
Received 12 January 2024, accepted 6 February 2024, date of publication 21 February 2024, date of current version 3 April 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3368859

RDSP-SLAM: Robust Object-Aware SLAM Based
on Deep Shape Priors
MOSES CHUKWUKA OKONKWO 1, JUNYOU YANG 1, YIZHEN SUN1,2, GUANG YANG3,
AND FAUSTO PEDRO GARCÍA MÁRQUEZ 4
1School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2Intelligent Robot Laboratory, Shenyang Open University, Shenyang 110020, China
3Department of Electronics and Information Systems Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
4Ingenium Research Group, University of Castilla-La Mancha, 13001 Ciudad Real, Spain

Corresponding author: Junyou Yang (junyouyang@sut.edu.cn)

This work was supported in part by the 111 Project under Grant D23005, and in part by the Shenyang Science and Technology Plan Project
under Grant 22-315-6-02.

ABSTRACT Object-aware systems such as Deep Shape Prior SLAM (DSP-SLAM) provide a feasible
technique for creating environment sparse maps while representing scene objects as complete 3D models.
Such systems provide a compelling solution for improving the intelligence of care robots and enriching the
user experience in augmented reality (AR) applications. However, owing to the abrupt and unpredictable
movements exhibited by users during AR engagements and the need for real-time robot responses to
changes, it is imperative that sensor data is processed robustly and speedily. DSP-SLAM suffers from a
low-performance speed of 10-15 fps, although it is based on ORB-SLAM2 which can run at 30 fps. This is
mainly because its instance segmentation approach has an average latency of 53ms(18.86fps). To improve
tracking robustness, keyframes must be processed at a fast rate. We use a state-of-the-art one-stage deep
learning detector, which significantly reduces the wait time for detection-based data association during
keyframe creation, and finally present Robust Deep Shape Prior SLAM (RDSP-SLAM). The results show
that segmentation was performed at 20ms (50fps), while the object 3D reconstruction quality was the same
as that of DSP-SLAM. RDSP-SLAM accepts RGB sequential images at 30fps and tracks them at a mean
latency of 38fps.

INDEX TERMS Deep shape priors, instance segmentation, object-aware SLAM, object detection, object
representation and reconstruction.

I. INTRODUCTION
Visual SLAM (Simultaneous Localization and Mapping)
techniques provide compelling solutions for environment
awareness and self-localization for cyber-physical systems
and have been applied in areas such as augmented reality
(AR), robot navigation [1], robot-object interaction [2], and
human-robot interaction [3]. VSLAM enables the tracking
of movement in physical systems, such as robots, based on
changes in the received optical sensor data.

A considerable amount of semantic information about
the environment is obtained visually by humans. Visual
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mapping approaches based on SLAM techniques, perform
detection on visual data for increased inclusion of spatial
semantic information during scene mapping [4]. Improving
the semantic information obtained during the mapping
process has given rise to the object-level/aware/oriented
SLAM research field, where individual objects in the scene
are prioritized and thus (a) recognized in camera images,
(b) associated with the created map (c) either used as
landmarks for camera localization [5], or (d) represented
as quadrics [6], [7], cuboids [7], [8], [9], voxels [10],
or surfels/mesh [11], [12], [13].

Exceptionally, object-aware systems such as Deep Shape
Prior SLAM (DSP-SLAM) [13] provides a feasible technique
to create a sparsemap of the environment on the fly, recognize
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and represent found objects (even when partially visible) as
complete detailed 3D mesh models while jointly estimating
the position and orientation of the camera relative to the
objects. With such high-level detail of the environment,
designing care robots with the ability to (i) build a memory
of the location of objects, (ii) perform a memory search of
objects, and (iii) reason semantically about objects needed for
activities of daily living can be made possible. Augmented
reality (AR) and virtual reality (VR) experiences can be
improved by quickly replicating the found objects in the
scene.

In AR and VR applications, abrupt and unpredictable
movements are exhibited by users during their engagement.
In addition, real-time robot responses to situation changes and
control commands necessitate robustness and speed of sensor
data processing. DSP-SLAM suffers from a low performance
speed of 10 - 15 frames per second (fps) [13], although it
uses ORB-SLAM2 [14] as a backbone. ORB-SLAM2 has the
capability of running at a real-time speed of 30 fps.

The speed limitation of DSP-SLAM is mainly due to
its object detection or instance segmentation approach, that
is, it uses a two-stage detector, which has an average
latency of 53ms. ORB-SLAM2’s tracking thread endeavors
to spawn as many keyframes as possible, thereby improving
the tracking robustness during challenging camera move-
ments [15]. Object instances are segmented on the keyframes
immediately after spawning. Because object detection and
map-object-data-association in DSP-SLAM are embedded in
the camera tracking process, a higher detection latency will
consecutively increase the wait time for keyframe spawning.
In our experiments, DSP-SLAM can detect objects and
associate corresponding map points when sequential images
are passed at a faster frame speed (above 10-15 fps) because
any additional delay in frame tracking can be mitigated by
retrieving the next frame, as they are all stored on the device
(PC). However, in real-world applications, the camera (robot)
is easily lost because the images are required to be processed
as soon as they emerge. If the images are buffered, the
responsiveness of the framework is reduced.

Contribution: To solve this problem, we used a state-
of-the-art one-stage deep learning detector to obtain object
2D bounding boxes (2DBboxes) and segmentation masks,
thereby significantly reducing the wait time for keyframe
detection. We then present Robust Deep Shape Prior
SLAM (RDSP-SLAM). In particular, the keyframe tracking
latency of DSP-SLAM, which included the total time for
keyframe detection, map keyframe insertion, and object
data association, was significantly reduced to imbue the
system with robustness and real-time operation. There was
a compromise between the speed and accuracy of the
detectors. DSP-SLAM’s two-stage detector hasmean average
precision values of 42.7mAPbbox and 38.5mAPmask, whereas
RDSP-SLAM’s detector has mean average precision values
of 40.5 mAPbbox and 35.4 mAPmask. Experimental results
show that the keyframe segmentation on RDSP-SLAM was
performed at an average latency of 20ms (50fps), while the

object 3D model reconstruction quality is the same as that of
DSP-SLAM on indoor objects.

Section II introduces related work and discusses object
instance detection challenges in object-aware SLAM data
association. In Section III, an overview is provided detailing
the different modules of the RDSP-SLAM. The experimental
results are presented and analysed in Section IV. Conclusions
are presented in Section V. All entities in the map (points,
keyframes, and objects) and their data properties/components
are described in Section VI.

II. RELATED WORK
Semantic object-oriented SLAM systems mainly adopt
a frame-to-frame [2], [16] or keyframe-only [10], [13]
approach to object detection for data association in semantic
mapping. The object instance detection results are either 2D
bounding boxes (2DBboxes), segmentation masks, or both.
Object image semantic cues based only on 2DBboxes do
not suffer from latency problems because the results can
be obtained in real-time. As such, RDS-SLAM [10], EAO-
SLAM [7], and SLAM-OR [9] adopt a lightweight object
detection neural network to extract 2DBox detection on
all frames or keyframes in real-time while simultaneously
tracking the camera, creating a scene map, and representing
objects as quadrics, cuboids, and voxels.

2DBboxes do not provide sufficient visual information
for enriched object representation, such as visually pleasing
object mesh models in maps. To address this, deep learning
detectors such as Mask-RCNN [17] and Sharp-Mask [18]
have been adopted for object instance segmentation. How-
ever, their incorporation introduces a challenge in real-
time execution for visual-object-data association in camera
tracking and mapping tasks. Rünz et al. [12] attempted
to mitigate the low latency (5fps) issue of Mask-RCNN
by introducing the use of geometric depth discontinuity
(GDD) segmentation on RGBD frames. GDD segmentation
results were fused with those obtained from Mask-RCNN to
include semantic information. Although the GDD algorithm
runs in real-time, it tends to provide rough edge mask
results with no semantic cues. Mask-RCNN, on the other
hand, provides smoother mask edges but operates at a
low frequency. As a result, the fusion proposed in [12]
required the implementation of a frame buffer where GDD
segmentation and camera tracking was conducted on the front
frame, and Mask-RCNN segmentation was performed on the
back frames of the buffer. Similarly, in [11], the utilisation of
a double approach based on object motion and Sharp-Mask
was employed to obtain cues of objects in the mapping scene.
This two-way method allows for segmentation due to motion
and the inclusion of semantic cues from the neural network
by fusion, even when the objects are static.

The detection pipeline, which extracts semantic cues
for data association on all frames or keyframes, has been
structurally placed parallel to the tracking thread [10] to
improve processing speed. However, this approach neces-
sitates increased hardware resources, specifically a larger
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number of CPU processing cores. Furthermore, the detection
process has been placed sequentially within the tracking
thread [11], [12], [13], but a lengthy detection time can
negatively impact the robustness of camera tracking, even
when semantic cues are only extracted from keyframes.

III. CASE STUDY AND APPROACH
RDSP-SLAM is an object-aware slam framework with robust
camera tracking/localization built on ORB-SLAM2 [15] and
leverages DeepSDF [19] for the 3D reconstruction of objects
in the scene. Structurally, ORB-SLAM2 involves the con-
current process of frontend camera tracking (Section III-A)
and backend local mapping (Section III-B). The loop closure
in ORB-SLAM2 was disabled to allow multiple keyframe
views of the object. Our algorithmic framework consists of
the following steps:

1) First, RGB images from monocular sensors were
passed as input to the SLAM-backbone to concurrently
track camera movements, spawn keyframes, and obtain
sparse 3D map points of the environment based on
keyframe triangulation.

2) Second, map keyframes were passed to the 2D detector
module to obtain object instance bounding boxes and
masks at or above real-time speed. The detection results
were then evaluated to remove the background results.
Only foreground object bounding boxes and masks
were included during data association.

3) Next, map points belonging to the detected fore-
ground object were selected by filtering the keyframe
features through an overlap with the segmentation
result.

4) The object instance label and associated map points
were then used as shape priors for object mesh model
generation based on DeepSDF. Afterwards, the object’s
3D model shape and pose were jointly estimated
and optimized as more keyframes are inserted in the
mapping process.

5) Finally, the camera poses, map points, and object poses
were concurrently optimised through a joint bundle
adjustment process.

RDSP-SLAM has the same algorithmic architecture as
DSP-SLAM and uses the same object reconstruction method.
However, it is more robust to challenging camera movements
as the keyframe creation latency is reduced. The keyframe
creation process which included real-time detection and
segmentation of keyframe objects, as proposed in this work,
provided better robustness and reduces map-keyframe inser-
tion wait time. A flowchart of our framework is illustrated in
Fig. 1, and the final reconstruction results are shown in Fig. 2.
RDSP-SLAM accepts RGB sequential images at 30fps and
tracks them at a mean latency of 38fps. Steps 1, 2, and 3 were
embedded in the tracking thread and run concurrently with
steps 4 and 5 in the local mapping thread of ORB-SLAM2.
In the following subsections, we discuss these steps in
detail.

A. CAMERA TRACKING
The camera tracking thread is responsible for localising
the camera with every incoming frame and deciding when
to insert a keyframe. Camera positions are localised based
on frame inputs by finding matches to the local map
and minimizing the reprojection error through motion-only
bundle adjustment (BA) [14].

1) INITIALIZATION
Oriented Fast and Rotated Brief (ORB) features x∗ were first
extracted from the current frame Fc[xc] and the preceding
or referenced frame Fr [xr ]. Using their feature descriptors
D, matches xc ↔ D ↔ xr were then searched. The
camera position was initialized via a parallel computation of
two models: (a) Homography Hcr , given as: xc = Hcrxr
and (b) Fundamental matrix Fcr , given as: xcFcrxr = 0
(epipolar geometry constraint in Fig. 3). Using a model
selection heuristic, the best result for Fr to Fc was selected;
the homography model was chosen for planar scenes,
whereas the fundamental matrix was selected otherwise.
For successful initialization, Fc and Fr were automatically
inserted as keyframes Kc and Kr .

2) INITIAL POSE ESTIMATES
Assuming that the last frame Fl was successfully tracked,
a velocity motion model is used to predict the camera pose,
then map points found in Fl are searched for in Fc.

3) GLOBAL RELOCALIZATION
If tracking is lost, Fc is converted into visual words [20]
and the recognition database is queried to match keyframe
candidates for global relocalization. Alternatively, RANSAC
iterations are performed on keyframes to find the camera pose
using the PnP algorithm [21].

4) LOCAL MAP TRACKING
Points in map Pi were then tracked by applying motion-
only bundle adjustment (BA). The aim is to consistently
optimize the current camera pose R, t;R ∈ SO(3), t ∈ R3,
by minimizing the error of reprojecting local map points Pil
into feature points xi ∈ R2 in Fc. The local map is a set of
keyframes k1 ∈ K1 with neighboring keyframes k2 ∈ K2 that
have covisible map point Pil ∈ Pik1∩k2∩Fc with Fc. Motion-
only is expressed in (1)

R, t = argmin
R,t

∑
i∈X

ρ(∥x i − π (RX i + t)∥26) (1)

where X i ∈ R3 is the world coordinate of Pil , i ∈ X is
the set of matches between x i and Pil , ρ is the robust Huber
cost function and 6 is the covariance matrix associated with
the scale of the feature points. π is the monocular camera
intrinsic matrix or reprojection function given in (2)

π

XY
Z

 = [
fx XZ + cx
fy YZ + cy

]
(2)
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FIGURE 1. Object aware map creation process system overview; [Blue] ORBSLAM2 camera tracking, keyframe decision and map point creation;
[Gray]Image segmentation on keyframe; [Red]Data association based on keyframe segmentation and map points, 3d model generation, pose estimation
and pose optimization; [Green/Right-hand top] Joint map optimization; [Green/Right-hand bottom] Final results of the framework based on an RGB
image sequence data: keyframes(blue), Covisibility graph(red line-edges), and object model.

FIGURE 2. Sparse Map and Dense Object Reconstruction from
RDSP-SLAM: keyframes(Blue boxes); Covisibility graph(edges lines in red
connecting keyframes which share visible points); Object point-cloud(Red
map points); Object Reconstruction(Green mesh in the center).

where (fx , fy) is the focal length and (cx , cy) are the principal
points of the camera obtained from calibration.

5) NEW KEYFRAME DECISION AND CREATION
Decisions on new keyframes are made as often as possible to
improve the tracking robustness during challenging camera
movements, and then culled to reduce redundancy in the
mapping process. Fc is spawned as a keyframe if (a) a
maximum number of frames (i.e., image/camera fps) or
more have passed since the last keyframe insertion or global
relocalization, (b) local mapping is idle, or (c) the current

FIGURE 3. Epipolar Geometry constraint: x1 and x2 are feature points in
connected keyframes K1

c and K2
c with camera centers O1 and O2, and

covisible map point P .

frame tracks at least 50 and less than 90% points of Kref .
If these requirements are satisfied, a new keyframe Kc is
created. Creation involved storing the camera pose wTc of
Fc, viewable map point Pi, and computing its visual word
description. With our proposed detection model, category-
specific object segmentation maskM and 2d bounding box
B of the created Kc were concurrently obtained and passed to
the data association module, at or above real-time speed, thus
overcoming the pre-stated constraints.

6) DATA ASSOCIATION
Each detection on the keyframe is associated with the nearest
object, Oi, in the map. The total number of objects i to
be initialized depends on the number of detections in Kc.
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Algorithm 1 Keyframe Decision, Creation, and Data
Association
Data: Fc
Result: Oi
if number of frames tracked since Kr > camera fps OR
local mapping is idle OR (for Pi in Fc, i < 50 OR
i<0.9 ∗ n (for Pn in Kr )) then

Create keyframe Kc by converting Fc to visual
words saving its pose wTc and visible Pi;
B,M← Get object detections of Kc;
Delete background object results based on the
area of B;
x io← Get feature points inM based on Kc;
Pio← Get map point matches based on x io and Di;
for P in Pio do

if P is wrongly triangulated and marked as an
outlier by the mapping process then

Delete P;
else

Initialize P with a unique in-map object
ID Oid ;

end
end
Oi← Collect Pio with same Oid and save to
corresponding map object;

end

However, only one foreground object is to be reconstructed.
As detection results were obtained from keyframes in real-
time, each detected object instance I consisted of 2DBboxes
B, 2DmasksM, and in-object feature points x io.We chose the
foreground object based on the largest area ofB in all I . All x io
found exclusively inM and Kc were associated with object
Oi in the map. By searching the keypoint to map point BRIEF
descriptor correspondence x io → Di → Pio, map points Pio
belonging to Oi were then obtained. Both x io and Pio were
used later in the shape reconstruction stage (Section III-B5).
If a detection is not associated with a pre-existing object,
it is initialized as a new object (but not reconstructed).
Combined with the new keyframe decision and creation
(Section III-A5), the data association is described in detail in
Algorithm 1.

B. LOCAL MAPPING
The local mapping thread manages the insertion of new
keyframes. It refines keyframe poses, map point positions,
and object pose by iteratively performing a local BA. New
map points were created in this thread, and redundant
keyframes and inconsistent map points were removed. 3D
model generation through category-specific object shape
code and pose optimization, together with joint map
optimization, were fully integrated in the local mapping
process.

1) KEYFRAME INSERTION
For each new keyframe insertion, the covisibility graph is
updated. The covisibility graph contains a representation of
keyframes as nodes and connections of weighted edge lines
between keyframes that share visible map points (Fig. 2).
A visual word representation was computed for each inserted
keyframe.

2) NEW POINTS CREATION
For keyframes connected to Kc in the covisibility graph, their
ORB features were matched, removing feature points that do
not satisfy epipolar constraints [22] (Fig. 3). New map points
were then created by triangulating [22] feature points found
in Kc.

3) REDUNDANCY REMOVAL
Map points that had not been tracked or wrongly triangulated
in the first three keyframes were removed. Subsequently,
keyframes with redundant view information were removed
to reduce bundle adjustment complexity and computational
cost.

4) LOCAL BUNDLE ADJUSTMENT
Given a local set of keyframesKL , which has a set of covisible
local points PL , and other keyframes KF not in KL , which
also observe PL , a nonlinear optimization is implemented
to reduce the difference (cost function) of the feature points
in KL and the back reprojection of PL to KL . Keyframes
KF contributes to the cost function but remains fixed in the
optimization. If Xk is the set of matches between set points PL
and keypoints in keyframe k , then the optimization problem
is given as (3)

{X i,Rl, tl |i ∈ PL , l ∈ KL} = argmin
X i,Rl ,tl

∑
k∈KL∪KF

∑
j∈Xk

ρ(Ekj)

Ekj = ∥x j − π (RkX j + tk )∥26 (3)

where Ekj is the camera-to-map-point error term, x j are key-
points in the monocular keyframe, X j are map points with
matched feature points in keyframe k . Rk and tk are the
rotation and translation of the keyframe. The local BA process
was extended to include a joint optimization of the camera
pose, map point, and object pose, which will be discussed in
Section III-B6.

5) OBJECT RECONSTRUCTION AND OPTIMIZATION FROM
SHAPE PRIORS
Object 3D reconstruction can be implemented by taking
advantage of their category-specific-shape-embeddings as
priors [2], [19], [23]. Accordingly, DeepSDF [19] regresses
the continuous signed distance function (SDF) representation
of class-specific object shapes. From prior shape embedded
codes (or latent vector codes), watertight 3D models of
an object can be obtained through regression even with
incomplete (partial) or noisy 3D point input of the object.
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Subsiquently, generated 3D models can be rendered using
Marching Cubes [24] and visualized through ray-casting or
rasterization.

a: RECONSTRUCTION
First, from a map object instance Oi = [B,M,Pio,

c To,0]
obtained from the data association process, cTo was initial-
ized by calculating the principal component analysis (PCA)
of Pio. The values of the dense-shape-embedded-code vector
z ∈ R64 were initially set to zero. Then, by accounting for
Pio during the SDF calculation, an initial shape code closely
fitting the actual object in the scene is acquired [13]. The SDF
value si is determined based on (4)

si = G(oTcπ−1(u,Pio), z),

oi =


1 si < −σ

−
si
2σ

|si| < −σ

0 si > −σ

(4)

where σ is the smoothness cutoff transition threshold value,
which is set to 0.01, and u is the pixel coordinate of Pio.
The occupancy probability is denoted as oi and is used to
determine in a piecewise manner whether a point is occupied
by the object or belongs to free space.

b: SHAPE AND POSE OPTIMIZATION
Using two terms, the optimization process aims to minimize
the surface reconstruction inconsistency Esurf and depth
rendering loss Erend of the previously acquired shape code
vector [13]. The surface consistency term Esurf is formulated
from (4), and thus we obtain (5).

Esurf =
1
�s

∑
u∈�s

G2(oTcπ−1(u,Pio), z) (5)

where �s denotes the pixel coordinates of u. Additionally,
Erend in (6) provides a point-to-point map point Pio pairwise
depth du constraint, restricting the object shape from growing
outside the segmentation mask silhouette.

Erend =
1

�r

∑
u∈�r

(du − d̂u)2 (6)

where, �r = �s ∪ �B is the union of surface pixels in B
and M. du and d̂u are the depth and expected depth values
determined by sampling the back-propagation of u toPio using
π . That is for each pixel u, a back-projected ray c

i x = o +
diπ−1ui can be obtained, where o is the camera optical center
and di is the depth value in camera coordinate space. Then
in accordance with [13], [25], Q discrete depth values di =
dmin + (i − 1)1d of range [dmin, dmax], and 1d = (dmax −
dmin)/(Q − 1) are sampled, the expected depth value can be
calculated as in (7)

d̂u =
Q+1∑
i+1

φidi. (7)

FIGURE 4. Joint Factor Graph of Camera-to-Object and Camera-to-Map
point pose.

φi accounts for the probability that the ray either terminates
at di or does not intersect with the object, and is expressed
as (8)

φi = oi
i−1∏
j=1

(1− oi), i = 1, . . . ,Q,

φQ+1 =

Q∏
j=1

(1− oi). (8)

Finally, a Gauss-Newton optimization is formulated as
shown in (9)

E = λsEsurf + λrErend + λc∥z∥2. (9)

The shape and pose reconstruction optimizations were tuned
using λs, λc, and λr with values of 100, 2.5, and 0.25,
respectively.

6) JOINT MAP OPTIMIZATION FOR OBJECT POSE
A joint factor graph consisting of feature points from the
SLAM process P = {pkw}

K
k=1, object poses O = {

wT jo}Mj=1,
and camera poses C = {wT ic}

M
i=1 is optimized in the local

bundle adjustment process to maintain consistency between
the camera-to-object and camera-to-point poses, as illustrated
in Fig. 4. Using non-least square optimization, the problem is
formulated as in (10)

C∗,O∗,P∗ = argmin
{C,O,P}

∑
i,j

∥eco(wTci ,
w Toj )∥6i,j

+

∑
i,k

∥ecp(wTci , p
k
w)∥6i,k (10)

where eco and ecp represent the camera-to-object and camera-
to-map point measurement error terms, respectively.

IV. EXPERIMENTS AND RESULTS
We performed experiments to evaluate the keyframe process-
ing speed of the newly proposed framework (RDSP-SLAM)
and compared it with that of DSP-SLAM. The ability of
the object-aware framework to track and create keyframes
at a faster rate is necessary for tracking robustness
given challenging camera movements. For RDSP-SLAM,
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FIGURE 5. (a)Tracking time plot of non-keyframe and keyframes in
DSP-SLAM; (b)DSP-SLAM detection time plot of all keyframes. The light
green color shows the initialization time of the detector model on the
first keyframe (the value is marked as an outlier).

we used a one-stage neural network detector: RTMDet with
5.6 million parameters, and mean average precision (mAP)
of 40.5mAPbox and 35.4mAPmask [26]. DSP-SLAM uses
a two-stage neural network detector: Mask R-CNN with
an inference storage size of 6.1GB, and mean average
precision of 42.7mAPbbox and 38.5mAPmask. All detector
models were pre-trained on the MS-COCO dataset. Taking
the two object-aware frameworks, we input the redwood chair
09374 sequential data [27] at 30fps. The Redwood chair
O9374 was used due to the large number of ORB features
that can be extracted from the 2D image of the object and
the feature disparity between the object and the environment.
To compensate for speed, we increased the number of depth
samples, object shape optimization iteration limit, and shape
learning rate for RDSP-SLAM to values of 300, 10, and 2,
respectively. The frontend ORB extractor aimed to detect
and extract 4000 features per image. Our experiments were
performed on an i7-13700KF CPU with 32G RAM and an
Nvidia RTX 4070Ti GPU.

A. TRACKING TIME
We evaluated the time taken to track non-keyframes and
create keyframes using the two frameworks, as shown in

FIGURE 6. (a)Tracking time plot of non-keyframes and keyframes in
RDSP-SLAM; (b)RDSP-SLAM detection time plot of all keyframes. Light
green color shows the initialization time of the detector model on the
first keyframe (the value is marked as an outlier).

FIGURE 7. Density curve plot (violin plot) of tracking time on DSP-SLAM
and RDSP-SLAM.

Fig. 5(a) and 6(a). Image segmentation is part of the keyframe
creation process and is necessary for data association. Hence,
the detection (bounding box and mask) time plots of the two
frameworks are presented in Fig. 5(b) and 6(b). The median
tracking time value (which is not influenced by extreme
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TABLE 1. Descriptive statistical values of the Tracking Time on DSP-SLAM and RDSP-SLAM; DSP-SLAM spends more time(53.2s) in tracking all frames
whereas RDSP-SLAM spends less time(47.8s). Also, RDSP-SLAM has a lower tracking time standard deviation, indicating tracking time stability close to
the mean(26ms).

TABLE 2. The average number of inserted keyframes in the map, number of keyframes after culling, number of points, rays, and time of object
reconstruction in 10 runs.

FIGURE 8. Object 3D reconstruction with (a) DSP-SLAM (b) RDSP-SLAM using redwood 09374 chairs sequential images passed at 30fps.

values) in the aforementioned plots sufficiently represents the
average tracking time on non-keyframes, as 90 percent of the
frames are non-keyframes. RDSP-SLAM and DSP-SLAM
have tracking time median values of 24ms and 23ms,
respectively. Conversely, the mean value changes of 26ms
and 29ms for RDSP-SLAM (Fig. 6(a)) and DSP-SLAM
(Fig. 5(a)), respectively, reliably show the effect of detection
latency on the tracking time. Lower mean tracking time
values are desirable for both real-time operation and robust
tracking.

The detection time plots on all keyframes for the different
frameworks are shown in Fig. 5(b) and 6(b). In RDSP-SLAM,
a lower average latency of 20ms can be observed compared
to DSP-SLAM, which has an average latency of 53ms. The
detectormodels were initialized on the first keyframe creation
in the two frameworks, depicted with light green lines in

Fig. 5(b) and 6(b). We treated the corresponding detection
time values as outliers (visible as light green dots in Fig. 5(a)
in our statistical analysis).

Table 1 shows the standard deviation (SD) of RDSP-SLAM
and DSP-SLAM which are 8ms and 17ms, respectively.
Indicating greater consistency of detection time in RDSP-
SLAM compared to DSP-SLAM, with respect to their
individual mean tracking time values of 26ms and 30ms.
The density curve distribution of the tracking time in the
two frameworks can be seen in Fig. 7, which shows that
RDSP-SLAM and DSP-SLAM are both positively skewed
(tailed upward) relative to a normal distribution, with values
of 1.822 and 2.271, respectively. Positive skewness means
that the mean value is higher than the median value, while
the skewness value shows the degree of difference. For a
normal distribution, the mean and median values are the
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same. The positively skewed density curve distribution of the
tracking time of both frameworks is because non-keyframe
require less tracking time (the average tracking latency
value is approximate to the median tracking value), where
as keyframes require more tracking time. The tracking of
keyframes introduces additional processing overhead, mainly
due to keyframe creation, object instance detection and data
association, which we attempt to reduce by using a state-of-
the-art one-stage detector. Lower SD and skewness values
are desirable for robust and stable tracking because they
indicate lower overhead. Finally, a higher total tracking time
of 53.167s is experienced with DSP-SLAM compared to
RDSP-SLAM, 47.8s, indicating the RDSP-SLAM spends
less time overall on creating new keyframes and tracking
them.

B. DATA ASSOCIATION AND OBJECT RECONSTRUCTION
QUALITY
We evaluated the effect of faster frontend keyframe creation
and data association on the backend object reconstruction
quality when sequential data (Redwood Chair 09374) were
passed into the frameworks at 30fps. From Table 2,
we can observe that in 10 runs, DSP-SLAM has a higher
number of included object 3D points (6813) and rays
(876), whereas RDSP-SLAM includes 4522 points and
830 rays. Although more points were included with DSP-
SLAM, both frameworks provide a visually sufficient and
satisfying reconstruction of the object (chair), as shown in
Fig. 8. Moreover, DSP-SLAM requires more tracking time,
as shown in Table 1. During the experiments, any additional
delay in tracking the frames could be accommodated easily
by retrieving the next frame, as they were all stored in the
device (PC). However, in real-world applications, the camera
can easily be lost as image frames must be tracked as soon
as they emerge. Notwithstanding, the larger time interval
between keyframe insertions of DSP-SLAM is advantageous
for better reconstruction quality because more regression
iterations can occur given each incremental object 3D point
data input.

V. CONCLUSION AND FUTURE WORK
Object-aware SLAM systems provide a compelling solution
for object-level awareness in real-world applications such as
the enrichment of augmented reality experiences by easily
replicating scene objects and robot-to-object spatial memory.
The ability of the object-aware framework to track and create
keyframes at a faster rate is necessary for tracking robustness
given challenging camera movements are prominent in these
applications. To this end, we presented RDSP-SLAM and
compared its tracking latency and object reconstruction
quality with those of DSP-SLAM. RDSP-SLAM has a lower
mean and total tracking time of 26ms and 47.8s, respectively,
which is desirable for robustness and real-time operation
compared with DSP-SLAM, which has a mean and total
tracking of 29ms and 53.2s. This is mainly due to RDSP-
SLAM’s adoption of a state-of-the-art one-stage detector

TABLE 3. Map data structure.

running at 50fps compared with the traditional two-stage
detector adopted in DSP-SLAM, which runs at 18.9fps. The
use of the one-state detector with lower inference latency
reduces the overall processing time of each keyframe. Both
frameworks provide a visually satisfactory reconstruction
of the scene object, given RGB data (Redwood-09374)
input at 30fps. In future work, we will focus on removing
the effect of detection initialization on the tracking thread.
Additionally, a detector capable of fine-grain category-based
segmentation of hollowed objects in a scene will provide
close-to-ground-truth results for map-point data association
and object reconstruction.

VI. NOMENCLATURE
See Table 3.
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