
Received 24 January 2024, accepted 13 February 2024, date of publication 21 February 2024, date of current version 4 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3368453

How to Formalize Loop Iterations
in Cryptographic Protocols
Using ProVerif
TAKEHIKO MIENO 1, (Member, IEEE), HIROYUKI OKAZAKI2,
KENICHI ARAI3, AND YUICHI FUTA4
1Business Development Division, EPSON AVASYS Corporation, Shinshu University, Nagano 386-1214, Japan
2Graduate School of Science and Technology, Shinshu University, Nagano 380-8553, Japan
3School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
4School of Computer Science, Tokyo University of Technology, Tokyo 192-0982, Japan

Corresponding author: Takehiko Mieno (mieno.takehiko2@exc.epson.co.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 22K11982.

ABSTRACT The formal verification of cryptographic protocols has been extensively studied in recent
years. To verify the cryptographic protocol security, formal verification tools consider protocol properties as
interactive processes involving a cryptographic functionality. In general, we formally define a cryptographic
functionality as an abstract function. However, the actual cryptographic protocols used comprise complex
combinations of cryptographic functionalities. Thus, we may not determine if the protocol is secure, even
when the cryptographic protocol security with cryptographic functionalities is verified using verification
tools. Increasing the reliability of the verification results necessitates the verification of the security
properties of these algorithms using ProVerif. Many cryptographic algorithms have been designed as
iterative algorithms. These include the Merkle and Damgård construction (MD construction) method for
cryptographic hash functions and the cipher block chaining mode (CBC mode) for the block cipher mode of
operation. However, formalizing an iterative execution is difficult in ProVerif. Thus, we propose a method
for formalizing a model of iterative executions. In the proposed method, we describe to formalize iterative
execution as a formal model of function calls. We demonstrate the validity of our proposed method by
formally verifying the safety of the MD construction method, which behaves like an iterative execution by
including a one-way compression function and internal variables changed by the output of these functions.
We also present a method for formalizing a common block cipher mode of operation (i.e., CBC mode) used
in the proposed method to handle iterative execution.

INDEX TERMS CBC mode, formal method, iterative execution, MD construction, ProVerif.

I. INTRODUCTION
The formal verification of cryptographic protocols has been
extensively studied in recent years. ProVerif [1], [2], [3] is
one of the most successful automatic cryptographic protocol
verifiers. ProVerif and similar verification tools, e.g., Tamarin
Prover [4], [5], [6], Scyther [7], Verifpal [8], and AVISPA
[9] can automatically analyze the cryptographic protocol
security formally described in the Dolev and Yao model [10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Peter Langendoerfer .

To verify the cryptographic protocol security, these tools
consider the cryptographic protocol properties as interactive
processes involving a cryptographic functionality. A formal
model of a protocol comprises ideal cryptographic function-
alities, such as secret key cryptographic functions, digital
signatures, and cryptographic hash functions. In general, we
formally define a cryptographic functionality as an abstract
function. The actual cryptographic protocols in use; however,
comprise complex cryptographic algorithm combinations;
thus, we may not determine if the protocol is secure, even
when the cryptographic protocol security with cryptographic

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 31605

https://orcid.org/0009-0002-1646-2333
https://orcid.org/0000-0002-6209-9048

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

functionalities may be verified using these tools. ProVerif
verifies the security of formally described protocols con-
structed with an ideal cryptographic functionality, although
actual protocols are implemented with feasible cryptographic
algorithms. To increase the reliability of the verification
results, it is desirable to verify the security properties of such
algorithms using ProVerif. Many cryptographic algorithms
are designed as iterative algorithms, including the Merkle–
Damgård construction (MD construction) [11], [12] method
for cryptographic hash functions and the cipher block
chaining mode (CBC mode) [13], [14], [15], [16] for the
block cipher mode of operation. We propose herein a method
for formalizing a model of iterative executions. However,
formalizing the iterative execution is difficult because in
the usual method, we can only formalize the cryptographic
communication procedure between processes when ProVerif
is used to verify the cryptographic protocol security.

Our proposed method formalizes function calls by treating
them as a communication between internal processes.
We formalize the MD construction algorithm using this
method and verify that the formal MD construction model
holds the cryptographic hash function properties. MD
construction is a method of constructing a cryptographic
hash function (e.g., SHA–1 [56] or MD5 [57]). The MD
construction behavior is similar to that of the iterative
executions because the MD construction includes one-way
compression functions and an internal variable changed
by the output of these functions. We also present a
method for formalizing a common block cipher mode
of operation, i.e., the CBC mode. A block cipher is
regarded as a secure cryptographic transformation used to
encode/decode one fixed-length bitstring referred to as a
block. The operation mode typically behaves as an iterative
execution.

This paper discusses how to deal with an iterative
execution in ProVerif. The main approach involves the
internal states being described by the communication
between the processes via private channels. Please see
Section III-A for more information on the private channels.
We propose a method for formalizing the loop iterations for
ProVerif, a software that verifies the cryptographic protocol
security, and confirms the correctness of the proposed
formalization through case studies of the Merkle–Damgård
structures of hash functions and the CBC mode of block
ciphers.

The remainder of this paper is organized as follows:
Section II provides an overview of the formalization per-
formed using the model validation tool, ProVerif; Section III
describes our proposed iterative formalization method using
S/KEY; Sections IV and V present the formal verification of
the MD construction and the CBC mode using the proposed
method for iterative executions; and Section VI discusses our
proposal and its limitations and the derivation of the padding
oracle attack [44], [45] against the CBC mode. Note that
Sections III, IV, and V are all formalized using our proposed
method to handle the iterative execution.

A. MOTIVATIONS AND CONTRIBUTIONS
The main contribution of this work is our proposed method
that allows the iterative method formalization. The proposed
method formalizes the function calls by treating them as
communication between internal processes using a private
channel. It allows the iterative method formalization used in
complex cryptographic protocols other thanMD construction
and the CBC mode.

Notably, however, because ProVerif is a model checking
tool, its verification result is not a proof of security, even
though it may find a feasible attack via an exhaustive search
of the given model and rules.

1) HOW TO FORMALIZE AN ITERATIVE EXECUTION
Our method formalizes function calls by treating them

as communications between internal processes through a
private channel. Our approach enables the formalization
of the iterative methods used in the complex crypto-
graphic protocols in ProVerif, showing application to the
design of other cryptographic algorithms. The proposed
method uses the descriptions of internal communication
with self-duplicating processes in ProVerif. The internal
states with communication between processes are described
through private channels. This concept is similar to the
interprocess communication in general computational mod-
els. Our method enables the formalization and the security
verification of cryptographic modules.

2) CASE STUDIES
We confirm herein the validity of the proposed for-

malization through case studies on the Merkle–Damgård
structures of hash functions and the CBC mode of block
ciphers. We demonstrate the formal verification of the
MD construction and the CBC mode using the proposed
method for iterative executions1. We verify that the proposed
method is consistent with the formal MD construction model
and satisfies the cryptographic hash function properties
of pre-image resistance (PR), second-preimage resistance
(2ndPR), and collision resistance (CR).We also formalize the
CBC mode with and without padding and verify that we can
encrypt/decrypt a plaintext comprising multiple blocks in the
CBC mode while keeping the CBC mode communication a
secret.

The proposed formalization can discover the vulnerabili-
ties [19], [20], [21], [22] imposed by the structure of the hash
functions and encryption modes, such as length extension
attack (LEA) [23] and chosen plain attack (CPA) [55]. In a
formal verification, the hash functions and block ciphers
are formalized as ideal functions without vulnerabilities.
We illustrate herein the validity of our formalization and
validation results by formalizing the LEA on iterated hash
functions (Section IV-B4), MD-strengthening [42], [43]

1Note that the MD construction formalization has already been published
in international conferences [17] and [18]. This paper is the final paper that
summarizes these results.

31606 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

method that makes the attack impossible (Section IV-B6), and
CPA on the CBC mode (Section V-B5).

B. RELATED WORK
Blanchet and Paiola [24] presented a novel automatic tech-
nique of proving the secrecy and authentication properties
of security protocols manipulating the lists of unbounded
length over an unbounded number of sessions. This approach
requires the extension of the Horn clause approach. Another
method using a tamarin theorem prover was introduced [5],
[25]. To the best of our knowledge, ProVerif in iterative
processes has not been previously proposed. Conversely,
Backes et al. [26] formally proved the CR ofMD construction
using EasyCrypt [27], a theorem prover tool that supports
the validation of mathematical theorems and specializes in
proving the cryptographic protocol security. By contrast,
ProVerif is a model checker, not a theorem prover. ProVerif
automatically and exhaustively searches the execution pro-
cesses of a protocol and is used to discover detailed
cryptographic protocol attacks. Thus, an MD construction
formally using the EasyCrypt result cannot be applied to
ProVerif.

In recent years, ProVerif has become a popular tool
[28] for protocol security verification. ProVerif particularly
identifies attacks on various protocols, including Extend
ProVerif [29], Bluetooth protocol design vulnerabilities [30],
distance bounding protocols [31], TLS1.3 [32], on-site voting
systems [33], authentication protocols for Internet of Drones
environments [34], Fast Identity Online 2 [35], and the
MobileRFID authentication protocol [36]. Jacomme et al.
[37] found weaknesses in their EDHOC analysis, a key
exchange proposed by the IETF’s Lightweight Authenticated
Key Exchange Working Group. Cheval and Rakotonirina
[38] applied two complex industrial-scale voting protocols
designed for the Swiss context. The SAPIC+ [39] protocol
verification platform allows the transparent use of threemajor
verification tools. Boyd and Anish [40] summarized the
cryptographic protocols and their securities. Barbosa et al.
[41] summarized the formal verification of cryptographic
protocols.

II. PROVERIF
ProVerif is an automatic cryptographic protocol verifier in
the formal Dolev–Yao model. It assumes that cryptographic
functionalities are ideal and is based on an abstract represen-
tation of the protocol by Horn clauses [46]. ProVerif can be
used to verify the cryptographic properties of secrecy [47],
authentication [48], strong secrecy [49], weak secrecy [50],
and observational equivalence [50]. The ProVerif input file
comprises the declaration and execution parts.

The terms and components of cryptographic protocols
(e.g., variables, functions, and channels) are defined in the
declaration. We also define processes, rewrite term rules, and
include queries in the declaration. Note that attackers can use
nonprivate terms in the verification phase. We define terms

to construct processes. To define the protocol to be verified,
we describe how the process is executed in the execution part.

A. PROCESS EXECUTION SYNTAX
This section presents a brief review of the execution.
We demonstrate the execution state of the protocol in
the execution part. We directly describe the initiator and
responder processes defined in the declaration part, which are
executed in parallel as follows:

Initiator | responder2 | responder1 | · · · .

!P represents the unbounded number of replications of P,
which are executed in parallel as follows:

P | P | P |

Processes communicate through a public channel.
An attacker can intercept messages through these channels
and send any message to the channel. Note that we omitted
the declaration details. Please refer to [2] for the declaration
details.

B. PROVERIF QUERIES
This section introduces essential queries for the ProVerif
verifier. ProVerif has some queries that are directives to
the verifier to determine whether the protocols possess the
designated security properties. We can check basic security
requirements, such as secrecy and authentication, using
these designated queries. However, the designated queries
of ProVerif are insufficient for the security verification of
advanced security requirements. The proposedmethod allows
us to check more detailed advanced security requirements
by combining the queries and the processes indicating the
attack goal. In this paper, the basic designated queries are
summarized as follows:

Secrecy: ‘‘query attacker (X)’’
The verifier checks whether the attacker can know
term X. If ‘‘not attacker (X)’’ is true, term X is kept
secret until the protocol terminates.

Reachability: ‘‘query event (X)’’
The verifier checks the reachability of event X.
Event X is not executed if ‘‘not event (X)’’ is true.
Event X can be executed if the query is false.

C. GENERAL APPROACH TO FORMALIZING PROTOCOLS
IN PROVERIF
In this section, we briefly review the general approaches used
to formalize the protocols in ProVerif. We explain herein
the formalization of a protocol as communication between
processes (e.g., sender and receiver processes) in ProVerif.
Code.12 presents a simple protocol (Figure 1).

(* Code.1: EXAMPLE of Protocol *)
1 free c:channel.
2 free m:bitstring[private].
3
4 Let Sender =

2In this study, all codes were verified using ProVerif 2.05.

VOLUME 12, 2024 31607

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

FIGURE 1. Example of the general protocol.

5 new n:bitstring;
6 out (c,m).
7
8 let Receiver =
9 in (c, r:bitstring).
10
11 process
12 Sender | Receiver

In the declaration part of Code.1, we declared terms c and
m and defined the Sender and Receiver processes. Here,
‘‘free’’ denotes the declarator of a global free term, whereas
‘‘new’’ denotes the declarator of a local term in individual
processes.

Channel type terms are treated as a set in ProVerif and
initially declared as an empty set. Term c is declared as a
channel type term. Term m is declared as a bitstring type term
with a private attribute. Term n is declared as a local term
in the Sender process when the Sender is executed. Note
that the Sender and Receiver processes are executed
in parallel in the execution part. The executed processes
communicate with each other by sending and receiving terms
via the indicated channels. In this case, Sender sends m to
channel c, and Receiver receives the term from channel c.
In ProVerif, attackers can know the global terms without

private attributes, but initially cannot know these with private
attributes and local terms. However, any term sent to channels
without a private attribute is exposed to attackers, even if
it is initially private. The subsequent section discusses the
technical details of the ProVerif channels.

Here, term m is inserted in the set c when out(c,m) is
executed in the Sender process. The local term r is declared
and initialized with one of the terms in c when in(c,
r:bitstring) is executed in the Receiver process.
Note that it cannot remove terms from c, even if the processes
receive terms from c.
However, we can declare multiple channel type terms to

separate the communication channels. Here, the terms sent
to a channel, which are declared with private attributes, are
kept secret from the attackers. The next section describes a
method for formalizing a function call with a private channel
in ProVerif.

III. FORMALIZING AN ITERATIVE EXECUTION IN
PROVERIF
Although actual protocols are implemented with feasible
cryptographic algorithms, ProVerif generally verifies the
security of formally described protocols constructed with an
ideal cryptographic functionality. To increase the reliability

of verification results, it is desirable to verify the security
properties of such algorithms using ProVerif. However,
several cryptographic algorithms, including iteration and
recursion ones, are not supported by ProVerif.

In general, an iteration can be formalized by iteratively and
explicitly enumerating the same computations. However, this
approach may be inconvenient for the security verification
of practical protocols. We propose herein a method for
formalizing an iterative execution as a formal function call
model.

We introduce the proposed method for formalizing func-
tion calls, specifically focusing on the iterative execution
formalization in ProVerif. We consider the S/KEY (III-A),
MD construction (IV-B2), and CBCmode (V-B1,V-B2,V-B3)
as examples.

Our proposed method allows the formalization of iterative
and recursive executions. Note that ProVerif may not termi-
nate during verification because it works for an unbounded
number of sessions and an unboundedmessage space. (Please
refer to [2].) This problem is mainly caused by the model
conditions and can be avoided by properly considering them.
For clarity, we explain the fixed-bound case (i.e., set the value
to fixed conditions) in this work.

A. BASIC APPROACH FOR FORMALIZING ITERATIVE
EXECUTIONS
This section describes the proposed method for formalizing
function calls by treating them as a communication between
internal processes through a private ProVerif channel.

Function calls and subroutines can be realized by the
internal communication processes between the main process
and other processes. Iterative executions can repeatedly
be formalized as an internal interprocess communication.
We claim that these calculations can be formalized as
an internal interprocess communication, even if the actual
calculations do not necessarily match the expressed model.

This concept requires a consideration of the formal channel
model characteristics presented in Section II-C.
We introduce herein a formalization of the calculation of a

one-time password as an example of a simple iterative execu-
tion (Figure 2). Code.2 depicts an example of the formaliza-
tion of an iterative execution calculating a hash function for a
specified number of times. In this example, the main process
invokes the SKEY process to calculate the hashing of the
given seed repeatedly three times. Consequently, the SKEY
process computes the hash(hash(hash(seed))) via
an iterative execution.
(* Code.2: One-time Password *)

1 free t1:channel[private].
2 free t2:channel[private].
3 free seed:bitstring [private].
4
5 fun hash(bitstring):bitstring.
6
7 event COL.
8 query event(COL).
9
10 let SKEY(s:bitstring) =
11 in(t1, x2:nat);

31608 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

FIGURE 2. Formalization of an iterative execution.

12 let x3:nat = x2-1 in
13 if (x3 <> 0) then
14 (
15 out(t1, x3);
16 in(t2,(x4:nat,sk:bitstring));
17 if(x4=x3) then
18 (
19 let otp3 = hash(sk) in
20 out(t2,(x2,otp3));
21 if(otp3=hash(hash(hash(seed)))) then
22 event COL
23)
24)
25 else
26 out(t2, (x2,hash(seed))).
27
28 process
29 let a1:nat = 3~in
30 !(
31 out(t1, a1)
32)
33 | !SKEY(seed)

In lines 10–26 of Code.2, the SKEY process is a
formal model representing one step of the hash iterative
execution. In line 33 of Code.2 in the execution part,
‘‘!SKEY(seed)’’ implies the execution of an unbounded
number of replications of the SKEY process. During this
execution, ‘‘!SKEY(seed)’’ behaves as an iterative sub-
routine by communicating the SKEY replications with each
other via an internal channel. In this case, ‘‘seed’’ denotes
an argument representing the shared secret key that each
replication of the SKEY process takes at runtime. First, the
main process invokesSKEY as a subroutine by sending the nat
term a1 representing the number of replications via a private
channel t1 in line 31 of Code.2: ‘‘out(t1,a1)’’ (a1 = 3
in this case).

A SKEY replication process communicates with the next
step via private channels t1 and t2, where terms t1 and
t2 denote the channels for the counter of repetitions and for
the temporary data during iterative execution, respectively.
The replication process of SKEY receives the nat term

x2 via t1 in line 11 of Code.2. Subsequently, SKEY
computes x3 = x2-1. In the case of x3 = 0, SKEY sends
(x2,hash(seed)) to return to the previous step of SKEY
via t2.

In the case of x3 , 0, SKEY sends x3 to another
replication of SKEY via t1 for an iterative execution. The
current SKEY then receives a pair of terms (x4,sk) via
a private channel t2 from another SKEY replication. The
current SKEY must ensure that the received data come
from the next step of SKEY considering the formal model
characteristics of channels (Section II-C). For x4 = x3,
(x4,sk) denotes return from the next step. Thus, the current
SKEY returns (x2,hash(sk)) to the previous SKEY step
or the main process via channel t2.
Consequently, the ‘‘!SKEY’’ process can now compute a

given seed hashed for a specified number of times via iterative
executions. Lines 21 and 22 of Code.2 are for the query
to confirm if this sample works well. They are irrelevant
to the formalization of the iteration behavior. In ProVerif,
‘‘out(t1,a1)’’ means outputting term a1 to channel t1.
In this case, a1 indicates the number of times the hash
function is applied. It will be sufficient to the term a1 once
if t1 is a public channel. In our formalization, however, a1
must be repeatedly output if t1 is a private channel. This
difference is caused by how ProVerif handles models for
public and private channels [2].
The terms output to public channels are expected to be

referenced by anyone, including attackers; thus, the term
remains in the public channel, even if it is input to a process.
By contrast, the terms output to private channels vanish from
these channels if they are input to a process. Therefore, when
multiple processes refer to a term in a private channel, the
same valued term must repeatedly be output to this private
channel.

As described above, the iterative process of ProVerif
exhibits different behaviors in public and private channels.
The subsequent section provides a detailed explanation for
this (III-B).

B. DETAILS OF PUBLIC AND PRIVATE CHANNELS WITH
ITERATIVE EXECUTIONS
This section describes the iterative process of ProVerif that
exhibits different behaviors in public and private channels.
out(t1,a1) outs a1 (= 3) are output to the private

channelt1. Parametera1 indicates the number of hash appli-
cations. A public channel requires one out(t1,a1) execu-
tion, whereas a private channel needsmultipleout(t1,a1)
(!out(t1,a1)) replications. The reason for this is
explained below. In the ProVerif channel, when one wants
to put a term from the channel, the term needs to be out to
the channel in advance. (If a channel is regarded as a set,
when a certain term is out, this term is added to the set.
When it is in, the term is taken out from the set). For a
public channel, the term out to the channel is available to
the attacker; hence, the attacker can use it to exit the channel
at any time. In the case of public communication channels,

VOLUME 12, 2024 31609

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

FIGURE 3. Output procedure ‘‘! out(t1,a1)’’.

FIGURE 4. Transition table of private channels t1 and t2.

the attacker can execute out(t1,a1) many times by
executing out(t1,a1) once; therefore, the replication of
out(t1,a1) is not necessary. However, the attacker cannot
intervene in a private channel; thus, our proposed SKEY
model (Figure 2) requires the replication of out(t1,a1).
‘‘Figure 3’’ shows the ‘‘in’’ and ‘‘out’’ flows in the

case of ‘‘!out(t1,a1).’’ In the proposed SKEY model,
out(t1,a1) is executed only once. If we wish to insert
the natural number 2 in ‘‘Figure 3’’(11O) and the natural
number 3 in ‘‘Figure 3’’(12O), then ‘‘in’’ cannot be performed.
In contrast, out(t1,a1) can be executed if it is to be
replicated, as shown in 11O and 12O in ‘‘Figure 3.’’ Therefore,
our SKEY model (Section III-A) requires a replication of
out(t1,a1). ‘‘Figure 4’’ is a transition table of values in a
private channel (t1,t2).

IV. FORMALIZATION OF THE MD CONSTRUCTION
A. MD CONSTRUCTION
A cryptographic hash function H transforms a message
of any length to a bitstring of fixed-length. The hash
functionmust possess security properties, such as PR, 2ndPR,
and CR.

FIGURE 5. MD construction.

The MD construction [11], [12] is a method for construct-
ing a cryptographic hash function, for example, SHA-1 or
MD5 (Figure 5).

‘‘Figure 5’’ shows the MD construction mechanism,
where an arbitrary-length input message (m) is divided
into fixed-length blocks (m1,m2,. . . ,mt) sequentially input
to a fixed-length compression function f in order from the
beginning block of the input message. The final output (ht)
used as a hash value is obtained as follows:

m = (m1,m2, . . . ,mt) (1)

h0 = IV (2)

hi = f (hi−1,mi) for i = 1, 2, . . . , t (3)

ht = H (m). (4)

IV denotes the initial vector. If the final block is shorter
than the block length, padding is added such that it becomes
the block length. Unfortunately, ProVerif does not support the
function call formalization. In our formalization, the state of
the process using a table, which is a data structure supported
by ProVerif, is maintained to reproduce the intended behavior
of the process’ control structure. The proposed formalization
method controls internal process communications without
relying on a table structure.

B. FORMALIZATION OF THE MD CONSTRUCTION CODE
Code.33 shows the formalization of the MD construction.

(* Code.3: Formalization of MD Construction *)
1 free c:channel.
2 free s:channel[private].
3 free t:channel[private].
4 free m:bitstring[private].
5 const iv:bitstring.
6
7 fun con(bitstring,bitstring):bitstring.
8 fun divhead(bitstring):bitstring.
9 fun divrest(bitstring):bitstring.
10 equation forall mt:bitstring;
11 con(divhead(mt),divrest(mt))=mt.
12
13 (* Compress function *)
14 fun comp(bitstring,bitstring):bitstring.
15
16 (* Query *)
17 event PROOF.
18 query event(PROOF).
19
20 (* MD construction *)
21 let makeMD =
22 in(s,(ha:bitstring,rm:bitstring,bl:nat));
23 if(bl <> 1) then
24 (
25 let newbl = divhead(rm) in
26 let newstream = divrest(rm) in

3Improved version from [17] and [18].

31610 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

27 let newha = comp(ha,newbl) in
28 out(s,(newha,newstream,bl-1))
29) else (
30 let MDh = comp(ha,rm) in
31 out(c,MDh);
32 event PROOF
33).
34
35 (* Main process *)
36 process
37 (
38 out(s,(iv,m,4)) | !makeMD
39)

1) MESSAGE BLOCK DIVISION
This section describes how the message block division
is formalized. Note that our formalization only supports
message division into a predetermined number of blocks,
as mentioned in Section IV-A. In Code.3, we treat a message
as a bitstring type term. Unfortunately, a free term just
declared is a symbol without information other than its name
and type, although we divide an arbitrary-length message into
fixed-length blocks in the real world. We formalize splitting a
message into two blocks as follows. First, two bitstring terms
are generated from the given bitstring term.We then introduce
the following relationship among the three bitstring terms: the
given term is equal to the concatenation of the two generated
terms.

Accordingly, we need to provide declared terms with infor-
mation about length and the division procedure. We handle
the length information of a bitstring term by introducing an
additional nat type term representing the bitstring length.
We then introduce the relation of how to divide a bitstring
term through bitstring division and concatenation functions.

The ‘‘con’’ function defined in line 7 of Code.3 generates
the concatenation of two bitstring type terms. The divhead
and divrest functions in lines 8 and 9 of Code.3 extract
a portion from the bitstring. Note that these functions are
treated as an argument. Here, divhead extracts the first
block of the given bitstring, whereas divrest extracts a
portion other than what divhead extracts. For example, let
X be a bitstring type term and ℓ be a nat type term representing
the X length. In this case, the bitstring term X is divided into
two bitstrings, that is, divhead(X) and divrest(X),
where con(divhead(X),divrest(X)) = X. In this
model, we treat the bitstring lengths X, divhead(X), and
divrest(X) as ‘‘ℓ, 1, ℓ − 1.’’ We need to keep the block
length of two bitstrings as individual nat terms after division
because divhead and divrest generate a bitstring type
free term. We define the rewriting rules for concatenation in
lines 10 and 11 of Code.3 and formalize the binary splitting of
the bitstring message in this manner. Repeating this process
enables us to formalize the dividing message into any number
of blocks.

2) ITERATIVE EXECUTION OF THE MD CONSTRUCTION
As discussed in Section IV-A, theMD construction algorithm
iterates compression function computations that take the
output of the previous round and the divided message as
the input. We propose herein a formal model that represents

the iterative execution of the MD construction rounds.
The makeMD process in lines 21–33 of Code.3 depicts
a formal model representing each round of the iterative
execution of the MD construction. On the right side of
line 38 of Code.3 in the main process, ‘‘!makeMD’’ repre-
sents invoking an unbounded number of makeMD process
replications.

We formalize the iterative execution of the MD con-
struction rounds as the internal process communication of
the makeMD replications. First, the main process invokes
makeMD as a subroutine by sending triad bitstrings via
the private channel s in line 38 of Code.3 as follows:
out(s,(iv,m,4)), where (iv,m,4) is a message with
a length divided by ‘‘4’’, and ‘‘iv’’ is a constant bitstring
term representing the initial vector (IV). Once the main
process invokes the first step of makeMD, each makeMD
process replication starts to communicate with the next
replication via the private channel.

Consequently, the iterative executions of makeMD may
now compute the MD construction. We formalized the
division of a message into a predetermined number of blocks
during the MD construction in ProVerif. To ensure that this
model functions as intended, we verified the reachability
of the event PROOF defined in lines 17 and 18 of
Code.3, where MD construction was successfully completed
by ProVerif. The ProVerif verifier found the execution
path from the initiation of the execution to the event
PROOF. The proposed method allowed us to formalize the
subroutine call, especially the iterative executions. Note
the possibility of declaring a channel with the ‘‘private’’
attribute in ProVerif. Any term sent via a private channel is
secretly kept from attackers. Our proposed model handles a
private channel as an internal communication between local
processes.

The replication process of makeMD receives bitstring
terms (ha,rm,bl) via the secret channel in line 22 of
Code.3. Here, ha is the compress function output in the
previous step of makeMD, and rm is the preimage tail
bitstring. ‘‘Figure 6’’ shows an example of the block division
process in the MD construction.

If bl , 1, makeMD divides rm into two bitstring terms,
that is, newbl = divhead(rm) and newstream =
divrest(rm).

Next, the compress function comp takes newbl and ha
as arguments, generates ‘‘newha = comp(ha,newbl),’’
and then sends (newha,newstream,bl-1) to the next
step of makeMD via the private channel. If bl = 1, the
current step is the final step of theMD construction execution.
Subsequently, makeMD returns comp(ha,newbl) as the
MD construction calculation result. The makeMD process
represents a single round of MD construction in the
formalized MD construction model. That is, it does not
formalize the entire MD construction process. We duplicated
the makeMD process (‘‘!makeMD’’) by iteratively executing
the makeMD process, thereby effectively formalizing the
entire MD construction process.

VOLUME 12, 2024 31611

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

FIGURE 6. Block division process.

3) COLLISION RESISTANCE
Collision resistance makes it hard to find two different
messages (i.e., M and M ’), such that ‘‘H (M) = H (M ’).’’
Unfortunately, ProVerif does not have queries to directly
verify the CR. The process described below is performed
to present the verification goal to ProVerif and confirm the
intentional collision resistance by ProVerif. The CR property
complicates the search for different message sets with equal
hash values. The CR can be verified by rewriting line 16 and
onward in Code.3. In line 20 of Code.44 table MD means,
need to be associated, which the original message and the
generated hash value, it’s uses to values from the table.
To make it possible for the attacker to perform the MD
construction, the makeMDadv process is described in lines
23–36 of Code.4 as the MD construction process for the
attacker.5

(* Code.4: Verifying Collision Resistance *)
16 (* Query *)
17 event COL.
18 query event(COL).
19
20 table MD(bitstring,bitstring).
21
22 (* MD construction for adversary *)
23 let makeMDadv =
24 in(t,(ha:bitstring,rm:bitstring,bl:nat,
25 mm:bitstring));
26 if(bl <> 1) then
27 (
28 let newbl = divhead(rm) in
29 let newstream = divrest(rm) in
30 let newha = comp(ha,newbl) in
31 out(t,(newha,newstream,bl-1,mm))
32) else (
33 let MDh = comp(ha,rm) in
34 insert MD(mm,MDh);
35 out(c,MDh)
36).
37
38 (* Indicating-Process for Collision Resistance *)
39 let Collision =
40 in(c,(m1:bitstring,m2:bitstring));
41 get MD(=m1,MDm1) in
42 get MD(=m2,MDm2) in
43 if(m1 <> m2 && MDm1 = MDm2)
44 then event COL.
45
46 (* Main process *)
47 process

4Improved version from [18].
5In general, the actual adversary is opposed to idealized ones referred to

as attackers. The adversary is used in the coding of this work.

FIGURE 7. LEA.

48 !(
49 in(c,mm:bitstring);
50 out(t,(iv,mm,4,mm))
51 | !makeMDadv
52)
53 | !Collision

The collision process in lines 39–44 of Code.4 verified
whether an attacker generates two different inputs of
the MD construction algorithm with equal output values
(i.e., collision occurrence). As a result of the ProVerif
verification, ‘‘true’’ was output, indicating that no successful
attack path breaking the CR was detected. We formalized
PR and 2ndPR in the same manner used in the proposed
method. We confirmed that the verification method for the
cryptographic functionalities is effective.

4) LENGTH EXTENSION ATTACK
Cryptographic hash algorithms comprising only elementary
MD construction are vulnerable to the length extension attack
(Figure 7). Thus, practical cryptographic hash functions
based on the MD construction have been designed to
withstand the LEA and other attack types.
We present herein how the ProVerif verifier discovered an

execution path of the LEA against the pure MD construction
algorithm to demonstrate the performance of our MD
construction formalization. The LEA can be verified by
rewriting line 16 and onward of Code.3.
(* Code.5: Length Extension Attack *)

15 table MD_h(bitstring,bitstring).
16 table MD_h_check(bitstring).
17
18 (* Query *)
19 event SUCCESS.
20 query event(SUCCESS).
21
22 (* MD construction *)
23 let makeMD =
24 in(s,(ha:bitstring,rm:bitstring,bl:nat,
25 mm:bitstring));
26 if(bl <> 1) then
27 (
28 let newbl = divhead(rm) in
29 let newstream = divrest(rm) in
30 let newha = comp(ha,newbl) in
31 out(s,(newha,newstream,bl-1, mm))
32) else (
33 let MDh = comp(ha,rm) in
34 insert MD_h(mm, MDh)
35).
36
37 let LEA_CHECK =
38 in(c, MDh12’:bitstring);
39 get MD_h_check(=MDh12’) in
40 event SUCCESS.
41
42 (* Main process *)
43 process

31612 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

44 (
45 new m1:bitstring;
46 new m2:bitstring;
47 out(c, (m2,2));
48 out(s,(iv,m1,2, m1));
49 get MD_h(=m1, MDh1:bitstring) in
50 out(c, MDh1);
51 out(s,(MDh1,m2,2, con(m1,m2)));
52 get MD_h(=con(m1,m2), MDh12:bitstring) in
53 insert MD_h_check(MDh12)
54) | !makeMD | !LEA_CHECK

In Code.5, we added the LEA detection mechanism of
the LEA execution to Code.3. First, the main process of
Code.5 computed h(m1) and h(m1|| m2) by invoking the
makeMD process. h(m1) and h(m1|| m2) were registered in
the private MD_h_check table, which cannot be accessed by
attackers. The main and legitimate processes (e.g., makaMD
and LEA_CHECK) were permitted to read and write to the
MD_h_check table. The main process provided the attacker
with the hash value registered in the table and determines
whether the LEA succeeds.

The LEA succeeded when the event SUCCESS in the
process LEA_CHECK was executed. Note that all functions
comprising the makeMD process were permitted to use to any
entity; thus, the attackers can perform a computation similar
to when the process makeMD was used, even though the
attacker was not allowed to directly use the process makeMD.
The ProVerif verifier finds the execution path to the event
SUCCESS if and only if both h(m1) and m2 are given to
the attacker; thus, in Code.5, the model formalized the MD
construction, such that the LEA succeeded.
The ‘‘LEA_CHECK’’ process was defined in

lines 37–40. ProVerif determined whether the LEA by
the attacker is possible in line 54 ‘‘!LEA_CHECK.’’ The
query for ‘‘event SUCCESS’’ was defined in lines 19
and 20. In this formalization, ‘‘event SUCCESS’’ may
be reachable. In other words, the attacker can execute the
LEA. Here, the verification result by ProVerif output ‘‘false.’’
ProVerif derived a specific attack procedure when the query
‘‘event SUCCESS’’ was executed. Appendix A presents
the verification result of the LEA.

5) PREVENTION OF THE LENGTH EXTENSION ATTACK
Section IV-B4 demonstrated that our formal model of
cryptographic hash functions based on elementary MD
construction was as vulnerable to the LEA attacks as it is
in the practical case. Understandably, practical cryptographic
hash functions based on the MD construction were designed
to withstand the LEA. In this section, we present a
formalization of the cryptographic hashing algorithm that
can avoid the LEA (Code.6). The formalization presented in
Code.6 prevented the LEA attacks using the message length
information in the final round of the MD construction. Note
that practical cryptographic hash functions prevent the LEA
using the MD-strengthening [42], [43] method that handles
padding and message length information. The subsequent
section presents the MD strengthening formalization.

(* Code.6: Length Extension Attack Prevention *)
15 fun length(bitstring):bitstring.
16
17 table MD_h(bitstring,bitstring).
18 table MD_h_len(bitstring,bitstring).
19 table MD_h_check(bitstring).
20
21 (* Query *)
22 event SUCCESS.
23 query event(SUCCESS).
24
25 (* MD construction *)
26 let makeMD =
27 in(s,(ha:bitstring,rm:bitstring,bl:nat,
28 mm:bitstring));
29 if(bl <> 1) then
30 (
31 let newbl = divhead(rm) in
32 let newstream = divrest(rm) in
33 let newha = comp(ha,newbl) in
34 out(s,(newha,newstream,bl-1, mm))
35) else (
36 let MDh = comp(ha,rm) in
37 insert MD_h(mm, MDh)
38).
39
40 let makeMDlen =
41 in(t,(ha:bitstring,rm:bitstring,bl:nat,
42 len:bitstring,
43 mm:bitstring));
44 if(bl <> 1) then
45 (
46 let newbl = divhead(rm) in
47 let newstream = divrest(rm) in
48 let newha = comp(ha,newbl) in
49 out(t,(newha,newstream,bl-1,len, mm))
50) else (
51 let newha = comp(ha,rm) in
52 let MDh = comp(newha,len) in
53 insert MD_h_len(mm, MDh)
54).
55
56 let LEA_CHECK =
57 in(c, MDh12’:bitstring);
58 get MD_h_check(=MDh12’) in
59 event SUCCESS.
60
61 (* Main process *)
62 process
63 (
64 new m1:bitstring;
65 new m2:bitstring;
66 out(c, (m2,2));
67 out(t,(iv,m1,2,length(m1), m1));
68 get MD_h_len(=m1, MDh1’:bitstring) in
69 out(c, MDh1’);
70 out(s,(iv,m1,2, m1));
71 get MD_h(=m1, MDh1:bitstring) in
72 out(t,(MDh1,m2,2,length(con(m1,m2)),
73 con(m1,m2)));
74 get MD_h_len(=con(m1,m2), MDh12:bitstring) in
75 insert MD_h_check(MDh12)
76) | !makeMD | !makeMDlen | !LEA_CHECK

The length information to be added in line 15 of Code.6
was the message length, ‘‘fun length(bitstring)’’:
A bitstring function was prepared, and the length was
expressed by length(m). Lines 40–54 defined the
makeMDlen process, which added the length to the end
of the message. m2 in line 66 and comp(m1,length(m1))
in line 69 were given to the attacker in public chan-
nel c. In the ‘‘LEA_CHECK’’ process (lines 56–59), under
the abovementioned conditions, we verified whether the
attacker can compute h(m1|| m2) = comp(comp(m1,m2),

VOLUME 12, 2024 31613

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

FIGURE 8. MD-strengthening.

length(m1||m2)). The verification result by ProVerif output
‘‘true,’’ indicating that no successful LEA paths were found.

6) PREVENTION OF LENGTH EXTENSION ATTACK BY MD
STRENGTHENING
MD strengthening is a padding method (Figure 8), in which
a padding block with length information is added to the
message. The security verification against LEAs for MD
strengthening was essentially the same as the formalization
presented in Section IV-B5, wherein the ProVerif verifier
judged that our MD construction formalization with MD
strengthening prevented the LEA. The formalization to
represent the padding used the model in Section V-C. Please
see Section V-C for details. We describe herein the kind of
value that was actually formalized for padding.

The method formalized a block of bitstring terms compris-
ing four oct terms. Thus, the final block of the split message
bitstring term may leave zero, one, two, or three oct terms.
If the number of the remaining oct terms in the final block is
less than four, we fill the constant oct term ‘‘zero.’’ Figure 9
illustrates padding with the oct term ‘‘zero’’ in the final block.
In line 112 of Code.7, the first part of the final block was
a message formalized with the assumption that the oct type
constant term zerowas added as a padding to the remaining
three parts.

The padding process in this case was formalized as
follows:

‘‘let p = con4octs(b2o(rm),zero,zero,
zero).’’ 6

The verification result by ProVerif output ‘‘true,’’ indi-
cating that no successful length extension attack paths were
found.
(* Code.7: Formalization of MD-strengthening *)

1 free c:channel.
2 free s:channel[private].
3 free t:channel[private].
4 free u:channel[private].
5 const iv:bitstring.
6
7 fun con(bitstring,bitstring):bitstring.
8 fun divhead(bitstring):bitstring.
9 fun divrest(bitstring):bitstring.
10 equation forall mt:bitstring;

6Similarly, when adding the oct type constant term zero as a padding to
the remaining two parts or one, we formalized the padding process as
‘‘let p = con4octs(oct1(rm),oct2i2(rm),zero,zero).’’ or
‘‘let p = con4octs(oct1(rm),oct2i34(rm),oct3i3(rm),zero).’’

FIGURE 9. MD-strengthening padding process.

11 con(divhead(mt),divrest(mt))=mt.
12
13 (* Compress function *)
14 fun comp(bitstring,bitstring):bitstring.
15
16 fun length(bitstring):bitstring.
17
18 table MD_h(bitstring,bitstring).
19 table MD_h_len(bitstring,bitstring).
20 table MD_h_pad(bitstring,bitstring).
21 table MD_h_check(bitstring).
22
23 (* Padding *)
24 type oct.
25 const zero:oct.
26
27 fun b2o(bitstring):oct.
28 fun o2b(oct):bitstring.
29 equation forall xb:bitstring;o2b(b2o(xb))=xb.
30 equation forall xo:oct;b2o(o2b(xo))=xo.
31
32 fun Ocon(oct,oct):oct.
33 fun Odivhead(oct):oct.
34 fun Odivrest(oct):oct.
35 equation forall mt:oct;
36 Ocon(Odivhead(mt),Odivrest(mt))=mt.
37 equation forall lmt:oct,rmt:oct;
38 Odivhead(Ocon(lmt,rmt))=lmt.
39 equation forall lmt:oct,rmt:oct;
40 Odivrest(Ocon(lmt,rmt))=rmt.
41
42 fun oct1(bitstring):oct.
43 fun oct2i2(bitstring):oct.
44 fun oct2i34(bitstring):oct.
45 fun oct3i3(bitstring):oct.
46 fun oct3i4(bitstring):oct.
47 fun oct4(bitstring):oct.
48 fun con4octs(oct,oct,oct,oct):bitstring.
49
50 equation forall x:oct,y:oct,z:oct,w:oct;
51 con4octs(x,y,z,w)=
52 o2b(Ocon(x,Ocon(y,Ocon(z,w)))).
53
54 equation forall x:bitstring;
55 oct1(x)=Odivhead(b2o(x)).
56 equation forall x:bitstring;
57 oct2i2(x)=Odivrest(b2o(x)).
58 equation forall x:bitstring;
59 oct2i34(x)=Odivhead(Odivrest(b2o(x))).
60 equation forall x:bitstring;
61 oct3i3(x)=Odivrest(Odivrest(b2o(x))).
62 equation forall x:bitstring;
63 oct3i4(x)=
64 Odivhead(Odivrest(Odivrest(b2o(x)))).
65 equation forall x:bitstring;
66 oct4(x)=
67 Odivrest(Odivrest(Odivrest(b2o(x)))).
68
69 (* Query *)
70 event SUCCESS.
71 query event(SUCCESS).
72

31614 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

73 (* MD construction *)
74 let makeMD =
75 in(s,(ha:bitstring,rm:bitstring,bl:nat, mm:bitstring));
76 if(bl <> 1) then
77 (
78 let newbl = divhead(rm) in
79 let newstream = divrest(rm) in
80 let newha = comp(ha,newbl) in
81 out(s,(newha,newstream,bl-1, mm))
82) else (
83 let MDh = comp(ha,rm) in
84 insert MD_h(mm, MDh)
85).
86
87 let makeMDlen =
88 in(t,(ha:bitstring,rm:bitstring,bl:nat,len:bitstring,
89 mm:bitstring));
90 if(bl <> 1) then
91 (
92 let newbl = divhead(rm) in
93 let newstream = divrest(rm) in
94 let newha = comp(ha,newbl) in
95 out(t,(newha,newstream,bl-1,len, mm))
96) else (
97 let newha = comp(ha,rm) in
98 let MDh = comp(newha,len) in
99 insert MD_h_len(mm, MDh)
100).
101
102 let makeMDpad =
103 in(u,(ha:bitstring,rm:bitstring,bl:nat,len:bitstring,
104 mm:bitstring));
105 if(bl <> 1) then
106 (
107 let newbl = divhead(rm) in
108 let newstream = divrest(rm) in
109 let newha = comp(ha,newbl) in
110 out(u,(newha,newstream,bl-1,len, mm))
111) else (
112 let p = con4octs(b2o(rm),zero,zero,zero) in
113 let newha = comp(ha,p) in
114 let MDh = comp(newha,len) in
115 insert MD_h_pad(mm, MDh)
116).
117
118 let LEA_CHECK =
119 in(c, MDh12’:bitstring);
120 get MD_h_check(=MDh12’) in
121 event SUCCESS.
122
123 (* Main process *)
124 process
125 (
126 new m1:bitstring;
127 new m2:bitstring;
128 out(c, (m2,2));
129 out(t,(iv,m1,2,length(m1), m1));
130 get MD_h_len(=m1, MDh1’:bitstring) in
131 out(c,MDh1’);
132 out(s,(iv,m1,2, m1));
133 get MD_h(=m1, MDh1:bitstring) in
134 out(u,(MDh1,m2,2,length(con(m1,m2)), con(m1,m2)));
135 get MD_h_pad(=con(m1,m2), MDh12:bitstring) in
136 insert MD_h_check(MDh12)
137) | !makeMD | !makeMDlen | !makeMDpad | !LEA_CHECK

V. FORMALIZATION OF THE CIPHER BLOCK CHAINING
MODE IN PROVERIF
A. CIPHER BLOCK CHAINING MODE
This section presents a brief review of the CBC mode, which
is a confidentiality mode with an encryption process that
features a combination of plain blocks and the previous cipher
blocks [51]. The CBC mode requires an IV to combine with
the first plain block. Note that the IV does not need to be kept
a secret, but must be unpredictable. Figure 10 illustrates the
CBC mode.

FIGURE 10. CBC Mode.

The CBC mode is generally defined as follows:
CBC encryption:

C0 = IV (5)

C1 = Enc(key,m1 ⊕ IV) (6)

Cj = Enc(key,mj ⊕ Cj−1) for j ≦ t. (7)

CBC decryption:

m′

1 = Dec(key,C1) ⊕ IV (8)

m′
j = Dec(key,Cj) ⊕ Cj−1 for j ≦ t. (9)

The first input block of the CBC encryption was formed
using an XOR operation, the first block of the plain block
with the IV. The Enc function was applied to the first input
block. The resulting output block was the first block of
the cipher block. This output block was also obtained by
performing an XOR operation with the second plain block
to produce the second input block. The Enc function was
employed to produce the second output block. This output
block was the second cipher block obtained by performing
an XOR operation with the next plain block to form the next
input block. Each successive plain block was obtained by
performing anXOR operationwith the previous output cipher
block to produce the new input block. The Enc function was
applied to each input block to produce the cipher block.

The CBC decryption in theDec function was applied to the
first cipher block. The resulting output block was obtained by
performing an XOR operation with the initialization vector
to recover the first plain block. The Dec function was also
applied to the second cipher block. The resulting output block
was obtained by performing an XOR operation with the first
cipher block to recover the second plain block. The Dec
function must be applied to the corresponding cipher block
to recover any plain block, except for the first plain block.
The resulting block was obtained by performing an XOR
operation with the previous cipher block.

In the CBC encryption, the input block to each Enc
operation, except for the first, depends on the results of
the previous Enc operation; thus, Enc operations cannot be
performed in parallel. However, the CBC decryption denotes
the input blocks for the Dec function, and the cipher blocks
are immediately available; hence, multiple Dec operations
can be performed in parallel.

VOLUME 12, 2024 31615

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

B. FORMALIZATION OF THE CBC MODE CODE
We proposed herein the CBCmode formalization in ProVerif.
For simplicity, we show themodel formalizing the CBCmode
without padding. Please refer to Section V-C for the CBC
mode formalization with padding. Code.8 depicts the CBC
mode formalization without padding.

We confirmed a successful encryption and decryption
processing in the CBC mode and the secrecy of the CBC
mode in our formalization using the ProVerif verifier.
We present below the model formalizing the CBC mode
without padding:
(* Code.8: CBC mode *)

1 free d:channel[private].
2 free dd:channel[private].
3 free ee:channel[private].
4 free cc:channel[private].
5 free pubc:channel.
6 free ts:bitstring[private].
7 free sskey:bitstring[private].
8
9 (* concatenation and division of bitstring *)
10 fun con(bitstring,bitstring):bitstring.
11 fun divhead(bitstring):bitstring.
12 fun divrest(bitstring):bitstring.
13 equation forall mt:bitstring;
14 con(divhead(mt),divrest(mt))=mt.
15
16 equation forall lmt:bitstring,rmt:bitstring;
17 divhead(con(lmt,rmt))=lmt.
18
19 equation forall lmt:bitstring,rmt:bitstring;
20 divrest(con(lmt,rmt))=rmt.
21
22 (* XOR *)
23 const zeros: bitstring.
24 fun xor(bitstring,bitstring):bitstring.
25 equation forall x:bitstring,y:bitstring;
26 xor(xor(x,y),y) = x.
27 equation forall x:bitstring; xor(x,x) = zeros.
28 equation forall x:bitstring; xor(zeros,x) = x.
29 equation forall x:bitstring; xor(x,zeros) = x.
30
31 (*Block cipher*)
32 fun enc(bitstring,bitstring):bitstring.
33 fun dec(bitstring,bitstring):bitstring.
34 equation forall x: bitstring,
35 s: bitstring; dec(enc(x,s),s) = x.
36
37 event SuccCBC.
38
39 let CBCe(prskey:bitstring) =
40 in(d,(iv:bitstring, m:bitstring, n:nat));
41 if(n <> 1)then
42 (
43 let tb = divhead(m) in
44 let nb = divrest(m) in
45 let cipb = enc(xor(tb,iv),prskey)in
46 out(cc, (iv,cipb));
47 out(pubc, (iv,cipb)); (* for adversary *)
48 out(d,(cipb,nb,n-1))
49)
50 else
51 (
52 let cipb = enc(xor(m,iv),prskey) in
53 out(pubc, (iv,cipb)); (* for adversary *)
54 out(cc, (iv,cipb))
55).
56
57 let CBCd(prskey:bitstring) =
58 in(dd, x2:nat);
59 in(cc, (ciphb1:bitstring,ciphb2:bitstring));
60 let plainb = dec(ciphb2,prskey) in
61 if (ciphb2 = enc(plainb,prskey)) then
62 let plaina = xor(plainb,ciphb1) in
63 if (plainb = xor(plaina,ciphb1)) then
64 let x3:nat = x2-1 in
65 if (x3 <> 0) then
66 (

67 out(dd, x3);
68 in(ee,(x4:nat,tailce:bitstring));
69 if(x4=x3) then
70 (
71 let conb = con(plaina,tailce) in
72 out(ee,(x2,conb));
73 if(conb=ts) then event SuccCBC
74)
75)
76 else
77 out(ee, (x2,plaina)).
78
79 (* queries *)
80 query attacker(ts).
81 query event(SuccCBC).
82
83 (* execution part *)
84 process
85 (
86 new iv:bitstring;
87 out(cc,(iv,4));
88 out(d,(iv,ts,4));
89 !(
90 out(dd, 4)
91)
92)
93 | !CBCe(sskey) | !CBCd(sskey)

In the first part of Code.8, we declared the terms and
functions and defined the rewriting rules for the terms. In
Code.8, the first part up to line 7 involved the declaration
of terms, such as communication channel, plaintext, and
secret key. The formal definitions of the functions for the
concatenation and division of bitstrings, XOR operation,
and block cipher are presented in lines 10–35 of Code.8.
Line 37 shows the previous declaration of the event labeled
as ‘‘SuccCBC.’’ We then defined the iterative calculation
process of the CBC mode.

We formalized the CBC encryption process as ‘‘CBCe’’
in lines 39–55 and decryption process as ‘‘CBCd’’ in lines
57–77. Lines 80 and 81 depict queries that tell ProVerif
what to verify. Finally, we defined the protocol execution
procedure to be verified in lines 84–93. Here, message
block division was performed in the manner described in
Section IV-B1. The ‘‘con’’ function (line 10 of Code.8)
generated the concatenation of two bitstring type terms.
The ‘‘divhead’’ and ‘‘divrest’’ functions (lines 11
and 12 of Code.8) extracted a bitstring portion. These
functions took divhead, which extracted the first block
of the given bitstring, and divrest, which extracted the
portion other than that extracted by divhead, as argu-
ments. Consequently, the bitstring term X was divided
into bitstrings divhead(X) and divrest(X), where
con(divhead(X),divrest(X)) = X. In this model,
we treated the lengths of bitstrings X, divhead(X), and
divrest(X) as ‘‘ℓ, 1, ℓ − 1.’’ The block length of the two
bitstringsmust be kept as individual nat terms after division in
the process because both divhead and divrest generated
a bitstring type free term, as previously mentioned. We
defined the rewriting rules for the concatenation and division
of bitstrings in lines 13–20 of Code.8.

1) ITERATIVE EXECUTIONS OF THE CBC MODE
Section IV-B1 described the method for formalizing the
bitstring term division. To formalize the CBC encryption

31616 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

FIGURE 11. Formalization of the CBC encryption.

and decryption algorithm, we present herein the formal
definitions of a model that iteratively executes the block
division and encryption/decryption functions (Figure 11).

2) CBC ENCRYPTION:
The CBCe process in lines 39–55 of Code.8 depicts a formal
model representing one step of the iterative execution of the
CBC encryption. On the left side of line 93 of Code.8 in
the execution part, ‘‘!CBCe(sskey)’’ refers to the iterative
subroutine call as the execution of an unbounded number
of CBCe process replications. ‘‘sskey’’ is an argument
representing the shared secret key that each process CBCe
replication takes at runtime.

First, the main process declares a local bitstring term IV
for the CBC encryption. Next, the main process invokes
CBCe as a subroutine by sending two bitstrings and a nat
term via a private channel d (line 88 of Code.8) as follows:
‘‘out(d,(iv,ts,4)),’’ where the terms in the triplet
(iv,ts,4) are the initialization vector, plaintext (ts),
and plaintext length, respectively.

In ProVerif, we can declare a channel with the ‘‘private’’
attribute. Any term sent via a private channel is kept from
the attacker. In the proposed model, we treat a private
channel as an internal communication between the local
processes. A CBCe replication process receives a triplet of
terms (iv,m,n) via a secret channel d in line 40 of Code.8.

Here, iv is the cipher block in the previous step of
CBCe; m is the remaining bitstring in the plaintext; and
n is the m length. If n is not 1, then the current step
of CBCe divides m into the two bitstring terms of tb =
divhead(m) and nb = divrest(m), as shown in lines
43 and 44 of Code.8. In line 45, CBCe computes ‘‘cipb
= enc(xor(tb,iv),sskey)’’ as the cipher block of
this step. Note that sskey = prskey. CBCe then sends
a pair of bitstrings (iv,cipb) to CBCd via the private
channel cc in line 46. The previous ciphertext and the
ciphertext pair (iv,cipb) are sent to control the cipher
sequence order. These ciphertexts must be sent via the public
channel such that attackers can obtain them; however, cc
is a private channel. Due to a ProVerif specification issue,
if cc is a public channel, then CBCd cannot perform a correct
decryption. These ciphertexts are output to the public channel
pubc in line 47 such that they can be obtained attackers. The

FIGURE 12. Formalization of the CBC decryption.

current CBCe then sends (cipb,nb,n-1) to the next step
of CBCe via the private channel d in line 48. Note that n-1
is the length of nb. If n = 1, the current step is the final
step of executing CBCe. CBCe then sends a pair of bitstrings
(iv,cipb) to CBCd via the private channel cc in line 54.

3) CBC DECRYPTION:
The CBCd process in lines 57–77 of Code.8 is a formal
model representing one step of the iterative execution of the
CBC decryption. On the right-hand side of line 93 in Code.8
in the execution part, ‘‘!CBCd(sskey)’’ represents an
iterative subroutine call executing an unbounded number of
the CBCd process replications. CBCd successively decrypted
the ciphertext blocks received from CBCe via a private
channel cc from the final block and concatenated the
decrypted blocks to calculate the original plaintext. It must
be formalized, such that other receiver processes can receive
the ciphertext at once and call the CBC decryption process to
prepare for the CBC mode usage. We, however, formalized
the CBC decryption according to the description to simplify
the model explanation process (Figure 12).

First, the main process invokes CBCd as a subroutine by
sending the nat term representing the number of replications
via the private channel dd in line 90 of Code.8 as follows:
‘‘out(dd,4),’’ where nat term 4 is the plaintext length
(ts). The CBCd replication processes communicate with
each other via private channels dd and ee. dd is the
channel for the counter of replications. ee is the channel for
temporary data during an iterative execution. In other words,
ee represents the internal shared memory for the decryption
process, that is, CBCd.

The CBCd replication process receives a nat term
x2 via the dd in line 58 of Code.8. CBCd then
receives a pair of bitstrings (ciphb1,ciphb2) via
the private channel cc in line 59. This bitstring pair
comprises the previous and current ciphertexts. CBCd
computes ‘‘plaina = xor(plainb,ciphb1)’’ as the

VOLUME 12, 2024 31617

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

plaintext of this step in lines 60–63. Here, ‘‘plainb =
dec(ciphb2,sskey).’’ Note that the ‘‘if’’ statements
in lines 61 and 63 are essentially unnecessary operations.
Hence, if these ‘‘if’’ statements do not exist, and a private
channel is used, the DEC and XOR function equations are not
correctly applied due to a ProVerif specification. CBCd then
computes x3 = x2-1 in line 64.

If x3 = 0, CBCd sends (x2,plaina) as a return to
the previous step of CBCd via ee. If x3 , 0, CBCd sends
x3 to another replication of CBCd via dd for an iterative
execution. The current CBCd then receives a pair of terms
(x4,tailce) via a private channel ee from another CBCd
replication. Note that the current CBCd must ensure that the
received data come from the next step of CBCd considering
the formal model characteristics of channels (Section II-C).
tailce denotes a part of the plaintext already decrypted
and concatenated. If x4 = x3, (x4,tailce) represents
return from the next step. The current CBCd then returns
(x2,con(plaina,tailce)) to the previous step of
CBCd or the main process via channel ee. Consequently,
the CBCd process can decrypt the cipher block of a specified
number of times via an iterative execution. Note that line 73 in
Code.8 is for the query to confirm if this code works well
or not; hence, it is not relevant in the iteration behavior
formalization.

4) VERIFICATION RESULT
We successfully formalized the CBC mode behavior in
ProVerif under execution conditions. We ensured that the
abovementioned model functions as intended by verifying
the reachability of the event SuccCBC defined in line 73 of
Code.8, wherein encryption and decryption are completed by
ProVerif. The ProVerif verifier found an execution path from
the initiation of the execution to the event SuccCBC. Thus,
once the main process invoked the first step of CBCe, each
CBCe process replication started to communicate with the
next via a private channel.

Consequently, the iterative execution of CBCe successfully
computed the CBC encryption. We then verified whether
the attacker can obtain the original message from the cipher
blocks output to the public communication channel by the
query ‘‘query attacker(ts)’’ in line 80 of Code.8. The
ProVerif verification showed that ‘‘not attacker(ts) is true’’
was output, indicating that no successful attack path that
breaks the CBC encryption secrecy was detected.
The padding oracle attack POODLE (CVE-2014-3566)

[44], [45] sequentially restores the plaintext by performing
an exhaustive search when the application protocol using
the CBC mode contains a defect acting as a padding
oracle. We extended a method for formalizing the iterative
executions in ProVerif to handle the padding. This method
explicitly defines the padding oracle model as a process. We
reproduced the attack path by adding it the abovementioned
verification code.

Section VI-C presents a detailed explanation for this.

5) CHOSEN-PLAINTEXT ATTACK
TheCBCmodewithout a tampering check is weak against the
CPA. We demonstrate herein the CPA behavior in our CBC
mode formalization (Code.9).

In our CBC mode formalization, a legitimate sender
calls the encryption process via a private channel. In this
formalization, we allowed the attacker to encrypt any
plaintext by introducing an encryption oracle process, which
transfers the input plaintext from the public channel to the
private one. The encryption oracle process was nearly the
same as the main process of the legitimate sender, except for
the input from the public channel shown in lines 39–47 of
Code.9.
(* Code.9: Formalization of Chosen-plaintext attack. *)

1 free d:channel[private].
2 free dd:channel[private].
3 free ee:channel[private].
4 free cc:channel[private].
5 free pubc:channel.
6 free ts:bitstring[private].
7 free sskey:bitstring[private].
8
9 (* concatenation and division of bitstring *)
10 fun con(bitstring,bitstring):bitstring.
11 fun divhead(bitstring):bitstring.
12 fun divrest(bitstring):bitstring.
13 equation forall mt:bitstring;
14 con(divhead(mt),divrest(mt))=mt.
15
16 equation forall lmt:bitstring,rmt:bitstring;
17 divhead(con(lmt,rmt))=lmt.
18 equation forall lmt:bitstring,rmt:bitstring;
19 divrest(con(lmt,rmt))=rmt.
20
21 (* XOR *)
22 const zeros: bitstring.
23 fun xor(bitstring,bitstring):bitstring.
24 equation forall x:bitstring,y:bitstring;
25 xor(xor(x,y),y) = x.
26
27 equation forall x:bitstring; xor(x,x) = zeros.
28 equation forall x:bitstring; xor(zeros,x) = x.
29 equation forall x:bitstring; xor(x,zeros) = x.
30
31 (*Block cipher*)
32 fun enc(bitstring,bitstring):bitstring.
33 fun dec(bitstring,bitstring):bitstring.
34 equation forall x: bitstring,
35 s: bitstring; dec(enc(x,s),s) = x.
36
37 event SuccCBC.
38
39 let CPAO(n:nat) =
40 (
41 in(pubc,(iv:bitstring, m:bitstring));
42 out(cc,(iv,n));
43 out(d,(iv,m,n));
44 !(
45 out(dd, n)
46)
47).
48
49 let CBCe(prskey:bitstring) =
50 in(d,(iv:bitstring, m:bitstring, n:nat));
51 if(n <> 1)then
52 (
53 let tb = divhead(m) in
54 let nb = divrest(m) in
55 let cipb = enc(xor(tb,iv),prskey)in
56 out(cc, (iv,cipb));
57 out(pubc, (iv,cipb)); (* for adversary *)
58 out(d,(cipb,nb,n-1))
59)
60 else
61 (
62 let cipb = enc(xor(m,iv),prskey) in
63 out(pubc, (iv,cipb)); (* for adversary *)

31618 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

64 out(cc, (iv,cipb))
65).
66
67 let CBCd(prskey:bitstring) =
68 in(dd, x2:nat);
69 in(cc, (ciphb1:bitstring,ciphb2:bitstring));
70 let plainb = dec(ciphb2,prskey) in
71 if (ciphb2 = enc(plainb,prskey)) then
72 let plaina = xor(plainb,ciphb1) in
73 if (plainb = xor(plaina,ciphb1)) then
74 let x3:nat = x2-1 in
75 if (x3 <> 0) then
76 (
77 out(dd, x3);
78 in(ee,(x4:nat,tiv:bitstring,tailce:bitstring));
79 if(x4 = x3 && tiv = ciphb2) then
80 (
81 let conb = con(plaina,tailce) in
82 out(ee,(x2,ciphb1,conb));
83 in(pubc,X:bitstring);
84 if(conb = con(X,ts)) then event SuccCBC
85)
86)
87 else
88 out(ee, (x2,ciphb1,plaina)).
89
90 (* queries *)
91 query event(SuccCBC).
92
93 (* execution part *)
94 process
95 (
96 new iv:bitstring;
97 let tb = divhead(ts) in
98 let nb = divrest(ts) in
99 let civ= enc(iv,sskey)in
100 out(pubc,iv);
101 out(cc,(civ,2));
102 out(d,(civ,ts,2));
103 !(
104 out(dd, 2)
105)
106)
107 | !CBCe(sskey) | !CBCd(sskey) | !CPAO(3)

Lines 83–84 of Code.9 defined the following event in the
decryption process to confirm the CPA attack. Here, ts is a
private plaintext, and X is an attacker-specified bitstring.

In this case, the attacker receives the iv and the ciphertext
of ts encrypted by the legitimate sender. If this event occurs,
the ciphertext extension attack was successful using the
chosen plaintext attack. Appendix B shows the verification
results of the CPA.

C. CBC MODE FORMALIZATION WITH PADDING
This section introduces a method for handling padding in
our formalization. We present herein a simple concept: only
rewriting rules are added to handle padding in the final block
of the process in the proposed method (Section V-B). In other
words, the final block padding must be explicitly formalized.
First, the unit length bitstring term was divided into a fixed
number of parts. We declared the term type representing
this part of the divided bitstrings as ‘‘oct.’’ The following
example in Code.10 was formalized, such that a bitstring term
unit comprised four oct terms:
(* Code.10:CBC mode with padding *)

1 free d:channel[private].
2 free dd:channel[private].
3 free ee:channel[private].
4 free cc:channel[private].
5 free pubc:channel.
6 free ts:bitstring[private].

7 free sskey:bitstring[private].
8
9 (* concatenation and division of bitstring *)
10 fun con(bitstring,bitstring):bitstring.
11 fun divhead(bitstring):bitstring.
12 fun divrest(bitstring):bitstring.
13 equation forall mt:bitstring;
14 con(divhead(mt),divrest(mt))=mt.
15
16 equation forall lmt:bitstring,rmt:bitstring;
17 divhead(con(lmt,rmt))=lmt.
18
19 equation forall lmt:bitstring,rmt:bitstring;
20 divrest(con(lmt,rmt))=rmt.
21
22 (* XOR *)
23 const zeros: bitstring.
24 fun xor(bitstring,bitstring):bitstring.
25 equation forall x:bitstring,y:bitstring;
26 xor(xor(x,y),y) = x.
27 equation forall x:bitstring; xor(x,x) = zeros.
28 equation forall x:bitstring; xor(zeros,x) = x.
29 equation forall x:bitstring; xor(x,zeros) = x.
30
31 (* Block cipher *)
32 fun enc(bitstring,bitstring):bitstring.
33 fun dec(bitstring,bitstring):bitstring.
34 equation forall x: bitstring, s: bitstring;
35 dec(enc(x,s),s) = x.
36
37 (* func for Oct *)
38 type oct.
39 const CPAD:oct.
40 const CPAD1:oct.
41 const CPAD2:oct.
42 const CPAD3:oct.
43 const CPAD4:oct.
44
45 fun b2o(bitstring):oct.
46 fun o2b(oct):bitstring.
47 equation forall xb:bitstring;o2b(b2o(xb))=xb.
48 equation forall xo:oct;b2o(o2b(xo))=xo.
49
50 fun Ocon(oct,oct):oct.
51 fun Odivhead(oct):oct.
52 fun Odivrest(oct):oct.
53 equation forall mt:oct; Ocon(Odivhead(mt),
54 Odivrest(mt))=mt.
55 equation forall lmt:oct,rmt:oct;
56 Odivhead(Ocon(lmt,rmt))=lmt.
57 equation forall lmt:oct,rmt:oct;
58 Odivrest(Ocon(lmt,rmt))=rmt.
59
60 fun oct1(bitstring):oct.
61 fun oct2i2(bitstring):oct.
62 fun oct2i34(bitstring):oct.
63 fun oct3i3(bitstring):oct.
64 fun oct3i4(bitstring):oct.
65 fun oct4(bitstring):oct.
66 fun con4octs2(oct,oct,oct,oct):bitstring.
67
68 equation forall x:oct,y:oct,z:oct,w:oct;
69 con4octs2(x,y,z,w)=o2b(Ocon(x,Ocon(y,Ocon(z,w)))).
70
71 equation forall x:bitstring;
72 oct1(x)=Odivhead(b2o(x)).
73 equation forall x:bitstring;
74 oct2i2(x)=Odivrest(b2o(x)).
75 equation forall x:bitstring;
76 oct2i34(x)=Odivhead(Odivrest(b2o(x))).
77 equation forall x:bitstring;
78 oct3i3(x)=Odivrest(Odivrest(b2o(x))).
79 equation forall x:bitstring;
80 oct3i4(x)=Odivhead(Odivrest(Odivrest(b2o(x)))).
81 equation forall x:bitstring;
82 oct4(x)=Odivrest(Odivrest(Odivrest(b2o(x)))).
83
84 event SuccCBC.
85
86 let CBCe(prskey:bitstring) =
87 in(d,(iv:bitstring, m:bitstring, n:nat));
88 if(n <> 1)then
89 (

VOLUME 12, 2024 31619

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

90 let tb = divhead(m) in
91 let nb = divrest(m) in
92 let cipb = enc(xor(tb,iv),prskey)in
93 out(cc, (iv,cipb));
94 out(pubc, (iv,cipb)); (* for adversary *)
95 out(d,(cipb,nb,n-1))
96)
97 else
98 (
99 (* for 3 octets padding *)
100 let p = con4octs2(b2o(m),CPAD3,CPAD3,CPAD3) in
101 let cipb = enc(xor(p,iv),prskey) in
102 out(pubc, (iv,cipb)); (* for adversary *)
103 out(cc, (iv,cipb))
104).
105 106 let CBCd(prskey:bitstring) =
107 in(dd, x2:nat);
108 in(cc, (ciphb1:bitstring,ciphb2:bitstring));
109 let plainb = dec(ciphb2,prskey) in
110 if (ciphb2 = enc(plainb,prskey)) then
111 let plaina = xor(plainb,ciphb1) in
112 if (plainb = xor(plaina,ciphb1)) then
113 let x3:nat = x2-1 in
114 if (x3 <> 0) then
115 (
116 out(dd, x3);
117 in(ee,(x4:nat,tailce:bitstring));
118 if(x4=x3) then
119 (
120 let conb = con(plaina,tailce) in
121 out(ee,(x2,conb));
122 if(conb=ts) then event SuccCBC
123)
124)
125 else
126 (
127 (* for 3 octets padding *)
128 if (oct4(plaina) = CPAD3) then
129 if (oct3i4(plaina) = CPAD3) then
130 if (oct2i34(plaina) = CPAD3) then
131 let planac = oct1(plaina) in
132 out(ee, (x2,o2b(planac)))
133).
134
135 (* Queries *) 136 query attacker(ts). 137 query

event(SuccCBC).
138
139 (* Execution part *) 140 process
141 (
142 new iv:bitstring;
143 out(cc,(iv,4));
144 out(d,(iv,ts,4));
145 !(
146 out(dd, 4)
147)
148)
149 | !CBCe(sskey) | !CBCd(sskey)

Lines 45–48 of Code.10 defined the mutual conversion
functions of bitstring and oct as b2o and o2b, respectively.
We assumed herein that the bitstring length of the argument of
the b2o function was the same as the oct length. A bitstring
free term has no information other than its name and type
(Section IV-B1).
In lines 50–58 of Code.10, we formalized the con-

catenation and division of octs following the manner
by which those of the bitstring type were formalized
(Section IV-B1). In lines 60–82 of Code.10, we formalized
the function of the concatenation of four octs into a
unit bitstring and the extraction of each oct term from
a unit bitstring term. In lines 68 and 69 of Code.10,
o1, o2, o3, and o4 were treated as the ‘‘oct’’ terms.
Thus, UB = con4octs2(o1,o2,o3,o4) is the unit

bitstring term that represents the concatenation of these terms
‘‘o1∥o2∥o3∥o4.’’ Here, oct1(UB), oct2i34(UB),
oct3i4(UB), oct4(UB) are o1,o2,o3, and o4, are
o1 and o2, respectively.

We formalized the CBC mode with padding by focusing
on the case wherein the last block of the plaintext was a
single oct, and the remaining single octs were padded with
a fixed value CPAD3. In this case, the padding process was
formalized as follows:
‘‘let p = con4octs2(b2o(m),CPAD3,CPAD3,
CPAD3).’’ 7

VI. DISCUSSION
A. OUR PROPOSAL METHOD
Dealing with loop iterations is a popular theme for formal
verification. In this work, we proposed a method for
formalizing iterative executions as a formal model of function
calls. Ourmethod formalized the function calls with a specific
focus on the formalization of the iterative executions in
ProVerif using S/KEY (III-A), MD construction (IV-B2)
and CBC mode (V-B1,V-B2,V-B3) as examples. We also
confirmed the validity of the proposed formalization through
case studies on the Merkle–Damgård structures of hash
functions and the CBC mode of block ciphers. Our proposed
method was consistent with the formal MD construction
model and satisfied the properties of the cryptographic hash
functions, especially, the CR (Section IV-B3). We formalized
the CBCmode with and without padding and verified that we
can encrypt/decrypt a plaintext comprising multiple blocks in
the CBC mode while keeping the communication in the CBC
mode a secret. The proposed formalization can discover the
vulnerabilities imposed by the structures of the hash functions
and the encryption modes (e.g., LEA and CPA). In a formal
verification, hash functions and block ciphers are formalized
as ideal functions without vulnerabilities. Considering this,
we tested the validity of our formalization and validation
results by formalizing the LEA on iterated hash functions
(Section IV-B4), MD-strengthening method that makes the
attack impossible (Section IV-B6), and CPA on the CBC
mode (Section V-B5).

The results show that our method enables the formalization
of the iterative methods used in complex cryptographic
protocols in ProVerif and can be applied to the design of other
cryptographic algorithms. This approach allows the formal-
ization and security verification of cryptographic modules.
Our approach is formalized as iterative execution, recursive
execution can also be formalized using our proposed method.

B. LIMITATION
The number of loop iterations must be explicitly specified.
Hence, our proposed formalizations were slightly different

7In case the last block of the plaintext is split into two octs, and the
remaining two octs are padded with a fixed value (CPAD2), we formalized
the padding process as
‘‘let p = con4octs2(oct1(m),oct2i2(m),CPAD2,CPAD2).’’

31620 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

from their actual implementation, during which the number
of iterations varied with the input length. The cryptographic
protocols for verification were abstract models; therefore,
whether they were secure was not strictly known. Real-world
vulnerabilities may be overlooked by the formal verification
results.

A remaining open problem is the formalization of the
behavior of a general padding oracle itself. In the future work,
we will apply our research results to higher-order differential
attacks [54].

The subsequent section VI-C demonstrates that ProVerif
derives a padding oracle attack against the CBC mode.
In the derivation, ProVerif derives the execution path of the
padding oracle attack if a padding oracle exists. As a result of
the ProVerif verification, an attacker succeeds in the cipher
analysis against the CBC mode if a padding oracle exists.
However, our research cannot cover the formalization of
the behavior of the padding oracle itself, and formalization
remains as an outstanding problem. Our proposedmethod can
be used to find the defects of a cryptographic protocol, which
are causing a padding oracle.

C. DERIVATION OF THE PADDING ORACLE ATTACK
AGAINST THE CBC MODE
Code.11 depicts the formalization of the padding oracle
attack. ProVerif derived a padding oracle attack [44], [45]
against the CBC mode. The padding oracle attack is
important.

In this derivation, ProVerif derives the execution path of
the padding oracle attack if a padding oracle exists. In other
words, in a ProVerif verification result, the attacker can
perform a successful cipher analysis against the CBC mode
if a padding oracle exists. We cannot, however, formalize the
padding oracle behavior.

Our proposed method can be used to identify the defects of
a cryptographic protocol that cause the padding oracle. The
padding oracle attack, called POODLE (CVE-2014-3566),
sequentially restores the plaintext by performing an exhaus-
tive search when an application protocol using the CBC
mode contains a defect acting as a padding oracle. A security
hole that exists in the implementation of the CBC mode or
the application protocol that uses the CBC mode is used
as a padding oracle attack. In a practical CBC decryption,
the decryption process returns the plaintext if the decrypted
plaintext padding is valid. In general, the attacker can decrypt
the message using the decryption server as the padding oracle
by identifying the padding value and using the message
returned by the vulnerable decryption server regarding the
padding verification. However, to formalize, the padding
oracle discovery requires some ingenuity.
(* Code.11:CBC mode with padding oracle attack *)

1 free d:channel[private].
2 free dd:channel[private].
3 free ee:channel[private].
4 free cc:channel[private].
5 free pubc:channel.
6 free ts:bitstring[private].
7 free sskey:bitstring[private].

8
9 (* concatenation and division of bitstring *)
10 fun con(bitstring,bitstring):bitstring.
11 fun divhead(bitstring):bitstring.
12 fun divrest(bitstring):bitstring.
13 equation forall mt:bitstring;
14 con(divhead(mt),divrest(mt))=mt.
15
16 equation forall lmt:bitstring,rmt:bitstring;
17 divhead(con(lmt,rmt))=lmt.
18
19 equation forall lmt:bitstring,rmt:bitstring;
20 divrest(con(lmt,rmt))=rmt.
21
22 (* XOR *)
23 const zeros: bitstring.
24 fun xor(bitstring,bitstring):bitstring.
25 equation forall x:bitstring,y:bitstring;
26 xor(xor(x,y),y) = x.
27 equation forall x:bitstring; xor(x,x) = zeros.
28 equation forall x:bitstring; xor(zeros,x) = x.
29 equation forall x:bitstring; xor(x,zeros) = x.
30
31 (* Block cipher *)
32 fun enc(bitstring,bitstring):bitstring.
33 fun dec(bitstring,bitstring):bitstring.
34 equation forall x: bitstring, s: bitstring;
35 dec(enc(x,s),s) = x.
36
37 (* func for Oct *)
38 type oct.
39 const CPAD1:oct.
40 const CPAD2:oct.
41
42 fun b2o(bitstring):oct.
43 fun o2b(oct):bitstring.
44 equation forall xb:bitstring;o2b(b2o(xb))=xb.
45 equation forall xo:oct;b2o(o2b(xo))=xo.
46
47 fun Ocon(oct,oct):oct.
48 fun Odivhead(oct):oct.
49 fun Odivrest(oct):oct.
50 equation forall mt:oct;
51 Ocon(Odivhead(mt),Odivrest(mt))=mt.
52 equation forall lmt:oct,rmt:oct;
53 Odivhead(Ocon(lmt,rmt))=lmt.
54 equation forall lmt:oct,rmt:oct;
55 Odivrest(Ocon(lmt,rmt))=rmt.
56
57 fun oct1(bitstring):oct.
58 fun oct2i2(bitstring):oct.
59
60 fun con2octs(oct,oct):bitstring.
61 equation forall x:oct,y:oct;
62 con2octs(x,y)=o2b(Ocon(x,y)).
63
64 equation forall x:bitstring;
65 oct1(x)=Odivhead(b2o(x)).
66 equation forall x:bitstring;
67 oct2i2(x)=Odivrest(b2o(x)).
68
69 (* cheat code for attacker *)
70 fun AB1(bitstring):bitstring.
71 fun AB2(bitstring):bitstring.
72
73 fun Ccase1(bitstring,bitstring):bool
74 reduc forall Y:bitstring; Ccase1(AB1(Y),Y) = true
75 otherwise forall X:bitstring, Y:bitstring;
76 Ccase1(X,Y)= false.
77
78 fun Ccase2(bitstring,bitstring):bool
79 reduc forall Y:bitstring; Ccase2(AB2(Y),Y) = true
80 otherwise forall X:bitstring, Y:bitstring;
81 Ccase2(X,Y) = false.
82
83 event SuccCBC.
84
85 (* Adversary process *)
86 let processAdv(psskey:bitstring) =
87 in(pubc,(X:bitstring,Y:bitstring));
88 let py=dec(Y,psskey) in
89 let xpy =xor(X,py) in
90 (
91 if(Ccase1(X,Y)=true) then
92 out(pubc,oct1(py))
93 else
94 (

VOLUME 12, 2024 31621

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

95 if(Ccase2(X,Y)=true) then
96 out(pubc,oct2i2(py))
97)
98).
99 100~let CBCe(prskey:bitstring) =
101 in(d,(iv:bitstring, m:bitstring, n:nat));
102 if(n <> 1)then
103 (
104 let tb = divhead(m) in
105 let nb = divrest(m) in
106 let cipb = enc(xor(tb,iv),prskey)in
107 out(cc, (iv,cipb));
108 out(pubc, (iv,cipb)); (* for attacker *)
109 out(d,(cipb,nb,n-1))
110)
111 else
112 (
113 (* for 1~octet padding *)
114 let p = con2octs(b2o(m),CPAD1) in
115 let cipb = enc(xor(p,iv),prskey) in
116 out(pubc, (iv,cipb)); (* for attacker *)
117 out(cc, (iv,cipb))
118).
119 120~let CBCd(prskey:bitstring) =
121 in(dd, x2:nat);
122 in(cc, (ciphb1:bitstring,ciphb2:bitstring));
123 let plainb = dec(ciphb2,prskey) in
124 if (ciphb2 = enc(plainb,prskey)) then
125 let plaina = xor(plainb,ciphb1) in
126 if (plainb = xor(plaina,ciphb1)) then
127 let x3:nat = x2-1 in
128 if (x3 <> 0) then
129 (
130 out(dd, x3);
131 in(ee,(x4:nat,tailce:bitstring));
132 if(x4=x3) then
133 (
134 let conb = con(plaina,tailce) in
135 out(ee,(x2,conb));
136 if(conb=ts) then event SuccCBC
137)
138)
139 else
140 (
141 (* for 1~octet padding *)
142 if (oct2i2(plaina) = CPAD1) then
143 let planac = oct1(plaina) in
144 out(ee, (x2,o2b(planac)))
145).
146
147 (* Queries *) 148~query attacker(ts). 149~query

event(SuccCBC).
150
151 (* Execution part *) 152~process
153 (
154 new iv:bitstring;
155 out(cc,(iv,2));
156 out(d,(iv,ts,2));
157 !(
158 out(dd, 2)
159)
160)
161 | !CBCe(sskey) | !CBCd(sskey) | !processAdv(sskey)

Appendix C presents the verification result of the deriva-
tion of the padding oracle attack against the CBC mode.

VII. CONCLUSION AND FUTUREWORKS
In this study, we proposed a method for formalizing iterative
executions in ProVerif. Our method formalizes function
calls by treating them as communications between internal
processes. We then formalized iterative execution as com-
munication with self-duplicating processes. We specifically
confirmed the validity of the proposed formalization through
case studies on the MD construction algorithm, a method
for constructing a cryptographic hash function using the
proposed method. As verified, the proposed method was con-
sistent with the formal MD construction model and satisfied
the cryptographic hash function properties (i.e., CR). We also

FIGURE 13. AES-GCM.

formalized the CBC mode, a well-known block cipher mode
of operation. We verified that our formalization approach
successfully described the encryption and decryption of a
plaintext comprising multiple blocks in the CBC mode and
their secrecy.

We aim to find security holes in the applied protocols
[52] using ProVerif and help design cryptographic protocols.
For example, our method can find the execution path of
the padding oracle attack against our formal model of the
CBC mode via automatic search if a padding oracle exists
(Section VI-C). The proposed method allows the verification
of the secure design of cryptographic algorithms and proto-
cols using ProVerif. Thus, we attempt herein to formalize
cryptographic protocols in a model closer to the actual
implementation. That being said, we specifically attempt
to formalize the complex application protocols (e.g., AES-
Galois/Counter Mode (GCM)) (Figure 13) used. The GCM
is an algorithm for authenticated encryption with associated
data adopted in TLS 1.3. In addition, we plan to investigate
applying the proposed method to aid cryptography, for
example, in finding the properties of higher order differentials
(e.g., saturation properties [53]) in higher order differential
attacks [54].

APPENDIX A
VERIFICATION RESULT OF DERIVATION OF LEA
In the following, only the important log parts were extracted.
The rest were omitted. See below for a log of the verification
results on the derivation of the LEA in Code.5.

(* Log:Length Extension Attack Log *)
(

{1}new m1: bitstring;
{2}new m2: bitstring;
{3}out(c, (m2,2));
{4}out(s, (iv,m1,2,m1));
{9}get MD_h(=m1,MDh1: bitstring) in
{5}out(c, MDh1);
{6}out(s, (MDh1,m2,2,con(m1,m2)));
{8}get MD_h(=con(m1,m2),MDh12: bitstring) in
{7}insert MD_h_check(MDh12)

) | (
{10}!
{11}in(s, (ha: bitstring,rm: bitstring,bl: nat,mm: bitstring));
{12}if (bl , 1) then
(

{13}let newbl: bitstring = divhead(rm) in
{14}let newstream: bitstring = divrest(rm) in
{15}let newha: bitstring = comp(ha,newbl) in
{16}out(s, (newha,newstream,bl - 1,mm))

)
else

{17}let MDh: bitstring = comp(ha,rm) in

31622 VOLUME 12, 2024

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

{18}insert MD_h(mm,MDh)
) | (

{19}!
{20}in(c, MDh12’: bitstring);
{22}get MD_h_check(=MDh12’) in
{21}event SUCCESS

)

Starting query not event(SUCCESS)
goal reachable: event(SUCCESS)

Derivation:

1. The message (m2[],2) may be sent to the attacker at output {3}.
attacker((m2[],2)).

:
(omitted)

:
8. The entry MD_h(m1[],comp(comp(iv,divhead(m1[])),divrest(m1[])))

that may be in a table by 7~may be read at get {9}.
So the message comp(comp(iv,divhead(m1[])),divrest(m1[])) may be
sent to the attacker at output {5}.
attacker(comp(comp(iv,divhead(m1[])),divrest(m1[]))).

:
(omitted)

:
19. The message comp(comp(comp(comp(iv,divhead(m1[])),divrest(m1[])),

divhead(m2[])),divrest(m2[])) that the attacker may have by 10
may be received at input {20}.
The entry MD_h_check(comp(comp(comp(comp(iv,divhead(m1[])),
divrest(m1[])),divhead(m2[])),divrest(m2[]))) that may be in a
table by 18~may be read at get {22}.
So event SUCCESS may be executed at {21}.
event(SUCCESS).

20. By 19, event(SUCCESS).
The goal is reached, represented in the following fact:
event(SUCCESS).

APPENDIX B
VERIFICATION RESULT OF THE CPA DERIVATION
In the following, only the important log parts were extracted.
The rest were omitted. See below for a log of the verification
results for the derivation of the chosen plaintext attack in
Code.9.

(* Log:Chosen Plaintext Attack Log *)
(

{1}new iv: bitstring;
{2}let tb: bitstring = divhead(ts) in
{3}let nb: bitstring = divrest(ts) in
{4}let civ: bitstring = enc(iv,sskey) in
{5}out(pubc, iv);
{6}out(cc, (civ,2));
{7}out(d, (civ,ts,2));
{8}!
{9}out(dd, 2)

) | (
{10}!
{11}let prskey: bitstring = sskey in
{12}in(d, (iv_1: bitstring,m: bitstring,n: nat));
{13}if (n , 1) then
(

{14}let tb_1: bitstring = divhead(m) in
{15}let nb_1: bitstring = divrest(m) in
{16}let cipb: bitstring = enc(xor(tb_1,iv_1),prskey) in
{17}out(cc, (iv_1,cipb));
{18}out(pubc, (iv_1,cipb));
{19}out(d, (cipb,nb_1,n - 1))

)
else

{20}let cipb_1: bitstring = enc(xor(m,iv_1),prskey) in
{21}out(pubc, (iv_1,cipb_1));
{22}out(cc, (iv_1,cipb_1))

) | (
{23}!
{24}let prskey_1: bitstring = sskey in
{25}in(dd, x2: nat);
{26}in(cc, (ciphb1: bitstring,ciphb2: bitstring));
{27}let plainb: bitstring = dec(ciphb2,prskey_1) in
{28}if (ciphb2 = enc(plainb,prskey_1)) then
{29}let plaina: bitstring = xor(plainb,ciphb1) in
{30}if (plainb = xor(plaina,ciphb1)) then
{31}let x3: nat = x2 - 1~in
{32}if (x3 , 0) then
(

{33}out(dd, x3);
{34}in(ee, (x4: nat,tiv: bitstring,tailce: bitstring));
{35}if ((x4 = x3) && (tiv = ciphb2)) then
{36}let conb: bitstring = con(plaina,tailce) in
{37}out(ee, (x2,ciphb1,conb));
{38}in(pubc, X: bitstring);
{39}if (conb = con(X,ts)) then
{40}event SuccCBC

)
else

{41}out(ee, (x2,ciphb1,plaina))
) | (

{42}!
{43}let n_1: nat = 3~in
{44}in(pubc, (iv_2: bitstring,m_1: bitstring));
{45}out(cc, (iv_2,n_1));
{46}out(d, (iv_2,m_1,n_1));
{47}!
{48}out(dd, n_1)

)

Starting query not event(SuccCBC)
goal reachable: event(SuccCBC)

Derivation:

1. The attacker has some term m_2. attacker(m_2).
:

(omitted)
:

10. The message (iv[],con(xor(iv[],iv[]),rmt)) that the attacker
may have by 9~may be received at input {44}.
So the message (iv[],con(xor(iv[],iv[]),rmt),3) may be sent on
channel d[] at output {46}.
mess(d[],(iv[],con(xor(iv[],iv[]),rmt),3)).

:
(omitted)

:
22. Using the function zeros, the attacker may obtain zeros.

attacker(zeros).
23. The message 3~that may be sent on channel dd[] by 4~may be

received at input {25}.
The message (iv[],enc(iv[],sskey[])) that may be sent on channel
cc[] by 11~may be received at input {26}.
The message (2,enc(iv[],sskey[]),ts[]) that may be sent on
channel ee[] by 21~may be received at input {34}.
The message zeros that the attacker may have by 22~may be
received at input {38}.
We have~2 , 0.
So event SuccCBC may be executed at {40}.
event(SuccCBC).

24. By 23, event(SuccCBC).
The goal is reached, represented in the following fact:
event(SuccCBC).

APPENDIX C
VERIFICATION RESULT OF THE DERIVATION OF THE
PADDING ORACLE ATTACK AGAINST THE CBC MODE
In the following, only the important log parts were extracted.
The rest were omitted. See below for a log of the verification
results on the derivation of the padding oracle attack against
the CBC mode in Code.11.
(* Log:Padding Oracle Attack Log *)
(

{1}new iv: bitstring;
{2}out(cc, (iv,2));
{3}out(d, (iv,ts,2));
{4} {5}out(dd, 2)

) | (
{6} {7}let prskey: bitstring = sskey in
{8}in(d, (iv_1: bitstring,m: bitstring,n: nat));
{9}if (n , 1) then
(

{10}let tb: bitstring = divhead(m) in
{11}let nb: bitstring = divrest(m) in
{12}let cipb: bitstring = enc(xor(tb,iv_1),prskey) in
{13}out(cc, (iv_1,cipb));
{14}out(pubc, (iv_1,cipb));
{15}out(d, (cipb,nb,n - 1))

)
else

{16}let p: bitstring = con2octs(b2o(m),CPAD1) in
{17}let cipb_1: bitstring = enc(xor(p,iv_1),prskey) in
{18}out(pubc, (iv_1,cipb_1));
{19}out(cc, (iv_1,cipb_1))

) | (
{20} {21}let prskey_1: bitstring = sskey in
{22}in(dd, x2: nat);
{23}in(cc, (ciphb1: bitstring,ciphb2: bitstring));
{24}let plainb: bitstring = dec(ciphb2,prskey_1) in
{25}if (ciphb2 = enc(plainb,prskey_1)) then
{26}let plaina: bitstring = xor(plainb,ciphb1) in
{27}if (plainb = xor(plaina,ciphb1)) then
{28}let x3: nat = x2 - 1~in
{29}if (x3 , 0) then
(

{30}out(dd, x3);
{31}in(ee, (x4: nat,tailce: bitstring));
{32}if (x4 = x3) then
{33}let conb: bitstring = con(plaina,tailce) in
{34}out(ee, (x2,conb));
{35}if (conb = ts) then
{36}event SuccCBC

)
else

{37}if (oct2i2(plaina) = CPAD1) then
{38}let planac: oct = oct1(plaina) in
{39}out(ee, (x2,o2b(planac)))

) | (
{40} {41}let psskey: bitstring = sskey in
{42}in(pubc, (X: bitstring,Y: bitstring));
{43}let py: bitstring = dec(Y,psskey) in
{44}let xpy: bitstring = xor(X,py) in
{45}if (Ccase1(X,Y) = true) then

{46}out(pubc, oct1(py))
else

{47}if (Ccase2(X,Y) = true) then
{48}out(pubc, oct2i2(py))

)

Starting query not attacker(ts[])

VOLUME 12, 2024 31623

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

goal reachable: attacker(ts[])

Derivation:

:
(omitted)

:
9. The message (AB2(enc(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[])),sskey[])),
enc(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[])),sskey[]))
that the attacker may have by 8~may be received at input {42}.
So the message Odivrest(b2o(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[]))))
may be sent to the attacker at output {48}.
attacker(Odivrest(b2o(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[]))))).

:
(omitted)

:
12. The message (AB1(enc(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[])),sskey[])),
enc(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[])),sskey[]))
that the attacker may have by 11~may be received at input {42}.
So the message Odivhead(b2o(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[])))) may be
sent to the attacker at output {46}.
attacker(Odivhead(b2o(xor(o2b(Ocon(b2o(divrest(ts[])),CPAD1)),
enc(xor(divhead(ts[]),iv[]),sskey[]))))).

:
(omitted)

:
20. The message (AB2(enc(xor(divhead(ts[]),iv[]),sskey[])),
enc(xor(divhead(ts[]),iv[]),sskey[]))
that the attacker may have by 19~may be received at input {42}.
So the message Odivrest(b2o(xor(divhead(ts[]),iv[]))) may be
sent to the attacker at output {48}.
attacker(Odivrest(b2o(xor(divhead(ts[]),iv[])))).

:
(omitted)

:
23. The message (AB1(enc(xor(divhead(ts[]),iv[]),sskey[])),
enc(xor(divhead(ts[]),iv[]),sskey[]))
that the attacker may have by 22~may be received at input {42}.
So the message Odivhead(b2o(xor(divhead(ts[]),iv[]))) may be
sent to the attacker at output {46}.
attacker(Odivhead(b2o(xor(divhead(ts[]),iv[])))).

24. By 23, the attacker may know Odivhead(b2o(xor(divhead(ts[]),iv[]))).
By 20, the attacker may know Odivrest(b2o(xor(divhead(ts[]),iv[]))).
Using the function con2octs the attacker may obtain
xor(divhead(ts[]),iv[]).
attacker(xor(divhead(ts[]),iv[])).

25. By 24, the attacker may know xor(divhead(ts[]),iv[]).
By 17, the attacker may know iv[].
Using the function xor the attacker may obtain divhead(ts[]).
attacker(divhead(ts[])).

26. By 25, the attacker may know divhead(ts[]).
By 16, the attacker may know divrest(ts[]).
Using the function con the attacker may obtain ts[].
attacker(ts[]).

:
(omitted)

:

ACKNOWLEDGMENT
The authors wish to thank Enago for its linguistic assistance
during the preparation of this paper.

REFERENCES
[1] B. Blanchet. ProVerif: Cryptographic Protocol Verifier in the For-

mal Model. Accessed: Jan. 2024. [Online]. Available: https://bblanche
.gitlabpages.inria.fr/proverif/

[2] B. Blanchet, B. Smyth, and V. Cheval. ProVerif 2.05: Automatic
Cryptographic Protocol Verifier, User Manual and Tutorial.
Accessed: Jan. 2024. [Online]. Available: https://bblanche.gitlabpages
.inria.fr/proverif/manual.pdf/

[3] B. Blanchet, ‘‘Modeling and verifying security protocols with the applied
pi calculus and ProVerif,’’ Found. Trends Privacy Secur., vol. 1, nos. 1–2,
pp. 1–135, 2016, doi: 10.1561/3300000004.

[4] D. Basin, C. Cremers, J. Dreier, S. Meier, R. Sasse, and B. Schmidt.
Tamarin Prover. Accessed: Jan. 2024. [Online]. Available: https://tamarin-
prover.github.io/

[5] B. Schmidt, S. Meier, C. Cremers, and D. Basin, ‘‘Automated analysis
of Diffie–Hellman protocols and advanced security properties,’’ in Proc.
IEEE 25th Comput. Secur. Found. Symp., Jun. 2012, pp. 78–94.

[6] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov,
‘‘A meta-notation for protocol analysis,’’ in Proc. 12th IEEE Comput.
Secur. Found. Workshop, Jun. 1999, pp. 55–69.

[7] C. Cremers, Scyther 1.1.3: Automatic Verification of Security
Protocols, Scyther User Manual. Accessed: Jan. 2024. [Online].
Available: https://github.com/cascremers/scyther/blob/master/gui/scyther-
manual.pdf

[8] N. Kobeissi. Verifpal. Accessed: Jan. 2024. [Online]. Available: https://
verifpal.com/

[9] A. Armando. (2005). AVISPA 1.1: Automated Validation of Internet
Security Protocols and Applications. User Manual Tutorial. Accessed:
Jan. 2024. [Online]. Available: https://www.avispa-project.org/

[10] D. Dolev and A. C. Yao, ‘‘On the security of public key pro-
tocols,’’ IEEE Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208,
Mar. 1983.

[11] R. Merkle, ‘‘One way hash functions and DES,’’ in Proc. Adv. Cryptol.
(CRYPTO), in Lecture Notes in Computer Science, vol. 435. New York,
NY, USA: Springer-Verlag, 1989, pp. 428–446.

[12] I. B. Damgård, ‘‘A design principle for hash functions,’’ in Proc. Adv.
Cryptol. (CRYPTO), in Lecture Notes in Computer Science, vol. 435.
New York, NY, USA: Springer-Verlag, 1989, pp. 416–427.

[13] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, ‘‘A concrete security
treatment of symmetric encryption,’’ in Proc. 38th Annu. Symp. Found.
Comput. Sci., 1997, pp. 394–403.

[14] M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini, ‘‘Automated
verification of block cipher modes of operation, an improved method,’’ in
Foundations and Practice of Security. Berlin, Germany: Springer, 2011,
pp. 23–31.

[15] M. Gagné, P. Lafourcade, Y. Lakhnech, and R. Safavi-Naini, ‘‘Automated
proofs of block cipher modes of operation,’’ J. Automated Reasoning,
vol. 56, no. 1, pp. 49–94, Jan. 2016.

[16] P. Rogaway. (2012). Evaluation of Some Blockcipher Modes of Oper-
ation. Accessed: Jan. 2024. [Online]. Available: https://www.cryptrec
.go.jp/exreport/cryptrec-ex-2012-2010r1.pdf

[17] T. Yoshimura, K. Arai, H. Okazaki, and Y. Futa, ‘‘Formalization
of security requirements and attack models for cryptographic hash
functions in ProVerif,’’ in Proc. Int. Conf. Secur. Manag. (SAM), 2019,
pp. 23–29.

[18] T. Mieno, T. Yoshimura, H. Okazaki, Y. Futa, and K. Arai, ‘‘Formal
verification of Merkle–Damgård construction in ProVerif,’’ in Proc. Int.
Symp. Inf. Theory Appl., 2020, pp. 602–606, doi: 10.34385/proc.65.E03-
2.

[19] S. Marc, ‘‘New collision attacks on SHA-1 based on optimal joint
local-collision analysis,’’ in Proc. Adv. Cryptol. (EUROCRYPT). Berlin,
Germany: Springer, 2013, pp. 245–261.

[20] W. Xiaoyun and Y. Hongbo, ‘‘How to break MD5 and other hash
functions,’’ in Proc. Adv. Cryptol. (EUROCRYPT). Berlin, Germany:
Springer, 2005, pp. 19–35.

[21] M. Stevens, ‘‘Fast collision attack on MD5,’’ Cryptol. ePrint Arch., Int.
Assoc. Cryptologic Res., Paper 2006/104, 2006. Accessed: Nov. 2023.
[Online]. Available: https://eprint.iacr.org/2006/104 and https://en.
wikipedia.org/wiki/International_Association_for_Cryptologic_Research

[22] D. C. Christophe and C. Christian, ‘‘Finding SHA-1 characteristics:
General results and applications,’’ in Proc. Adv. Cryptol. (ASIACRYPT).
Berlin, Germany: Springer, 2006, pp. 1–20.

[23] Z. A. Al-Odat, S. U. Khan, and E. Al-Qtiemat, ‘‘A modified secure
hash design to circumvent collision and length extension attacks,’’
J. Inf. Secur. Appl., vol. 71, Dec. 2022, Art. no. 103376, doi:
10.1016/j.jisa.2022.103376.

[24] B. Blanchet and M. Paiola, ‘‘Automatic verification of protocols with lists
of unbounded length,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS), Berlin, Germany, 2013, pp. 573–584.

[25] A. Dax, R. Künnemann, S. Tangermann, and M. Backes, ‘‘How to wrap
it up—A formally verified proposal for the use of authenticated wrapping
in PKCS#11,’’ in Proc. IEEE 32nd Comput. Secur. Found. Symp. (CSF),
Jun. 2019, pp. 6215–6262.

[26] M. Backes, G. Barthe, M. Berg, B. Gregoire, C. Kunz, M. Skoruppa,
and S. Z. Beguelin, ‘‘Verified Security of Merkle–Damgård,’’ in Proc.
25th IEEE Comput. Secur. Found. Symp. (CSF), Cambridge, MA, USA,
Jun. 2012, pp. 354–368.

[27] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, ‘‘Computer-aided
security proofs for the working cryptographer,’’ in Proc. CRYPTO, 2011,
pp. 71–90.

[28] INRIA. ProVerif Users Research Papers. Accessed: Jan. 2024. [Online].
Available: https://bblanche.gitlabpages.inria.fr/proverif/proverif-users.
html

[29] B. Blanchet, V. Cheval, and V. Cortier, ‘‘ProVerif with lemmas, induction,
fast subsumption, and much more,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), San Francisco, CA, USA, May 2022, pp. 69–86, doi:
10.1109/SP46214.2022.9833653.

31624 VOLUME 12, 2024

http://dx.doi.org/10.1561/3300000004
http://dx.doi.org/10.34385/proc.65.E03-2
http://dx.doi.org/10.34385/proc.65.E03-2
http://dx.doi.org/10.1016/j.jisa.2022.103376
http://dx.doi.org/10.1109/SP46214.2022.9833653

T. Mieno et al.: How to Formalize Loop Iterations in Cryptographic Protocols Using ProVerif

[30] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi, ‘‘Formal model-
driven discovery of Bluetooth protocol design vulnerabilities,’’ in Proc.
IEEE Symp. Secur. Privacy (SP), San Francisco, CA, USA, May 2022,
pp. 2285–2303, doi: 10.1109/SP46214.2022.9833777.

[31] A. Debant, S. Delaune, and C. Wiedling, ‘‘So near and yet so far—
Symbolic verification of distance-bounding protocols,’’ ACM Trans.
Privacy Secur., vol. 25, no. 2, pp. 1–39, May 2022.

[32] K. Bhargavan, V. Cheval, and C.Wood, ‘‘A symbolic analysis of privacy for
TLS 1.3with encrypted client hello,’’ inProc. ACMSIGSACConf. Comput.
Commun. Secur., Los Angeles, CA, USA, Nov. 2022, pp. 365–379, doi:
10.1145/3548606.3559360.

[33] M. Bougon, H. Chabanne, V. Cortier, A. Debant, E. Dottax, J. Dreier,
P. Gaudry, and M. Turuani, ‘‘Themis: An on-site voting system with sys-
tematic cast-as-intended verification and partial accountability,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2022, pp. 397–410,
doi: 10.1145/3548606.3560563.

[34] S. Hussain, M. Farooq, B. A. Alzahrani, A. Albeshri, K. Alsubhi, and
S. A. Chaudhry, ‘‘An efficient and reliable user access protocol for
Internet of Drones,’’ IEEE Access, vol. 11, pp. 59688–59700, 2023, doi:
10.1109/ACCESS.2023.3284832.

[35] J. Guan, H. Li, H. Ye, and Z. Zhao, ‘‘A Formal analysis of the
FIDO2 protocols,’’ in Computer Security—ESORICS. Cham, Switzerland:
Springer, 2022, pp. 3–21, doi: 10.1007/978-3-031-17143-7.

[36] C. Xu, W. Wei, and S. Zheng, ‘‘Efficient mobile RFID authentication
protocol for smart logistics targets tracking,’’ IEEE Access, vol. 11,
pp. 4322–4336, 2023, doi: 10.1109/ACCESS.2023.3234959.

[37] C. Jacomme, E. Klein, S. Kremer, and M. Racouchot, ‘‘A comprehensive,
formal and automated analysis of the EDHOC protocol,’’ in Proc. 32nd
USENIX Secur. Symp. (USENIX Security), 2023, pp. 5881–5898.

[38] V. Cheval and I. Rakotonirina, ‘‘Indistinguishability beyond diff-
equivalence in ProVerif,’’ in Proc. IEEE 36th Comput. Secur. Found. Symp.
(CSF), Dubrovnik, Croatia, Jul. 2023, pp. 184–199.

[39] V. Cheval, C. Jacomme, S. Kremer, and K. Robert ünnemann, ‘‘SAPIC+:
Protocol verifiers of the world, unite!’’ in Proc. USENIX Secur.
Symp. (USENIX Security), 2022, pp. 3935–3952.

[40] C. Boyd and M. Anish, Protocols for Authentication and Key Establish-
ment, 2nd ed. Berlin, Germany: Springer, 2019.

[41] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao,
and B. Parno, ‘‘SoK: Computer-aided cryptography,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), San Francisco, CA, USA, May 2021, pp. 777–795,
doi: 10.1109/SP40001.2021.00008.

[42] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, ‘‘Handbook of
applied cryptography,’’ in Hash Functions and Data Integrity, 1st ed.
CRC Press,Dec. 1996, ch. 9, pp. 334–335. Accessed: Jan. 2024. [Online].
Available: https://cacr.uwaterloo.ca/hac/about/chap9.pdf

[43] X. Lai and J. L. Massey, ‘‘Hash functions based on block ciphers,’’ in Proc.
EUROCRYPT, in Lecture Notes in Computer Science, vol. 658. Cham,
Switzerland: Springer, 1992, pp. 53–66.

[44] S. Vaudenay, ‘‘Security flaws induced by CBC padding—Applications
to SSL, IPSEC, WTLS. . . ’’ in Proc. EUROCRYPT, vol. 2332. Cham,
Switzerland: Springer, 2002, pp. 534–546.

[45] B. Möller, T. Duong, and K. Kotowicz. This POODLE Bites: Exploit-
ing The SSL 3.0 Fallback. Accessed: Jan. 2024. [Online]. Available:
https://www.openssl.org/ bodo/ssl-poodle.pdf

[46] B. Blanchet, ‘‘Using horn clauses for analyzing security protocols,’’ in
Formal Models and Techniques for Analyzing Security Protocols
(Cryptology and Information Security Series), vol. 5. IOS Press,
2011, pp. 86–111. [Online]. Available: https://bblanche.gitlabpages.inria.
fr/proverif/publications/BlanchetBook09.html

[47] B. Blanchet, ‘‘An efficient cryptographic protocol verifier based on prolog
rules,’’ in Proc. 14th IEEE Comput. Secur. Found. Workshop, Jun. 2001,
pp. 82–96.

[48] B. Blanchet, ‘‘From secrecy to authenticity in security protocols,’’ in Proc.
9th Int. Static Anal. Symp. (SAS), in Lecture Note on Computer Science,
vol. 2477, 2002, pp. 342–359.

[49] B. Blanchet, ‘‘Automatic proof of strong secrecy for security protocols,’’
in Proc. IEEE Symp. Secur. Privacy, Proceedings., May 2004, pp. 86–100.

[50] B. Blanchet, M. Abadi, and C. Fournet, ‘‘Automated verification of
selected equivalences for security protocols,’’ in Proc. 20th Annu. IEEE
Symp. Log. Comput. Sci. (LICS), Jun. 2005, pp. 331–340.

[51] M. Dworkin, ‘‘Recommendation for block cipher modes of operation:
Methods and techniques,’’ NIST, Gaithersburg, MS, USA, NIST Special
Publication 800-38A, 2001 Edition, 2001. Accessed: Jan. 2024. [Online].
Available: https://csrc.nist.gov/publications/detail/sp/800-38a/final

[52] NICT. Cryptographic Protocol Verification Portal. Accessed: Jan. 2024.
[Online]. Available: https://crypto-protocol.nict.go.jp/index_en.html

[53] S. Lucks, ‘‘The saturation attack—A bait for Twofish,’’ in Proc. 8th Int.
Workshop Fast Softw. Encryption (FSE), in Lecture Note on Computer
Science, vol. 2355, 2001, pp. 1–15.

[54] X. Lai, ‘‘Higher order derivatives and differential cryptanalysis,’’ in
Communications and Cryptography. USA: Springer, 1994, pp. 227–233.
[Online]. Available: https://scholar.google.com/citations?view_op=view_
citation&hl=en&user=B67-NyQAAAAJ&citation_for_view=B67-
NyQAAAAJ:qjMakFHDy7sC

[55] M. Luby, Pseudorandomness and Cryptographic Applications. Princeton,
NJ, USA: Princeton Univ. Press, 1996, pp. 112–114.

[56] Secure Hash Standard, document FIPS 180-1, Nat. Inst. Sci.
Technol., Federal Inf. Process. Standard (FIPS), Gaithersburg,
MS, USA, 1995. Accessed: Jan. 2024. [Online]. Available:
https://doi.org/10.6028/NIST.FIPS.180-1

[57] R. L. Rivest, The MD5 Message Digest Algorithm, document RFC 1321,
Apr. 1992.

TAKEHIKO MIENO (Member, IEEE) graduated
from Shinshu University, Japan, and the M.E.
degree from Shinshu University in 2023, where he
is currently pursuing the degree with the Graduate
School of Medicine, Science and Technology.
He is with EPSON AVASYS Corporation. He
was worked on the security development of
many printers, sensors firmware, and drivers. His
research interests include information security and
formal verification.

HIROYUKI OKAZAKI received the B.E., M.E.,
and D.E. degrees in communication engineering
from Kyoto Institute of Technology, in 1999,
2001, and 2004, respectively. He is currently an
Associate Professor with the Graduate School,
Division of Science and Technology, Shinshu Uni-
versity. His research interests include cryptology,
information security, and formal verification of
cryptography.

KENICHI ARAI received the B.E., M.E., and Dr.E.
degrees from Shinshu University, Japan, in 2004,
2006, and 2010, respectively. He is currently an
Associate Professor with the School of Informa-
tion and Data Sciences, Nagasaki University. His
research interests include information security and
formal verification.

YUICHI FUTA received the D.E. degree in engi-
neering from Shinshu University, in 2012. He was
with Panasonic Corporation, from 1998 to 2013,
and was engaged in research and development of
information security and digital right management
systems. He is currently a Professor with the
School of Computer Science, Tokyo University
of Technology. His research interests include
information security and formal verification of
security proofs.

VOLUME 12, 2024 31625

http://dx.doi.org/10.1109/SP46214.2022.9833777
http://dx.doi.org/10.1145/3548606.3559360
http://dx.doi.org/10.1145/3548606.3560563
http://dx.doi.org/10.1109/ACCESS.2023.3284832
http://dx.doi.org/10.1007/978-3-031-17143-7
http://dx.doi.org/10.1109/ACCESS.2023.3234959
http://dx.doi.org/10.1109/SP40001.2021.00008

