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ABSTRACT Regional surface deformation resulting from the development and utilization of underground
space resources poses a significant threat to the safety of urban areas, and the combination of Synthetic Aper-
ture Radar and Gravity Recovery and Climate Experiment (GRACE) satellite data has become a new means
to study the impact of underground space evolution on surface deformation. We combine the Interferometric
Synthetic Aperture Radar (InSAR) technology and gravity satellite data to extract information on regional
surface deformation and groundwater storage changes in Shanxi Province, to explore the patterns of their
temporal and spatial variations, to discover their links with seasonal climate change, to re-conceptualize
the laws of the regional water cycle, and to quantify the contribution of multiple fields to the evolution of
the surface. Furthermore, we propose a novel multi-source neural network prediction model (LSTM/BP)
based on signal decomposition (VMD) and algorithm optimization to handle the complex time series
characteristics of groundwater storage. Our findings reveal that groundwater storage in Shanxi Province
has been consistently declining, with a monthly deficit rate of approximately 1.05 mm. Additionally, there
is a notable spatial variation in the annual rate of change, ranging from −21 to 4 mm/year from north to
south. Furthermore, we observe a close relationship between inter-annual and seasonal groundwater storage
changes and local rainfall patterns, and we find that regional surface deformation is influenced by these
groundwater storage changes. The new prediction model outperforms other models, with a root mean square
error of 1.56 mm and a correlation coefficient of more than 0.98 on the test set. The model improves the
prediction accuracy of the groundwater reserves in the basin, and it can be used to provide a reference for
the comprehensive management of the groundwater in Shanxi Province, the rational development of mineral
resources, and other major national needs.

INDEX TERMS GRACE, InSAR, groundwater storage, surface deformation, VMD, LSTM.

I. INTRODUCTION
For human production and survival, groundwater is an indis-
pensable resource, which affects socioeconomic development
and ecological balance, and plays an important role in
safeguarding the life of residents and resource allocation.
groundwater storage (GWS), as an important indicator of

The associate editor coordinating the review of this manuscript and

approving it for publication was Tai Fei .

regional water resource changes, is of great significance to
explore the characteristics and distribution of its spatial and
temporal changes, and to understand how the basin’s water
resources are protected and developed in an environmentally
friendly manner [1], [2]. However, due to the complexity
and difficulty of observing groundwater, the development
and management of groundwater resources have been facing
many challenges [3], [4], [5].
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Traditional groundwater monitoring methods have limita-
tions due to high cost, low accuracy, inconsistent scale, and
difficult interpretation [6]. The release of Gravity Recovery
and Climate Experiment (GRACE) gravity satellites has
enabled large-scale monitoring of terrestrial water storage
(TWS). Monitoring the Earth’s gravity field allows GRACE
to invert changes in mass distributions, which in turn yields
changes in TWS [7], [8]. Since then, a new groundwater
inversion method has been proposed, which combines the
water balance equations and hydrological modeling, to sep-
arate information on changes in GWS from changes in
TWS [9], [10], [11], [12]. Domestic and foreign experts and
scholars in many fields have achieved remarkable results
in inverting the change of TWS and GWS using GRACE
data. These include revealing the water system changes in the
Amazon and Songhua River basins [13], [14], exploring the
groundwater flow trends in the land plains [15], analyzing the
local hydroclimatic characteristics [16], [17], and combining
radar data, such as Sentinel data, to carry out correlation
studies of groundwater and surface deformation [18], [19],
[20].

Various geodetic techniques are used to measure defor-
mations on a range of temporal and spatial scales. Geodetic
leveling provides highly accurate discrete point data over a
localized area by comparing the height difference between
two points. However, most of the monitoring of such hydro-
logically induced surface deformation over time is carried
out on limited spatial and temporal scales. In recent years,
there has been an increase in the application of Interferomet-
ric Synthetic Aperture Radar (InSAR) as a remote sensing
technique for millimeter-scale ground subsidence mapping.
Satellite-based methods have some advantages in measuring
land deformation because of the low cost of obtaining pro-
cessed data and the fact that the results can provide more
details about the spatial scattering of land deformation areas.
With the gradual development of InSAR technology, geodetic
observations provide useful data to understand the processes
occurring at greater depths of deformation, and the defor-
mation time series derived from InSAR is not only used to
map the spatial distribution of ground subsidence in aquifer
systems but can also be used to estimate the water storage
coefficients of aquifers and to predict changes in aquifer
head [21], [22], [23]. Thus, InSAR provides a new tool to
characterize the storage properties of aquifer systems, the
boundaries of confined aquifers, and settlement characteris-
tics in time and space.

Research in the field of Earth sciences is increasingly
dependent on remote sensing technologies and satellite data,
and the continuous development of these technologies has
provided us with more tools to understand the complexity
of the Earth system. Among them, the study of techniques
combining InSAR and GRACE has become a hot research
topic in the fields of groundwater and surface deformation.
With InSAR technology, surface subsidence or uplift can be
monitored, while GRACE data provides the overall trend of
groundwater storage. By combining these two types of data,

researchers can more accurately assess groundwater changes,
identify increases or decreases in groundwater storage, and
explore the effects of groundwater changes on surface defor-
mation. Li et al. analyzed the surface deformation induced by
groundwater in the North China Plain by using the InSAR-
GRACE technique, and explored the coupling relationship
between groundwater-surface deformation [24]. Gong et al.
also proposed the risk warning and safety outlook of urban
underground space under the new groundwater environment,
and they believed that combining with the InSAR-GRACE
technology, they could build a research framework of the sur-
face response of the underground space evolution and reveal
the formation mechanism of the surface subsidence response
pattern, so as to establish an emerging risk prevention and
control warning mechanism for the safety of underground
space and realize the scientific regulation of the region [18].

Since the release of gravity satellite data, there has been an
increasing number of studies combining multi-source data to
invert and analyze changes in groundwater storage and their
influencing factors, but there have been few studies related
to time-series prediction of groundwater storage. Part of the
reason is that GWS changes are affected by multiple natural
factors such as precipitation and evaporation, and traditional
groundwater prediction models rely on complex hydrologic
and geologic information [25], [26]. Meanwhile, traditional
prediction models such as Autoregressive (AR) and gray pre-
diction models have limited accuracy in predicting GWS due
to their linear nature [27]. In the era of computer technology,
the emergence of intelligent algorithms based on machine
learning has improved the reliability of GWS prediction.
Literature [28] verified the feasibility of GWS prediction
by GRACE satellite using an approach, i.e., Support Vec-
tor Machine (SVM); literature [29] successfully predicted
GWS in distinctive types of aquifers by using Nonlinear
Autoregressive Networks with Exogenous Input (NARX)
with rainfall and temperature as driving factors. Although
neural networks can improve the accuracy of GWS predic-
tion, different network types and structures have different
prediction performances, and the time series characteristics
of GWS changes are complex, so it is difficult to rely on
a single neural network structure to effectively analyze and
discriminate. According to the idea of signal decomposition
decomposing the complex signal features into components
with certain physical significance is a feasible solution, and
by applying each component to a suitable neural network
structure, the trend of each component in the future can be
effectively predicted, and then the change of the original
signal features can be restored.

In this paper, from the inversion of regional GWS, the
missing data in GRACE gravity satellite data are filled in
by Singular Spectrum Analysis (SSAN) [30], and based
on the complete sequence of GRACE data, the simultane-
ous Global Land Data Assimilation System (GLDAS) is
combined to invert the TWS and GWS in Shanxi Province
from 2002 to 2022. The spatial distribution characteris-
tics and time-series changes of GWS and precipitation
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are analyzed to explain the relationship between GWS
and precipitation during these 20 years. Combined with
Sentinel-1 satellite data, Small Baseline Subset Interfero-
metric Synthetic Aperture Radar (SBAS-InSAR) technology
is used to focus on extracting deformation characteristics
of areas with serious changes in GWS, and the correlation
between the two is studied through the surface-groundwater
coupling model. Finally, a multi-source neural network pre-
diction model based on signal decomposition and algorithm
optimization is proposed for the complex time-series char-
acteristics of GWS, and the reasonableness of the model
is verified through the evaluation indexes, and a reasonable
prediction is made for the future changes of GWS in the study
area. To provide a gauge for the comprehensive governance
of groundwater in Shanxi Province, rational development of
mineral resources, and other major national needs.

II. STUDY AREA
Shanxi Province is located in North China, geographically
between longitude 110◦14′ 23′′ and 114◦33′ 20′′ East and
latitude 34◦34′ 11′′ and 40◦44′ 38′′ North, bordering several
provinces and autonomous regions. Located in the upper
reaches of the Yellow River, Shanxi Province is a typi-
cal mountainous plateau covered by loess. Westward is a
high terrain, while eastward is a low terrain, with river
valleys running across, and is mainly composed of moun-
tains, hills, and other landforms. Among them, the Taihang
Mountains and the Luliang Mountains run through the whole
territory of Shanxi Province, forming the main geograph-
ical features of Shanxi. Geologically, Shanxi Province is
an important mineral resource area, with abundant coal,
iron, copper, and other mineral resources. This has an
important impact on China’s economic, cultural, and social
development.

Shanxi Province is located in the interior of the
mid-latitude zone and has a temperate continental monsoon
climate in terms of climate type. The annual precipitation in
all parts of the province ranges between 400-700 millimeters,
with uneven seasonal distribution, and the precipitation is rel-
atively concentrated in the summer months of June-August,
accounting for about 60% of the annual precipitation, and the
distribution of precipitation in the province is greatly influ-
enced by the topography. Shanxi Province is the watershed of
the two major basins of the Yellow River and the Haihe River,
the province’s Yellow River basin covers an area of 97,138
square kilometers, accounting for 62.2% of the province’s
area, and the Haihe River basin covers an area of 59,133
square kilometers, accounting for 37.8% of the province’s
area. In addition to the mainstream of the Yellow River,
which flows through the west and south of the provincial
border for 965 kilometers, there are five larger rivers in the
province with a watershed area of more than 10,000 square
kilometers, namely, the Fen River and the Qin River in the
Yellow River Basin, and the Sanggan River, the Zhang River
and the Hutuo River in the Hai River Basin. Rivers in Shanxi
Province are self-produced outflow-type water systems, with

FIGURE 1. Geographic location and geology of shanxi province.

river water coming from atmospheric precipitation, most of
them originating in the territory and dispersing outflow to
the outside of the province. Due to this, it is important to
study the characteristics of GWS changes in Shanxi Province
to understand the optimal allocation of water resources on a
large scale across basins.

Shanxi Province is rich in groundwater resources and plays
an important role in local agricultural, industrial, and domes-
tic water use. The depth of the water table and the tectonic
characteristics of the aquifers in Shanxi Province vary in
different regions. Generally speaking, the groundwater table
in Shanxi Province is relatively shallow, mostly distributed
in the range of 10-50 meters below the surface. However,
in some areas, the groundwater level may decline due to
excessive groundwater exploitation or insufficient groundwa-
ter recharge [31]. Groundwater in Shanxi Province mainly
comes from precipitation infiltration and vadose flow and is
mainly divided into two types: shallow groundwater and deep
groundwater. Shallow groundwater is mostly distributed in
river valleys, lakes, and plains, and the aquifers are usually
gravel, sand, and gravel, or sandy soils; deep groundwater
is mostly distributed in mountainous areas and pre-mountain
plains, and the aquifers are mostly water in rock fissures [32].
In general, groundwater resources in Shanxi Province are one
of the important water sources in the region, and reasonable
management and protection of groundwater resources are of
great significance in realizing sustainable development and
safeguarding the benign cycle of people’s life and ecological
environment. The geographic location and geological struc-
ture of Shanxi Province are shown in Figure 1.
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TABLE 1. Tyres of data and their related information.

III. MATERIALS
GRACE gravity satellite data and GLDAS hydrological data
are the basic data for the inversion of regional GWS. To fur-
ther study and analyze the factors that cause changes in GWS
and the impact of GWS changes on surface deformation,
other hydrological data and radar data for observing surface
deformation are also applied in this paper. Detailed informa-
tion on the data is shown in Table 1.

A. GRACE GRAVITY SATELLITE DATA
The GRACE gravity satellite is a satellite developed by the
National Aeronautics and Space Administration (NASA) in
cooperation with the German Space Center (GFZ) to observe
changes in the Earth’s gravity field. By providing a high-
precision time-varying gravity field, it is possible to infer
the change and distribution of the mass of the Earth’s sur-
face [33]. The GRACE gravity model has two product forms,
the Spherical Harmonics (SH) and the Mascons, and the
traditional SH data have become an important factor limiting
its development due to the cumbersome processing and the
low spatial resolution. The emergence of Mascons products
effectively overcomes the shortcomings of SH products, tak-
ing into account the removal of north-south strip error noise
and the correction of leakage errors, while at the same time
improving the spatial resolution of the product, so that there is
a better delineation of land and sea boundaries. In this paper,
we use the RL06_Mascons product released by the Center for
Space Research (CSR) of the University of Texas, USA, with
a spatial resolution of 0.25◦, and a total of 216 periods of data
from April 2002 to December 2022 in cm, changes in total
TWS expressed as equivalent water heights. Due to the miss-
ing data in some months, the vacant data were interpolated
using SSAN. The SSAN interpolation method for missing
values is to utilize the temporal correlation of the available
samples to deal with the time series of the missing samples.
Nico added two loops based on the original SSAN idea and
updated the missing values by iterating to gradually increase
the reconstruction complexity until the hypothetical value
tends to be the optimal one [30]. The interpolated time series
are shown in Figure 2, with gray dots representing the original
data, red dots representing the interpolated CRACE satellite
data, and blue dots representing the interpolated GRACE-

FIGURE 2. Time series of GRACE data after applying the SSAN
interpolation method.

Follow on(GRACE-FO) satellite data, as well as data between
GRACE and GRACE-FO satellites.

B. GLDAS HYDROLOGIC MODEL DATA
The GLDAS, jointly constructed by NASA and the National
Centers of Environmental Prediction (NCEP), is a high-
resolution global land hydrological simulation system. It pro-
vides high-resolution, near-real-time surface state informa-
tion by assimilating ground and satellite observations [12].
GLDAS provides four model products that contain a vari-
ety of surface hydrologic data such as soil moisture (SM),
plant canopy surface water (PW), snow depth water equiv-
alent (SWE), and storm surface runoff (QS). In this paper,
the NOAH version is selected, and the spatial and tempo-
ral resolution is consistent with the GRACE data, with a
total of 249 periods of data. Since the background value
deducted from the CSR_Mascons data is the average value
from January 2004 to December 2009, therefore, the GLDAS
data were de-averaged during data processing (Surface water
month by month minus its average from January 2004 to
December 2009).

C. OTHER DATA
The Tropical Rainfall Measuring Mission (TRMM) provides
precipitation datasets covering latitudes 50◦S-50◦N [34].
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In this paper, TRMM_3B43 data were selected with a
spatial resolution of 0.25◦

∼0.25◦, with a temporal dis-
tribution from January 2002 to December 2019, totaling
18 years and 216 months. The data are in mm/hr, and the
text is converted to monthly and annual scales for analy-
sis. Sentinel-1, a geohazard monitoring satellite constructed
as part of the European Space Agency’s (ESA) Copernicus
Earth Observation Program, was launched in 2014 and has
begun continuous observation of the Earth’s progression [35].
Sentinel-1A data was selected as the main data source for
InSAR monitoring, and a total of 24 images covering the
study area were acquired, with a time range between January
2021 and January 2023, and a revisit period of about 30 days.
In the process of InSAR data interpretation, external Digital
Elevation Model (DEM) data used to simulate and remove
the terrain phase is essential [36]. According to the research
of Lu et al. [37] the participation of Shuttle Radar Topog-
raphy Mission (SRTM1) data in the area with large terrain
undulation can be interpreted to produce better deformation
results, so in the case of the same resolution, this paper
selects the SRTM1 with higher accuracy as the reference
DEM data.

IV. METHODS
A. DESEGREGATION OF TWS
The TWS changes in the GRACE data inversion include
surface water storage (SWS) changes and GWS changes,
and the SWS mainly consists of SM, PW, SWE, and QS,
etc, which is negligible considering that the amount of QS
changes in the study area is small. The change in GWS can be
obtained by deducting the change in SM, PW, and SWE from
the change in TWS based on the desegregation of TWS [7].
Previous studies have also estimated GWS fromGRACE data
using a similar methodology, i.e.:

1GWS = 1TWS − 1SM − 1PW − 1SWE (1)

where 1GWS represents the change in groundwater storage,
1TWS represents the change in terrestrial water storage, and
1SM, 1PW, and 1SWE are the changes in soil water, veg-
etation water, and snow water, respectively. The processing
flow is shown in STEP ONE of Figure 3.

B. SBAS-InSAR PROCESSING
The SBAS-InSAR technique was first proposed by Berardino
et al [38], [39], [40] and the basic idea is to obtain the same
Multiple SAR images of a region are selected and pixels
that meet certain conditions on these images are selected for
time series analysis. Compared with other time-series InSAR
techniques, the SBAS-InSAR technique is unique in that
it requires the processing of multiple interferometric pairs,
and the temporal and spatial baselines of the interferometric
pairs need to be kept within a certain threshold range at
the same time, and the interferometric pairs are subjected to
multi-visualization in phase space, which reduces the spatial

FIGURE 3. Flow chart of GWS inversion and prediction.

resolution of the image but also ensures the maximum coher-
ence of the interferometric phase. The basic principles of the
SBAS-InSAR technology are not repeated in this paper, see
STEP TWO of Figure 3.

C. MULTI-SOURCE NEURAL NETWORK MODELING
1) VARIATIONAL MODE DECOMPOSITION
Variational Mode Decomposition (VMD) was proposed by
Dragomiretskiy and Zosso in 2014 [41]. Its advantage lies
in its ability to determine the number of decomposed modes
according to different situations, and to adapt and match the
decomposition of the intrinsic modal components accord-
ing to the optimal center frequency and finite bandwidth of
each mode. Compared with other decomposition algorithms,
VMD overcomes the problems of modal aliasing and end-
point effects and reduces the non-stationarity of complex and
non-linear time series. Themain step is to construct a solution
to the variational problem:

min
{uk },{ωk }

{∑
k

∥∥∥∥∂t

[(
δ(t) +

j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

}
s.t.

∑
k

uk = f (t)

(2)

where: k-number of decomposed modes; uk -decomposition
of the resulting k modal components; ωk -center frequency;
∗-convolution operation; f (t)-original signal; ∂t -gradient
operation.
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FIGURE 4. Basic LSTM model structure.

2) SPARROW SEARCH ALGORITHM
Sparrow Search Algorithm (SSA) is inspired by the mecha-
nism of sparrow’s foraging behavior and predator avoidance
behavior [42]. Sparrow algorithm has the advantages of high
optimality finding ability and fast convergence speed. Each
sparrow represents a location attribute i.e. where it finds
food. Each sparrow plays three different roles in the global
scenario: the finder, which searches for food within a certain
range; the joiner, which follows the finder to find the best
food; and the alert, which is alert to the surrounding dangers
and warns when it senses danger. The main steps are shown
in STEP THREE of Figure 3.

3) LONG SHORT-TERM MEMORY NEURAL NETWORKS
Long Short-Term Memory (LSTM) is a streaming variant
of the traditional Recurrent Neural Network (RNN), first
proposed by Hochreiter and Schmidhuber [43], [44]. The
LSTM has two main modules that help it learn temporal
characteristics from data. The first is the memory module,
which is used as the cell state. The second is the gate mod-
ule, an input gate, an output gate, and an oblivion gate,
which effectively trains the fully connected layer to control
the cell state in response to new inputs from the data and
past outputs of the model. The main principle is shown
in Figure 4.

4) BACK PROPAGATION NEURAL NETWORKS
The Back Propagation (BP) neural network, initially intro-
duced by a scientific team led by Rumelhart and McClelland
in 1986, comprises three components: the input layer, hid-
den layer, and output layer. The basic principle is that the
external information through the input layer neurons into
the BP network, through the design of one or more hid-
den layers of the intermediate layer, the input information
is processed and transformed, by the last hidden layer of
the processed information will be transmitted to the output
layer neurons, to complete the propagation of a positive
learning process. After further processing, the result of the
information learning process is transmitted from the out-
put layer, and when the output fails to meet the desired
specifications, it undergoes the reverse propagation process
of the error.

5) BUILDING VMD-SSA-LSTM/BP NEURAL NETWORK
PREDICTION MODEL
Combining the VMD technique, SSA, and LSTM and BP
neural networkmodels, theVMD-SSA-LSTM/BP neural net-
work prediction model is constructed, as shown in STEP
THREE of Figure 3, and the model implementation process
is as follows:

The original time series data X (t) to be predicted is sub-
jected to VMD signal decomposition to obtain n components
IMFi (t) and residual Re (t). The formula is as follows:

X (t) =

n∑
i=1

IMFi (t) + Re (t) (3)

Establish the SSA-LSTM model and SSA-BP model for the
obtained n components and residuals, respectively, and use
SSA to find the optimal hyperparameters in LSTM and BP
models

The obtained optimal hyperparameters are applied to the
LSTM and BP neural networks to initialize the training and
prediction in the form of components.

The predicted values of the components are superimposed
to obtain the predicted values of the original data and error
analysis is performed.

Multi-step prediction of future values based on existing
data. Assuming that the data Y (t) ={y1, y2,. . . ,yn} is known
and to predict the future k steps, there are:

yn+i = M (Y (t)) (i = 1, . . . , k) (4)

where M represents the prediction model, assuming k > 2.
Then the first predicted value yn+1 = M ({y1, y2, . . . ,yn}),
Afterwards update the known data Y (t), Putting yn+1 into
the model, that is yn+2 = M

(
{y2, . . ., yn, yn+1}

)
, and

so on until after looping k times, the predicted value
Y ′ (t) = {yn+1, yn+2, . . . ,yn+k} is obtained.

D. EVALUATION METRICS
To evaluate the reliability of the model during the exper-
iment, the Pearson correlation coefficient (R), Root Mean
Square Error (RMSE), Mean Square Error (MAE), and Mean
Absolute Percentage Error (MAPE) to evaluate the prediction
accuracy of the model. Among them, R is used to judge
the predictive ability of the model, and the closer the value
is to 1, the better the correlation between the observed and
predicted values; RMSE is used to measure the global fit of
the prediction model, and the smaller the value is, the better
the consistency of the data is; MAPE is used to evaluate the
accuracy of the predicted data, and the smaller the percentage
of the value is, the higher the accuracy of the predicted data
is. Their formulas are as follows:

R =

∑n
t=1

(
yt − ŷ

) (
ȳt − ˆ̄y

)
√∑n

t=1
(
yt − ŷ

)2√∑n
t=1

(
ȳt − ˆ̄y

)2 (5)

RMSE =

√∑N
t=1 (yt − ȳt)2

N
(6)
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MAE =
1
N

N∑
t=1

|yt − ȳt | (7)

MAPE =
100%
N

N∑
i=1

∣∣∣∣yt − ȳt
yt

∣∣∣∣ (8)

where yt and ȳt denote the observed and predicted values
of the data at moment t, respectively, ŷ and ˆ̄y represent
the means of the actual observations and model predictions,
respectively, and N is the total number of sample test sets.

V. CHANGES IN GROUNDWATER STORAGE AND
ANALYSIS
A. TIME SERIES CHANGES
The SSAN method was first used to fill in the missing
GRACE data, while the SM, PW, and SWE data from the
NOAH version of the GLDAS hydrological model were
extracted and de-averaged to obtain the SMA, PWA, and
SWEA data. Finally, according to the principle of water
balance, the time series change of GWS in the study area
is obtained by inversion of joint GRACE and GLDAS data,
as shown in Figure 5, in which the blue hollow point indicates
the real value of storage obtained by inversion, the red curve
indicates the time series change of storage, and the black dot-
ted line indicates the time series of change of storage after the
least squares linear fitting. It can be seen that from 2002 to the
end of 2022, the change of TWS shows an overall decreasing
trend, with an average trend of -9.1 mm/a. Starting fromApril
2002, the change of TWS first shows an increasing trend and
reaches the maximum value of 183.8 mm in December 2003,
which indicates that the TWS within Shanxi Province is in a
state of maximum surplus at this time. After that, it showed
a continuous downward trend, and the minimum value of -
399.9 mm appeared in April 2021, at which time the TWS
was in the state of maximum deficit. According to Figures a
and c, it can be seen that the change of GWS and the change
of TWS have the same trend of change, and the periodic
fluctuation is also consistent, with an average trend of change
of -10.3mm/a. According to Figure d, the two have a strong
correlation, with the Pearson correlation coefficient of 0.98,
which indicates that the change of TWS within the study area
is mainly caused by the change of GWS. Changes in SWS,
such as soil water, have little effect on it. Changes in SWS are
relatively stable, but there are some cyclical changes, with the
largest surplus occurring in April 2003 and the largest deficit
occurring in September 2006.

Figure 6 reflects the segmented trend of GWS change, from
which it can be seen more clearly that the change of GWS an
upward, then downward, then upward trend, showing differ-
ent states in different periods, and the rate of change is large.
Since April 2002, the GWS has been rising at an average
rate of 11.4 mm/month, reaching a peak of 175.7 mm in July
2003, when the GWS is in maximum surplus. From August
2003 to April 2021, the GWS continued to be in deficit at a
faster rate, with a deficit rate of 1.9 mm/month. the minimum
value of -396.3 mm occurs in April 2021, when the GWS

is in maximum deficit. Overall, the GWS in the study area is
highly variable during these 20 years, fluctuating periodically
between -400 to 200mm and is in deficit for a long period,
Groundwater storage begins to rebound at a faster rate until
the second half of 2021.

B. SPATIAL DISTRIBUTION CHARACTERISTICS
Figures 7 and 8 show the annual rate of change and spatial
distribution of GWS in the study area during 2003-2022,
respectively. As shown in Figure 7, the annual rate of change
of GWS in most areas of Shanxi Province is negative, imply-
ing that GWS is decreasing, and only the annual rate of
change in Yuncheng City in the southernmost part of Shanxi
Province is positive, and GWS shows an increasing state.
The spatial difference of GWS varies significantly, with the
annual rate of change fluctuating from -21 to 4mm/a, which is
consistent with the spatial distribution of local precipitation.
In the region with more precipitation, the rate of change of
GWS is slower, and in the northern cities with less precipita-
tion, the annual rate of change of GWS is relatively larger.

From Figure 8, the spatial variation of GWS in Shanxi
Province is obvious, and there is a significant inter-annual
variation characteristic. It can be seen that the spatial dis-
tribution of GWS between 2003 and 2006 varied somewhat,
but the overall change was relatively stable, with all pixels
remaining around 0 mm. GWS began to decline at a cer-
tain rate after 2007, and GWS in the eastern part of the
river, bounded by the middle reaches of the Fen River in
the study area, continued to decrease in a deficit state and
gradually moved northward spatially over time. This may be
due to the movement of rock layers and the surface caused
by the exploitation of underground resources, which in turn
generates water-flowing fractured zones that open up the con-
nection between the groundwater and the surface, allowing
large quantities of groundwater to pour into the surface [45],
[46]. After 2014, the rate of decline in GWS increases, and
spatially, the deficit state starts in the southeast corner of
Shanxi Province and moves northwestward, with the largest
areas of deficit occurring in Changzhi and Jinzhong cities.
Until 2022 GWS shows a substantial recovery, keeping the
average value of groundwater storage around -280 mm. Only
Yuncheng City in the south of the whole study area maintains
a continuous growth of GWS, with a maximum growth rate of
up to 4mm/a. By comparing the spatial distribution of rainfall
in Figure 9, there is a strong consistency between them, which
is probably affected by the climatic conditions.

C. THE RELATIONSHIP WITH PRECIPITATION CHANGES
To study the relationship between GWS and local precip-
itation, the monthly average precipitation, annual average
precipitation, and its spatial distribution in Shanxi Province
from 2002 to 2019 were counted, as shown in Figures 9a
and 10a. The study area is bounded by Taiyuan, the provincial
capital and the precipitation is larger in the southeast, with
Yuncheng, the southernmost city, being the city with the
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FIGURE 5. The curve of change in (a) TWS, (b)SWS, and (c) GWS in the study area from 2002 to 2022, and (d) Correlation
curves of GWS and TWS.(The blue hollow point indicates the real value of water storage obtained by inversion, the red
curve indicates the time series change of water storage, and the black dotted line indicates the time series of water
storage change after least squares linear fitting.

FIGURE 6. Segmented time series of GWS changes in the study area,
2004-2022.

largest precipitation in Shanxi Province, with a maximum of
up to 736mm/a, the precipitation in the northwest is relatively
small, with a minimum of 434 mm/a, and it is located in
Datong, the northernmost city in Shanxi Province. It can be
seen that for the north-south-oriented study area, the southern
cities can receive more precipitation recharge to mitigate the
effects of a significant GWS deficit. The northern cities,
on the other hand, can only rely on artificial forms of GWS
replenishment, such as ecological water conveyance, when
precipitation is insufficient.

FIGURE 7. Annual rate of change in GWS in the study area, 2003-2022.

In terms of temporal distribution, the time series is rela-
tively flat with little difference in precipitation except for a
few years when precipitation is relatively high. A comparison
of the patterns of average monthly precipitation and GWS
changes reveals that when monthly precipitation reaches its
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FIGURE 8. Spatial distribution of GWS changes in the study area,
2003-2022.

FIGURE 9. Spatial distribution and seasonal variation of precipitation
(a) Characteristics of the spatial distribution of mean annual precipitation
and (b) Variation of precipitation in different seasons from 2017-2019.

peak, the GWS change also reaches its highest point, indi-
cating that precipitation is very important for the supply of
GWS. Figure 10b represents the average annual precipitation
anomalies in the study area, obtained by de-averaging the
average precipitation for each year one by one. Negative
values indicate that the precipitation for the year is lower
than the multi-year average, and larger values represent lower
precipitation. Positive values, on the other hand, indicate that
the annual precipitation is higher than the multi-year average,

FIGURE 10. (a) Monthly and annual mean precipitation data and (b)
Annual mean precipitation anomalies in the study area
from 2002 to 2020. (Dark blue rectangles represent average monthly
precipitation and black dashed lines represent average annual
precipitation).

and the larger the value, the higher the precipitation. By com-
paring the changes in GWS and precipitation anomalies in
the study area, it can be found that the change pattern of
GWS is consistent with the characteristics of the changes
in average annual precipitation. The years from 2004 to
2010, when precipitation was 10-100 mm lower than the
average value and GWS declined sharply, and the years when
GWS showed a rapid rebound coincided with an increase
in precipitation during the same period. In years with high
precipitation (precipitation anomaly is positive), farmland
crops get more supply from precipitation, the demand for irri-
gation is reduced, and the amount of groundwater extraction
is also reduced, while the increased precipitation recharges
the groundwater, slowing down the decline in groundwater
reserves caused by extraction; in years with low precipitation
(negative precipitation anomalies), the source of groundwater
recharge decreases while the demand for extracted ground-
water from irrigation of agricultural fields increases, further
exacerbating the groundwater deficit in the basin. For the
study area, excessive groundwater resource extraction has
resulted in stable precipitation that can no longer meet supply
requirements, plus the study area is located in central China
and lacks additional groundwater recharge from glaciers and
other sources, resulting in a continued decline in GWS.

The changing pattern of GWS and precipitation with
the change of seasons is further analyzed in Figure 9b.
Normally, March-May represents spring, June-August rep-
resents summer, September-November represents fall, and
December-February represents winter [47]. The time series
of GWS is processed using Fourier spectral analysis to obtain

VOLUME 12, 2024 33679



Y. An et al.: Analysis and Prediction of Temporal and Spatial Evolution of GWS

its spectral distribution and change rule. The precipitation
data from 2017-2019 were taken, grouped, and statistically
averaged according to different years and seasons. It can be
seen that the changes in GWS and precipitation in the study
area during the four seasons have a clear distribution pattern,
and the trends are relatively close to each other. Among them,
the change in GWS was negative in spring, when GWS was
in maximum deficit. The change in GWS turned positive in
summer, when GWS was in maximum surplus, due to the
increase in precipitation in summer, which resulted in the
replenishment of groundwater by surface runoff. In the fall
period, the GWS was in deficit again, but the groundwater
consumption was reduced compared with that in spring, pos-
sible reasons for this are the rapid decrease in precipitation
and higher evaporation due to the still high temperatures in
the fall. The change in GWS is not much different between
winter and summer, indicating that the consumption of GWS
in winter is less than in summer in the presence of small
amounts of precipitation.

D. THE RELATIONSHIP WITH REGIONAL SURFACE
DEFORMATION
PIE series products are based on a fully loosely coupled
underlying architectural design, with flexible and scalable
architecture. PIE-SAR is a satellite-mounted SAR data pro-
cessing and analysis software, which provides a graphical
interface to support the data processing and analysis of
domestic and foreign mainstream satellite-mounted SAR
sensors. In this paper, Sentinel-1 data are preprocessed by
PIE-SAR, including data import, image cropping, geocoding,
and so on.

Taiyuan City and Yuncheng City, which have large annual
change rates of GWS, were selected as the key areas
for extracting surface deformation features, and the SAR
images covering Taiyuan City and Yuncheng City were
pre-processed and decoded respectively. To obtain interfer-
ometric pairs with higher coherence, the maximum temporal
baseline was set to 150 and 100 days, respectively, and the
maximum spatial baseline to 10% of the critical baseline [48],
[49]. The spatial baseline connectivity of the image pairs is
shown in Figure 11, where the X-axis represents the date, the
Y-axis represents the baseline distance between the two view
images, and the red and green dots represent the distribution
of the primary and secondary images on the time series,
respectively.

The orbit information is corrected using AUX_POEORB
satellite precision orbit data to remove the systematic errors
caused by the orbit information, the terrain phasing is elim-
inated by using STRM1 data. Atmospheric delay errors
are corrected or removed using GACOS water vapor data.
In addition, the azimuth looks and range looks were set
to 4 and 1, and the grid size for suggested looks was set
to 50 m. A Goldstein filter was used to remove the noise
phase, and the filtered interferogram was phase-disentangled
using the minimum cost flow (MCF) method, The time series
deformation is then inverted by singular value decomposition.

FIGURE 11. Spatial baseline connectivity diagram (a ) Taiyuan City and
(b) Yuncheng City.

FIGURE 12. Spatial distribution of deformation rates (a) Taiyuan City and
(b) Yuncheng City.

Finally, the SAR plane coordinates were projected to the
WGS-84 coordinate system by geocoding, and a product
output coherence threshold of 0.3 was set to obtain the InSAR
deformation field in the line of sight (LOS) direction for
the two cities, i.e., the spatial distribution and time series
characteristics of the surface deformation rate, as shown in
Figure 12.

Figure 12 shows that significant surface deformation exists
in Yuncheng City and Taiyuan City, in which the annual
deformation rate of Yuncheng City ranges from −227 to
106 mm/a, which is mainly based on uplift, while the defor-
mation rate of Taiyuan City ranges from −83 to 152 mm/a,
which is mainly based on subsidence. From the characteris-
tics of spatial distribution, the change trends of the surface
and GWS are more consistent. To further analyze the rela-
tionship between the two, the time series characteristics of
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FIGURE 13. Time series characterization of GWS and surface deformation
(a) Yuncheng City and (b) Taiyuan City.

GWS and surface deformation in the two places are extracted,
as shown in Figure 13. It can be seen that the overall pat-
terns of both groundwater and surface show the same trend
during the period 2021-2023, with the surface in continuous
uplift or decline, while the groundwater is affected by rainfall
and shows seasonal changes. The strong correlation between
the two indicates that groundwater changes are the main
cause of surface deformation. However, deformation tends
to lag behind groundwater changes due to the presence of
low-permeability media in the aquifer system. Correlation
analysis of seasonal time series can estimate the time at which
surface deformation lags groundwater changes. As shown in
Figure 14, the time series of both groundwater and surface
deformation has a single-peak distribution over one year,
influenced by seasonal precipitation, and the surface begins
to change about 6months after the groundwater changes. This
is mainly due to the low vertical permeability coefficient of
this aquifer system, and it takes a longer time for the head
of the mined aquifer to reach equilibrium with the adjacent
aquifer or weakly permeable layer.

VI. PREDICTION OF GROUNDWATER STORAGE CHANGE
A. PARAMETER SETTING
The GWS data from 2002 to 2022 in the previous inver-
sion, totaling 249 groups, were selected as the original data,
of which the first 70% totaling 174 groups were used as the
training set, and 69 groups out of the last 30%were used as the
test set. According to the seasonal change rule, the delay step
was set to 6, i.e., the first 6 months’ data were used as inputs

FIGURE 14. Seasonal time series of groundwater and surface
deformation in Taiyuan.

FIGURE 15. Original signal and decomposed signal.

to the model to predict the 7th-month data. Since the change
of GWS is disturbed by many factors such as underground
resource extraction and regional seasonal rainfall, which
makes the change trend complex and diverse, it is difficult
to obtain useful information from it directly. Therefore, based
on the idea of signal decomposition, VMD technology is used
to decompose the original signals and obtain the component
signals with a certain pattern of change, and the value of
modal number k is very important in the process of VMD
decomposition, and improper decomposition number will
cause the information of the original signals to be mixed and
lost. A heuristic was used to determine the value of K. Let K
increase from 2 and stop when the center frequencies of adja-
cent modes differ by less than 50%, at which point we observe
that the corresponding center frequencies are more dispersed.
In this experiment, the optimal solution is when K is equal
to 5, so the original signal is decomposed into 5 modal com-
ponents. As shown in Figure 15.Where IMF1 is input into the
SSA-BP model as the trend term, IMF2-IMF5 is input into
the SSA-LSTM model as the season term, and Resid is the
residual term, which is negligible compared to the season and
trend terms.

To show the optimization performance of SSA, the Whale
Optimization Algorithm (WOA) is introduced to compare the
ability of SSA and WOA to optimize the LSTM model, and
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FIGURE 16. Evolutionary convergence curves of SSA-LSTM model and
WOA-LSTM model.

their evolutionary convergence curves are shown in Figure 16,
and it can be found that the optimization performance of SSA
is stronger than that of WOA under the same setup parameter
conditions. The three optimal hyperparameters of the LSTM
model are found by SSA: the optimal number of hidden units
is 51, the optimal maximum training period is 300, and the
optimal initial learning rate is 0.01; and the thresholds of each
neuron in the output layer and the hidden layer in the BP
model, as well as the weights between the output layer and
the hidden layer, are found by SSA.

B. MODEL COMPARISON AND ERROR ANALYSIS
Five prediction models, LSTM, VMD-LSTM, VMD-SSA-
LSTM, BP, and SSA-BP, were constructed respectively, and
the season term and trend term components of GWS were
predicted. The reliability of the LSTM model after applying
the signal decomposition and optimization algorithms is eval-
uated according to different indicators, as shown in Table 2.
It can be seen that compared with the other two models, the
VMD-SSA-LSTM model shows obvious advantages in both
datasets, and each evaluation index is significantly improved,
which indicates that the prediction accuracy of the VMD-
SSA-LSTM model is better in comparison with the LSTM
and VMD-LSTM models. Moreover, the values of the indi-
cators in the training set and test set are close to each other,
which indicates that there is no overfitting phenomenon in the
predicted data. Figure 17 shows the comparison of the predic-
tion results and prediction errors of the three models. It can
be seen that the LSTM model predicts the largest difference
between the results and the real values, and the prediction
effect is average, while the VMD-SSA-LSTM model has the
best overlap between the predicted and the actual values, and
the prediction ability is excellent, and theVMD-LSTMmodel
has a good prediction ability, which is in between the two. The
comparison of the prediction results and the prediction errors
of the BPmodel and the SSA-BPmodel is shown in Figure18,
and it can be seen that the SSA-optimized BP model has

FIGURE 17. Comparison of the prediction results of the three LSTM
models (a) Comparison of observed and predicted values (b) Comparison
of errors.

FIGURE 18. Comparison of the prediction results of the two BP models
(a) Comparison of observed and predicted values (b) Comparison of
errors.

higher prediction accuracy, and the predicted values almost
coincide with the real values, and the prediction results are
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FIGURE 19. Comparison of observed and predicted values (a) Fitted
curves and (b) Correlation analysis.

TABLE 2. Statistics of the results of the three models during calibration
and validation phrases.

nearly perfect. The predicted values of the trend, period and
residual terms are summed to obtain the predicted results
of the original signal, as shown in Fig. 18a, Observed is
the observed value of GWS and Predicted is the predicted
value of GWS. The scatter plot of Figure 19b reflects the
connection between the observed and predicted values of
GWS, and it can be seen that the two have a strong corre-
lation, and the Pearson correlation coefficient R is as high as
0.96, which indicates that the accuracy of the multi-source
neural network prediction model based on the VMD-SSA
reaches the general standard, and the model has a high
degree of credibility, and it can be applied to the prediction
of GWS.

Although trends in GWS are complex and vulnerable to
anthropogenic activities and seasonal hydrological climate
change, the prediction of GWS becomes simple and fea-
sible after applying appropriate neural network models to
different components from the idea of signal decomposition,

FIGURE 20. Results of prediction of changes in GWS in the coming year.

which also reflects that the prediction performance of the
multi-source neural network model is better than that of the
single neural network prediction model.

C. FUTURE PREDICTIONS
Predicting short-term changes in GWS can be used to assist
decision-making, and prevent and mitigate problems such
as groundwater depletion. It is of great significance for
the comprehensive management of groundwater, the optimal
allocation of water resources, and the rational development of
mineral resources. Therefore, at the end of this paper, based
on the last 6 months data of the existing information, i.e., the
GWS data from June to December 2022, the trained network
model is used to predict the change of GWS in the coming
year. The predicted results are shown in Figure 20, where the
predicted value of groundwater storage fluctuates cyclically
over time and demonstrates an upward trend, and is compared
with the latest available groundwater storage data, which are
found to be relatively consistent in terms of cyclicity and
trend. However, after 12 months, the predicted values show
a smooth state, i.e., the GWS remains unchanged, indicating
that the VMD-SSA-multi-source neural network model is
suitable for short-term prediction of the GWS, and it is more
appropriate to set the prediction step size within 12 months.
For long-term simulation, the model may lose its effect due
to the continuous accumulation of errors [50].

VII. CONCLUSION
Taking Shanxi Province as an example in this study,
we used GRACE satellite gravity data to monitor ground-
water changes from 2002 to 2022, and also explored the
relationship between groundwater and precipitation and sur-
face deformation. And a multi-source prediction model was
developed to make time series predictions of GWS from
GRACE data.

Firstly, TWS and GWS in the study area are both charac-
terized by cyclical fluctuations in time sequence, and as a
whole show a trend of change that first rises, then falls and
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then rises, and changes inTWS are mainly caused by changes
in GWS. GWS have been in deficit for a long time, with a
deficit rate of about 1.9 mm/month, but since the second half
of 2021, GWS have started to rebound due to measures such
as groundwater resources control. The spatial characteristics
of GWS show significant distribution differences from north
to south, with annual change rates fluctuating between -
21 and 4 mm/. The deficit status starts from the southeast
corner of Shanxi Province and moves northwestward, with
the largest deficit areas occurring in Changzhi and Jinzhong
cities.

Moreover, the interannual and seasonal variation charac-
teristics of GWS changes in Shanxi Province are closely
related to the local precipitation anomaly and seasonal rain-
fall, with relatively high precipitation in the south driving
the growth of groundwater storage in the southern region.
GWS and precipitation trends are positively correlated, with
GWS declining sharply when precipitation is lower than
average, and rebounding when precipitation anomalies are
positive. GWS shows a decreasing trend in the spring and
fall, and a significant increasing trend in the summer and
winter.

Furthermore, focusing on the extraction of surface defor-
mation in cities with significant changes in GWS, it is found
that surface deformation is greatly influenced by changes
in GWS, and their spatial distribution has good consis-
tency, with some correlation and lag in the time series
changes. Due to seasonal precipitation, the time series of both
groundwater and surface deformation shows a single-peak
distribution within a year, and the surface deformation of
Taiyuan City lags behind the groundwater changes by about
6 months.

Finally, the RMSE, MAE, and MAPE of the LSTM/BP
prediction model after VMD decomposition and SSA opti-
mization are reduced, and it can also be seen from the
fitting curves that theVMD-SSA-LSTM/BP model can bet-
ter capture the cyclical and trending fluctuation changes of
the time-series data, and minimize the errors between the
observed values and the predicted values. Through the cor-
relation analysis, the Pearson correlation coefficient between
the observed and predicted values is as high as 0.96, and
the prediction results for the next 12 months are basically
in agreement with the actual values, which indicates that the
accuracy of the prediction model is very good and is suitable
for predicting the short-term changes in GWS.

There are still many shortcomings in the current work,
and future research directions should include two aspects.
On the one hand, the inversion accuracy of GWS should
be further improved to provide a more accurate data source
for the prediction stage. On the other hand, the study of
the correlation between groundwater and surface deformation
should be deepened, the elastic skeleton storage coefficient
of the aquifer system should be estimated, and the response
of the aquifer system to changes in groundwater should be
studied.
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