is constructing
an exemplary active suspension control strategy to improve
the passenger comfort, and enhance road adhesion.

Many academics and researchers have put forward vari-
ous control strategies for active suspension in vehicles, such
as adaptive PID control [3], [4], fuzzy control [5], neural
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network [6], [7], Intelligence Algorithms [8], etc. How-
ever, vehicles face complex and random road excitations
in actual driving, which necessitate the suspension control
system to accurately and rapidly respond to the road exci-
tation in order to enhance suspension control performance.
To address the time delay and uncertainties in road excita-
tions, a novel adaptive fuzzy control method [9] offered for
managing suspension system through a delay compensation
strategy. This approach effectively minimized the impact
of road information delays on the ASS. A fixed-frequency
controller [10] emerged using a PSO technique, Dynamic
vibration absorber parameters, and linear quadratic regulator
(LQR) controller weighting factors to suppress the vibrations
of generated by vehicle traveling on various road frequen-
cies. The adaptive fuzzy PID control strategy [11] achieved
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smoother suspension control by employing fuzzy processing
in response the uncertainty of road surfaces. Machine learn-
ing [12] was employed for the transformation of in-vehicle
sensor information, enabling accurate conversion of vehicular
data into road surface roughness. Genetic algorithms [13]
were employed to optimize the active suspension control
parameters, aiming to minimize the extreme accelerations
experienced by the passenger seat due to severe road condi-
tions.

To achieve the better suspension control, it is required
to research comprehensive controllers. To address the issue
of unpredictable optimal damping force generated by road
excitations in the suspension system, a PID controller with
the advanced firefly algorithm tuning was investigated [14].
The neural networks [15] by adding feedback connections
between output and input layers can effectively applied as
a part of vehicle system model to accurately predict road
excitations and tire dynamics behavior. The Recurrent Neural
Network and Long short-term memory neural network [16]
were employed the to ensure the stability of vehicles suspen-
sion under all external or internal conditions.

The above literature elaborated on the impact of road exci-
tation on suspension and proposed their respective solutions.
This paper proposes to combine intelligent algorithms with
fuzzy control to address this issue, which constructs a vari-
able universe fuzzy PID (VUFP) control strategy with road
recognition (RR) and chaotic particle swarm optimization
(CPSO) to effectively handle road variations and PID param-
eter adjustments, improving control performance. The higher
control performance will ensure energy utilization efficiency.

Following are the primary contributions made by this
paper:

1. The RR module is employed to address the drawback
of a fixed universe in fuzzy control and overcome complex
road excitation. Firstly, multiple vehicle speeds and sprung
masses are used to run on various road surfaces, generating
an enormous quantity of data. The Tent-SSA-BP neural net-
work’s structure and parameters are trained using this data as
input training set. This neural network is capable of convert-
ing suspension performance signals into road information.
Subsequently, the road information is passed to the con-
structed VUFP control system. This control system outputs
the required PID control parameters, effectively overcoming
the limitations of a fixed universe.

2. A CPSO optimization system is designed, which intro-
duces PID correction coefficients to adjust the PID control
coefficients and utilizes the CPSO strategy for optimization.
Taking into consideration the various performance require-
ments of the suspension, this strategy can further enhance
control precision, and respond more rapidly to differences
in control performance and road conditions. This ensures the
comfort and operability of vehicle travel under different road
conditions.

The rest of the article is organized as follows: Section II
presents the construction of the dynamic model and the
suspension actuator. Section III focuses on the overall frame-

FIGURE 1. Four DOF 1/2 vehicle model.

work and goals of the control strategy design. It covers
topics such as the design process of variable-domain control,
the principle of Tent-SSA, the construction of road recog-
nition system and CPSO. Section IV conducts simulation
experiments and compares the vibration reduction effects of
several different control strategies, clearly demonstrating the
vibration reduction effect of the control strategy proposed.
Section V illustrates the conclusions drawn from the experi-
mental results obtained in this study.

II. ACTIVE SUSPENSION SYSTEM
A. DYNAMIC MODEL OF ACTIVE SUSPENSION
Considering that the 2 degree of freedom (DOF) 1/4 body
only reflects the vertical motion of the vehicle and cannot
display the pitchmotion.Meanwhile, the computational com-
plexity is too large when using the 7 DOF body as the model.
Therefore, this article establishes a 4 DOF 1/2 vehicle active
suspension model as the research object. Fig.1 depicts the
suspension model.

In Fig.1, z2, θ,ms, I respectively indicate the vertical dis-
placement, pitch angular, mass, and the inertial moment
at the vehicle body. a, b represent the distances from the
front and rear suspension axes to the center of the vehicle
body. mf , kf , cf symbolize the sprung mass, stiffness coef-
ficient, and damping coefficient. z1f , z2f depict the vertical
displacement of unsprung mass and sprung mass of the front
suspension, respectively.mr , kr , cr stand for the sprungmass,
stiffness coefficient, and damping coefficient. z1r , z2r illus-
trate the vertical displacement of unsprung mass and sprung
mass of the rear suspension, respectively. qf , qr signify the
road excitation. The active suspension control force (u1, u2)
generated by the actuator.

In this model, the front and rear sprung masses’ vertical
displacements and the springmasses’ vertical displacement at
the center of gravity are connected in the following formula,
assuming that the θ is extremely tiny (near zero):

z2f = z2 − a tan θ ≈ z2 − aθ (1)

z2r = z2 + b tan θ ≈ z2 + bθ (2)

When the tires maintain contact with the road, the vehicle
suspension system is expressed as follows:{

F = Mt Z̈fr − KsZt + Kt (Zfr − q)
AF = MuQ̈− AKsZt

(3)
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FIGURE 2. The Structure of MRD.

Define Z̈fr = [ z̈1f z̈1r ]T , Q̈ = [ z̈2 θ̈ ]T ,F =
[
u1 u2

]T the
corresponding matrices:

Mt =

[
mf 0
0 mr

]
,Mu =

[
ms 0
0 I

]
,Ks =

[
kf 0
0 kr

]
,

Kt =

[
ktf 0
0 ktr

]
,A =

[
−1 −1
a −b

]
To comprehensively compare the control performance of the
vehicle, taking into account ride comfort, handling, and sus-
pension safety, the following objective function is defined:

J = min(RMS[z̈2] + RMS[θ̈] + RMS[1x]) (4)

where RMS is Root Mean Square, z̈2 represents the vehicle
body’s vertical acceleration (VBVA), which is associated
with the ride quality. A lower value indicates better ride
comfort. The θ̈ stands for the vehicle body’s pitch angular
acceleration (PAA), which affects the handing. A smaller
angle depicts smoother driving and better handing. The
1x = z2f − z1f symbolizes the front suspension displace-
ment (FSD), and its value shows whether the suspension is
operating within the normal range. If the value exceeds the
reasonable range, it displays that the suspension may be dam-
aged and needs replacement. The complete assessment aims
to improve ride comfort, enhance vehicle maneuver’s ability,
and guarantee the suspension system’s correct operation.

B. THE SUSPENSION ACTUATOR
This paper adopts magnetorheological damper (MRD) as
the suspension actuators for smooth control [17], [18]. The
structure of the MRD, as illustrated in Fig.2, includes the
Hoop, Control line, Piston Rod, Magnetic Particle, Excitation
Coil and Magnetic Fluid, among other.

The operating principle of the MRD is as follows:
(a) In the absence ofMRD operation, theMagnetic Particle

are randomly dispersed within the Magnetic Fluid, allowing
the damping orifice to remain unblocked. At this moment,
the damping force of the MRD is relatively low. The internal
changes of the MRD are depicted in Fig.3(a).

(b) When the MRD is energized, Magnetic Particles aggre-
gate near the excitation coil due to the influence of the
Magnetic field. This aggregation leads to the blocking of the
damping orifice, preventing the fluid from moving rapidly
and causing a significant increase in the damping force.
Furthermore, as the electrical current increases, it generates
a stronger magnetic field, resulting in greater attraction of
suspended particles and a higher damping force. The internal
changes of the MRD are portrayed in Fig. 3(b).

FIGURE 3. The MRD state; (a) Not energized state; (b) Energized state.

FIGURE 4. The testing apparatus.

To better illustrate the performance of the MRD, this study
employs the vertical sinusoidal motion of an electric cylinder
as the displacement excitation, with a sine wave frequency
of 2Hz and an amplitude of 15mm. The coil diameter of the
MRD is 0.5mm, and the six different currents are applied:
0A,0.2A,0.4A,0.8A,1A, and 1.2A. The testing apparatus is
displayed in Fig.4. The relationship between damping force
and piston displacement are depicted in Fig. 5(a).

The working principle of the MRD is to altering the exci-
tation current, causing a change in the magnetic field, and
changing the properties of the magneto rheological fluid
to obtain the required damping force. Based on Faraday’s
electromagnetic induction law, the changing magnetic field
in the coil will generate induced electromotive force inside
the copper core, leading to the generation of eddy currents.
The eddy currents are always opposite to the magnetic field
induced by the excitation current. So, it will hinder the vari-
ation of the magnetic field excited by the excitation current,
leading to a lag in the control response time. This lag affects
the control performance of the active suspension system.
Table 1 shows the response time and damping force results
under different currents. Fig.5(b) illustrates the relationship
between response time and current variation.
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FIGURE 5. (a) The relationship between damping force and piston
displacement; (b) the relationship between response time and current
variation.

TABLE 1. The response time and damping force result.

When theMRDunpowered, the damping force of theMRD
is approximately 136N. As the current continues to increase,
the damping force also continues to increase. Evidently, as the
current continuously increases, the excitation coil’s magnetic
field intensifies, leading to a deeper aggregation of suspended
particles and a progressive increase in the damping force of
the MRD. Furthermore, the damping control of the MRD
appears relatively stable, with minimal damping fluctuations.

Meanwhile, within the current range of 0-0.8A, as the
current value increases, the response time decreases signif-

FIGURE 6. The framework for the control strategy.

icantly. However, within the range of 0.8-1.2A, the reduction
in response time is not significant. This indicates that during
active suspension control, there is still a certain lag in the
control due to the influence of the characteristics of magneto
rheological dampers, which reduces control efficiency.

III. CONTROL STRATEGY
Fig.6 respectively display the framework of the control strat-
egy. Firstly, sensors receive the signals from the suspension
system. Then, these suspension signals are input into the
Road Recognition Module based on the Tent-SSA-BP neural
network, fromwhich the road grade (G) and roadmembership
degree (1G). Subsequently, both signals are forwarded to
the variable universe controller. The controller outputs the
scaling factor to adjust the domain of the fuzzy controller.
In this process, both the suspension vibration signal and error
signal are fed into the fuzzy controller, which outputs the
three control parameters (1Kp, 1Ki, 1Kd ) for the PID. This
not only allows the control system to adaptively adjust based
on road information but also enhances the precision of the
output parameters.

The primary purpose of the CPSO Optimization module
is to tune the PID output parameters for more accurate con-
trol. First of all, the sensors receive suspension performance
signals to generate the initial PID parameters (Kp,Ki,Kd ).
Meanwhile, the PID correction coefficients (qp, qi, qd ) are
combined with the RR module’s output parameters.

KP0 = KP + 1KP × qp
Ki0 = Ki + 1Ki × qi
Kd0 = Kd + 1Kd × qd

(5)

Then, CPSO is employed to continuously optimize the PID
correction coefficients, enabling real-time adjustment of the
PID control parameters and ensuring precise control.

A. DESIGN OF VARIABLE UNIVERSE FUZZY
The variable universe is designed to adjust the Fuzzy con-
troller’s domain and overcome the limitations of the fixed
domain. This enables the controller to respond to varying road
conditions, providing a more precise and effective control
range. Its essence lies in changing the primary universe of
input and output in a specific rule according to the control
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FIGURE 7. The variation of contraction-expansion universe.

requirements. Therefore, the influence of expert expertise on
the design of the variable domain fuzzy controller is greatly
reduced, resulting in increased accuracy.

This specific design concept is as follows:
1. When id = [−Ei,Ei], od = [−Ui,Ui](i = 1, 2, . . . , n)

represent the input domain (id) and output domain (od),
respectively. IR,OR indicate the input fuzzy rule and fuzzy
rule output. Meanwhile, i denotes the index of the i-th input
value, j shows the index of the j-th interval in the fuzzy rule
partitioning.

2. The input and output domains can change along with
contraction-expansion factors, which are expressed by the
following formulas:{

idi = [−αiEi, αiEi]
od = [−βUi, βUi]

(6)

where αi, β respectively refer to the contraction-expansion
factors the input universe and output universe.

Fig.7 demonstrates how the contraction-expansion factors
modify the universes. The process involves the fuzzy subset
related to the scaling factor of input ([−E,E]) generating new
domains ([−αE, αE]).

The mathematical expressions for these contraction-
expansion factors are typically represented as follows:

α = 1 − λe−ke(t)
2

(7)

β = ki
n∑
i=1

Pi

∫ t

0
ei(t)dt + β(0) (8)

where e(t) is the input variable, λ, k, ki are the contraction-
expansion factor coefficient, index coefficient, and the con-
stant of integration. Pi is the weight constant vector, β(0) is
the initial value 1 [19].
3. In this study, the selection of parameters for the con-

troller’s input and output, along with the construction of
corresponding fuzzy control rules, is as follows: Road grade
(G) and road membership degree (1G) are chosen as the
control input variables. The α, β are selected as the output
variable. There are seven main categories for normal road
grades: A, B, C, D, E, F, and E. Generally, vehicle travel
on roads classified as A to D. Therefore, in this study, the
fuzzy domain of the input variable is set to {-0.07,0.07}
and divided into seven intervals, including {NB (Negative

FIGURE 8. (a) The visualization of contraction-expansion factor; (b) The
visualization of control rules of the fuzzy controller.

TABLE 2. The fuzzy rules of contraction-expansion factor.

Big), NS (Negative Small), ZO (Zero), PS (Positive Small),
PM (Positive Medium), PB (Positive Big)}, represented by
Gaussian membership functions [20].

AS illustrated in Table 2, when G, 1G are NB, it dis-
plays that the vehicle is running smoothly, and the
required control force isn’t excessive. Consequently, the
contraction-expansion factor α is also set to NB. However,
when G, 1G are PB, it exhibits that the vehicle is travel-
ling on uneven ground, necessitating an increased control
force to offset the force caused by vibration. As a result,
the contraction-expansion factor α is likewise set to PB.
Table 2 lists the control rules for contraction-expansion
factors. Fig. 8(a) presents the visualization of contraction-
expansion factor.
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TABLE 3. The fuzzy rules of variable domain.

TABLE 4. The road surface grade parameters.

The above statement explains how the variable universe
adjusts the fuzzy controller domain based on the road infor-
mation. The fuzzy controller outputs PID control parameters
(1Kp, 1Ki, 1Kd ) based on the same principle when it receiv-
ing suspension vibration signal and error signals. Table 3
presents the control rules of the fuzzy controller. Fig.8(b)
shows the visualization of control rules of the fuzzy con-
troller.

B. DESIGN OF ROAD RECOGNITION
Random road excitation is a primary factor that affects the
vibration of vehicle suspension. In this paper, a harmonic
superposition method is used to construct a road roughness
model. The simulated time-domain model of the road distur-
bance is specified as follows [21]:

q̇(t) = −2π f0vq(t) + 2πn0
√
Gq(n0)vw(t) (9)

wherew(t) is a Gaussian white noise, v is vehicle speed value,
n, n0 respectively are the spatial frequency and reference
spatial frequency, Gq(n0) is the road roughness factor, f0 =

0.01m−1, q(t) is the road excitation.
Based on international standards, the road roughness is

generally divided into 8 levels [22], as shown in the Table 4.
This article translates suspension dynamic parameters

(z̈2, θ̈ , 1x) into road surface information (q(t)). The BP
neural network [7], [23], [24] boasts versatile advantages,
dynamically adjusting weights and thresholds to accommo-
date intricate patterns and relationships within input data.
Meanwhile, BP neural network excels in modeling com-
plex relationships, and its parallel processing architecture

FIGURE 9. The structure of Tent-SSA-BP.

enhances training and prediction efficiency. Based on the
aforementioned advantages, this paper adopts the BP neural
network as the foundation for the road recognition model.

To optimize the BP neural network, this paper introduces
Tent-SSA to optimize the weights and thresholds parameters
of the BP neural network. Tent-SSA-BP neural network,
whose architecture is depicted in Fig.9. An input layer, two
hidden layers, and an output layer make up its four layers.
It has the characteristics of error back-propagation andweight
coefficient modification are performed continuously. The
weights are continuously modified by the Tent-SSA approach
to minimize the RMS error between the network’s actual
output values and desired output values in order to reduce
overall network error.

The SSA (Sparrow Search Algorithm) [25]was proposed
in 2020. Compared to other algorithms like Bat, Grey
Wolf, or Ant, SSA exhibits superior global search per-
formance, especially in exploring different search spaces.
It efficiently addresses the issue of local optima that arises
during nonlinear problem-solving processes. However, SSA
tends to exhibit sparrow flocking behavior at the initial stage.
To overcome this, the chaotic algorithm ‘‘Tent’’ is introduced
to resolve the initial clustering phenomenon in the SSA
algorithm.

The main rules of SSA are as follows:
The sparrow population is mainly divided into three cate-

gories: Discoverers, Joiners, and Sentinels;
Discoverers and Joiners can switch between each other, but

the proportion of discoverers and joiners in the sparrow pop-
ulation remains constant. Additionally, discoverers possess
higher energy reserves (energy storage level depends on the
individual’s fitness value);

When Sentinels in the sparrow population detect predators,
they start chirping and move towards a safe area. If the sen-
tinel’s warning exceeds a certain threshold, the discoverers
will lead the joiners to the safe area for foraging;

When the energy of joiners becomes too low, their foraging
positions are likely to be lower, increasing the probability of
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them flying to other locations for foraging to obtain better
energy.

Based on the above rules, construct a mathematical model
of the SSA:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x1,d
...

...
...

...

xn,1 xn,2 · · · xn,d


When n represents the number of sparrows, d denotes the
dimensionality of the variables in the optimization problem,
X is sparrow population distribution. xn,d show the coordi-
nates of the n sparrow in the d dimension.
The expression for Tent chaotic map is as follows:

xk+1
i,j =

{
xk+1

= 2 · r · xk 0 ≤ xk < 1
2

xk+1
= 2 · r · (1 − xk ) 1

2 ≤ xk < 1
(10)

where r is a control parameter that determines the nature of
the chaotic map. k is the number of iterations.

The new population matrix obtained through the tent map-
ping algorithm is:

X k+1
=


xk+1
1,1 xk+1

1,2 · · · xk+1
1,d

xk+1
2,1 xk+1

2,2 · · · xk+1
1,d

...
...

...
...

xk+1
n,1 xk+1

n,2 · · · xk+1
n,d


Fitness Function of Tent-SSA: In this article, the absolute
error between the predicted output (yi) and the expected
output (oi) is used as the fitness value of an individual. The
calculation formula is as follows:

Fx =

n∑
i=1

(abs(yi − oi)) (11)

In Tent-SSA, the update rule for the position of discoverers
is described as follows:

xk+1
i,j =

 xki,j · exp(−
i

α · kmax
) if R2 ≤ ST

xki,j + Q · L if R2 > ST
(12)

where xki,j denotes the position of the i-th sparrow in the j-th
dimension during the k-th iteration. α is a random number
((0, 1]). L indicates a 1 · d matrix, and its element are all 1.
Meanwhile, when R2 ≤ ST , it indicates that the sparrows are
in a safe state. When R2 > ST , it signifies that the sparrows
have detected the predators and begin emitting warning sig-
nals.

The operating formula for the joiners is as follows:

xk+1
i,j =

Q · exp(
Xw − X ki,j

i2
) if i > n

2

X k+1
b +

∣∣∣X ki,j − X k+1
b

∣∣∣ · A+
· L otherwise

(13)

where Xb,Xw are the current best position and the worst
position of the discoverer sparrow individual. A is a matrix

FIGURE 10. The structure of RR module.

containing elements of 1 or -1, and A+
= AT (AAT )−1. When

i > n
2 , it indicates that the i-th joiner sparrow has not found

food and needs to move to another area.
The formula for the sentinel is as follows:

X k+1
i,j =


X kb + ρ ·

∣∣∣X ki,j − X kb
∣∣∣ if fi > fb

X ki,j + R · (

∣∣∣X ki,j − X kw
∣∣∣

(fi − fw) + ε
) if fi = fb

(14)

In the equations: ρ is the step control parameter following
a normal distribution; fi represents the current individual
fitness value; fb, fw are the current best and worst fitness
values, respectively. ε is the minimum constant to avoid a
denominator of zero. R ∈ [−1, 1] is a random number. When
fi > fb, it indicates that the sparrow individual is located at the
boundary of the population’s position, making it susceptible
to predation. When fi = fb, it signifies that the sparrow
individual is aware of the danger and needs to move closer
to other individuals in the population.

Fig.10 illustrates the design process of Tent-SSA-BP
within the entire RR module.

To simulate the z̈2, θ̈ , 1x under various road conditions,
vehicle suspension model is created in MATLAB. These
simulations produce training sample data. A learning rate of
0.005 to train the input and output data with the Levenberg-
Marquardt algorithm. The trained neural network model is
utilized to calculate the probabilities of each road condition
corresponding to the input data. The road condition with
the highest probability is considered the final output, thus
completing the road condition recognition.

This article applies the road recognition module to four
freedom suspension models. Fig.11 displays the comparative
results between simulated fluctuation in suspension vibration
signals transformed by the Tent-SSA-BP neural network and
actual road on B-grade and E-grade road surfaces.

Based on the above road simulation, we can observe that
the simulation accuracy is relatively high on smooth road sur-
faces (B-grade road), but efficiency significantly decreases
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FIGURE 11. The comparative results between simulated fluctuation in
suspension vibration signals and actual road; (a) The simulation results
for B-grade road; (b) The simulation results for E-grade road.

when operating on complex road surfaces (E-grade road).
The extent of decrease varies across different complex road
surfaces, and the recognition accuracy is also influenced by
the driving speed. Overall, the assessment has decreased by
20% to 30%. Additionally, the recognition efficiency of the
BP neural network on complex road surfaces has declined
by 14.21% compared to the Tent-SSA-BP neural network in
Fig.12.

C. PID TUNING COEFFICIENT OPTIMIZING BASED ON
CPSO
The PSO algorithm is widely used in solving multi-constraint
optimization and non-linear optimization problems, which
is a typical evolutionary computation method based on the
collective behavior of particles. It has advantages such as
simplicity in concept and ease of implementation. However,
it also has some apparent drawbacks, including slow conver-
gence speed and a tendency to get stuck in local optima.

To address the issue of local optima in the PSO algorithm,
this study introduces chaotic theory. It uses chaotic mapping
to embed particle position information during the initializa-
tion of the particle swarm. This approach reduces the problem
of particles being concentrated locally during the random
generation of particles at the beginning, thus improving the

FIGURE 12. The comparative results between Tent-SSA-BP and BP in
E-grade road.

diversity of particle search and avoiding being trapped in
local optima.

The mathematical description of the PSO algorithm is as
follows:

Consider a population x = (x1, x2, . . . xn)T is composed
of n particles in a D-dimensional search space, where the
position of i-th particle is xi = (xi1, xi2, · · · , xid )T with a
speed of vi = (vi1, vi2, · · · , vid )T . Its individual extreme
value pi = (pi1, pi2, · · · , pid )T , and the global extreme value
of the population is pg = (pg1, pg2, · · · , pgn)T . The speed and
position of each particle are then determined based on (13)
and (14), respectively, after getting those two extreme values.

vk+1
id = ω · vkid + c1 · rand() · (pkid − xkid )

+ c2 · rand() · (pkgd − xkid ) (15)

xk+1
id = xkid + vk+1

id (16)

The above section explained the basic concept and oper-
ational logic of PSO. Now, the specific implementation
process of the improved and optimized PSO algorithm based
on chaotic theory will be presented as follows:

1) SETTING OF THE LEARNING-FACTOR
In the early stages of population search, the emphasis is on
individual experience, favouring exploration of the search
space. As the population evolves, collective experience plays
a greater role, indicating that the learning factor’s param-
eters should decrease over time. Therefore, in this study,
the Learning-Factor is defined using a linear function that
continuously reduces according to the number of iterations
until reaching its minimum value. The Learning-Factor is
confined within the interval [1.75, 2.15]. The initial values of
s1, s2 are set to 1.75, c1, c2 are set to 2.15. Hence, the learning
factors ω1, ω2 are as follows:

ω1 = c1 − (c1 − s1) · (k/kmax) (17)

ω2 = c2 − (c2 − s2) · (k/kmax) (18)
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2) SETTING OF THE INERTIA FACTOR
The inertia weight ω is a crucial parameter in the PSO
algorithm. Increasing the value of ω enhances the algorithm’s
global search capability, while decreasing it improves the
local search capability. Therefore, in the PSO algorithm, the
inertia weight factor is continuously reduced. In this study,
a nonlinear dynamic inertia weight coefficient formula is con-
structed using the inverse cosine function to update the inertia
factor. This ensures that the inertia weight is dynamically
adjusted within the range [0.4, 0.8] in a nonlinear manner.
The formula is as follows:

ω = ωmin + (ωmax − ωmin) ·
2
π

· arccos(
k

kmax
) (19)

3) FITNESS EVALUATION METHOD
Considering the inconsistent units and magnitudes of the per-
formance indicators VBVA (z̈2) PAA (θ̈ ) and FSD (1x). This
study divides them by the corresponding passive suspension
performance indicators to obtain the corresponding fitness
values. The optimization problem is expressed as follows:

min J =
VBVA(H )
VBVAps

+
PAA(H )
PAAps

+
FSD(H )
FSDps

(20)

s.t. =


VBVA < VBVAps

PAA < PAAps

FSD < FSDps

(21)

When H =

[
qp qi qd

]
represents the correction coeffi-

cients. The fitness is continuously obtained through (20),
while simultaneously checking if the constraint condi-
tion (21) is satisfied. If all constraints are met, the fitness
value J is output. Otherwise, the fitness function value J
is increased by 10 to move it away from the evolutionary
direction constrained by the population.

4) SETTING OF THE CHAOTIC ALGORITHM
The quality of the population during the initialization phase
directly affects the performance of the algorithm; PSO
algorithm typically adopts random initialization to generate
the initial population, but this method has high randomness
and poor diversity, leading to the inability of the population
to achieve uniform distribution in the search space. Therefore,
introducing Logistic map becomes necessary. The formula is
as follows:

zk+1 = µ · zk (1 − zk ) (22)

In addition, incorporating the chaotic operator allows the PSO
algorithm to fluctuate within a certain range when trapped in
a local optimal solution, thereby reducing the sensitivity to
the optimal solution and improving its performance.

δxk+1 = sin(π · δxk ) (23)

FIGURE 13. The structure of CPSO.

5) THE UPDATE EQUATIONS
Combining the above formulas, the position and velocity
update equations for the particle swarm are as follows:

vk+1
id = ω · vkid + ω1 · rand() ·

[
pki,j − xki,j

]
+ ω2 · rand() ·

[
pkg,j − xki,j

]
(24)

xk+1
id = xkid + vk+1

id + 1δxk+1 (25)

The steps and workflow of the improved algorithm are sum-
marized as follows, as shown in Fig.13.

1) Initialize Parameters: Generate the initial population
based on (22). Set the learning factor and inertia weight
factor using (17,18) and (19), respectively. Determine the
total number of particles, maximum iteration count kmax, and
define the parameter ranges.

2) Generate Particle Positions and Velocities using (15)
and (16).

3) Evaluate Fitness and Constraint Particles: Calculate the
fitness and constraint values of particles using (20) and (21).
Store the best position and corresponding fitness value of
each particle, as well as the best position and fitness value
of the entire population.

4) Conduct Simulation: Implement the optimization by
importing the best individual and global best positions into
the simulation and iteratively optimizing.

5) Update Particle Position and Velocity: Update the posi-
tion and velocity of each particle using (24) and (25).

6) Update Personal and Global Best: Compare the fitness
values with the current best positions of each particle. If they

VOLUME 12, 2024 29121



W. Yu et al.: Variable Universe Fuzzy PID Control for ASS With Combination of CPSO and RR

FIGURE 14. Comparison of Suspension Control Performance on Single Bump Road. (a) The Single Bump Road; (b) VBVA under Bump Road.
(c) PAA under Bump Road. (d) FSD under Bump Road.

are close, update the current value as the particle’s personal
best position.

7) Check Termination Condition: Check if the kmax count
has been reached. If yes, end the optimization; otherwise,
return to step 2.

IV. SIMULATION AND ANALYSIS
For proof of the efficiency of the control Strategy in the arti-
cle, MATLAB/Simulink is applied to simulate the ASS and
test the vibration reduction performance of various control
strategies under multiple road circumstances (Single Bump
Road, Sinusoid Road, Random Road). The three indicators
z̈2, θ̈ , 1x mentioned above, are utilized as assessment indi-
cators. Table 5 details the suspension system’s parameters.

Create a road with a single bump as follows:

q(t) =


H
2

[
1 − cos(2π

v
L
)
]
, 0 ≤ t ≤

L
v

0 t >
L
v

(26)

where H ,L, v respectively represent the height, length, and
forward speed of the bump, and their values are set as A =

0.05 m, L = 10 m, and v = 10 m/s.

TABLE 5. The parameter of vehicle suspension.

A simulated road surface is built based on the formula
above for a single convex road surface, and it is used as a
simulation model for road conditions. The simulation results
are shown in the following figure.

The control strategy is applied to the Active suspension
and the automobile is driven on a single hump road to more
accurately assess the suspension control performance of the
PS, FPID, and VUFP-RRCPSO. These figures demonstrate
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FIGURE 15. Comparison of Suspension Control Performance on Sinusoid Road. (a) The Sinusoid Road; (b) VBVA under the Sinusoid Road.
(c) PAA under the Sinusoid Road. (d) FSD under the Sinusoid Road.

TABLE 6. RMS value of suspension evaluation metric on bump road.

that VUFP-RRCPSO can markedly decreased VBVA, PAA
and FSD. The particular data is displayed in Table 6.

As indicated in Table 6, compared to the PSS and FPID
controllers, the VUFP-RRCPSO controllers has reduced the
VBVA, PAA, and FSD indices by 55.41%, 53.16%, 50.74%,
and 28.92%, 30.52%,26.37%, respectively. This indicates
that the VUFP-RCPSO controller has superior responsive-
ness and vibration reduction capabilities when facing sudden
vibrations.

Create a Sinusoid Road as follows:
The chosen road is a sinusoidal one with a 2 Hz frequency

and a 0.05 m amplitude. One way to describe a sinusoidal

TABLE 7. RMS value of suspension evaluation metric on sinusoid road.

road is as follows:

q(t) = 0.05 · sin 4π t (27)

When using VUFP-RRCPSO controllers driven on a sinu-
soid road, the RMS values of VBVA, PAA, and FSD fell
by approximately 32.46%, 27.67%, 20.06%, and 43.28%,
37.34%, 40.62%, compared to the PSS and FPID controllers,
as illustrated in Table 7.

Based on these results, the VUFP-RRCPSO controllers
demonstrates superior performance in maintaining control on
a sinusoidal road.

Create a random road surface based on formula (9):
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FIGURE 16. Comparison of Suspension Control Performance on B Random Road. (a) The B Random Road; (b) VBVA under B Random Road.
(c) PAA under the B Random Road. (d) FSD under the B Random Road.

TABLE 8. RMS value of suspension evaluation metric on sinusoid road.

The control strategy is applied to the ASS and driven on
B Random Road. In the meantime. These figures demon-
strate that VUFP-RRCPSO can significantly reduce VBVA,
PAA and FSD. Compared with PS and FPID, when using
the VUFP-RRCPSO controller, the RMS values of VBVA,
PAA, and FSD decreased by approximately 34.97%, 24.86%,
30.43%, and 50.21%, 46.89%, 44.83%, respectively. Accord-
ing to this outcome, the proposed controller works better
when it comes to maintaining control on Random Road.

From the above three road simulation results, it can
be observed that the comprehensive performance of the

VUFP-RRCPSO controllers have improved by 28.47% com-
pared to the FPID control strategy on different road surfaces.

V. CONCLUSION
Fuzzy PID controller, the most widely used controller in
suspension systems, has high practical value in enhancing
vehicle safety. However, the fuzzy PID controllers suffer from
fixed universes and road excitation. To overcome these limi-
tations and enhance control performance, the universe fuzzy
PID control strategy combining road recognition and chaotic
particle swarm optimization is proposed in this research.
In this strategy, to generate a dataset of corresponding to
different road conditions, the road grade is combined with the
suspension vibration information. The dataset is used to train
a Tent-SSA-BP neural network and construct a road recogni-
tion module. Meanwhile, the contraction-expansion factors
are obtained for different vehicle accelerations by variable
universe rules. The road recognition adapts and adjusts the
contraction-expansion factors based on the sensed suspension
information, which avoiding the fixed universe. Additionally,
the control system incorporates the CPSO to optimize the
tuning parameter of the FPID controller, improving output
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accuracy and reducing the influence of expert experience.
The results demonstrate the proposed control strategy has
improved the three metrics of vertical acceleration, pitch
angular acceleration, and front suspension displacement by
30.087%, 26.73%, and 28.603%, respectively, compared to
the fuzzy PID control.

In future research can further deepen understanding of
artificial intelligence and better apply neural networks and
intelligent algorithms to automotive suspension technology.
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