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ABSTRACT Continuous data publishing aims to anonymise the next publication of changing microdata
while preserving privacy. Themicrodata can change between publications via additions, deletions, insertions,
and updates. There are numerous proposals for different database types, adversaries, attacks, and notions.
However, many anonymization algorithms include notions of privacy and adversarial models that are specific
to the context, with their own terminology and notation. Unfortunately, these proposals are difficult to
generalize or translate them to other contexts complicating their understanding and comparison. To address
these issues, we propose a taxonomy of anonymization technologies, compare existing solutions, and develop
a unifying framework that not only harmonizes concepts and terminology but also notation and nomenclature.
We analyze the current state of the art and recent advances in the literature. The analysis enables us to
understand the significance and appropriateness of the various proposals in achieving privacy.

INDEX TERMS Data privacy, dynamic data, syntactic privacy.

I. INTRODUCTION
Characterized by its massive volume, high velocity and
dynamicity, big data offers revolutionary advancements to a
wide variety of fields such as health and well-being, business
competitiveness, marketing, transportation and education.
However, the success of big data and the realization of these
promises depend, to a large extent, on whether the privacy of
the individuals on whom data is collected and analyzed can
be guaranteed.

To protect individuals’ privacy, current legal frameworks
in Europe and most democratic countries limit the col-
lection, processing and sharing of personally identifiable
information (PII). Effectively, the data controllers of PII
have numerous obligations towards subjects to whom the PII
corresponds (seeking their consent, guaranteeing them rights
to access, rectification, erasure, etc.).
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The surge of big data and the development of data
science are harnessing PII-based big data for a great deal
of secondary purposes (other than the purpose at collection
time). Nonetheless, satisfying the previously mentioned legal
obligations towards subjects is extremely challenging in a
scenario with a crowd of controllers who exchange andmerge
data for secondary use.

Anonymization arises as the tool that allows legitimate
circumvention of those restrictions and therefore can ease
the tensions between the economic and societal good that
comes from big-data research on the one hand and the
perceived risks to individuals’ privacy on the other. However,
just removing the direct identifiers of a microdata1 (names,
passport numbers, etc.) is not enough to prevent any
disclosure risk, including re-identification. According to a
well-known study [1], 63% of the population in the US can be

1A microdata is a data set whose records contain information at the
individual level.

38490

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-0198-2475
https://orcid.org/0000-0002-1772-1088
https://orcid.org/0000-0002-8401-3292
https://orcid.org/0000-0002-6209-9048


A. T. Nicolau et al.: Taxonomy of Syntactic Privacy Notions for Continuous Data Publishing

uniquely identified based only on the attributes gender, ZIP
code, and date of birth.

To effectively anonymize microdata, the common
approach is to modify the values of those and similar
attributes, called quasi-identifiers. Some examples of data-
modification techniques are adding Laplacian and Gaussian
noise to numerical attributes, reducing the granularity of
categorical data, or eliminating the whole attribute [2].
In the field of data anonymization, there are two distinct

approaches to protecting microdata: ensuring a privacy
property either on the anonymized data or on the mechanism
for anonymizing them. In the former case, properties —
typically denoted as notions or models— are referred to
as syntactic, whereas in the latter they are called semantic.
While semantic notions such as differential privacy [3] (DP)
can provide stronger privacy guarantees (since they make
no assumptions on the intruder’s side knowledge), syntactic
notions are preferred when the aim is to maximize the utility
of the dataset studied or model performance and at the same
time support a defensible level of privacy [4], [5], [6].
The first and probably best-known syntactic notion was

k-anonymity [7], which guarantees an upper bound on the risk
of reidentification. Although k-anonymity and its extensions
(e.g., l-diversity [8] and t-closeness [9]) are well-known
for generating anonymized microdata of high utility [6],
unfortunately they were not conceived to protect multiple
releases or publications of a changing microdata.

Essentially, there are two scenarios for publishing dynamic
data with syntactic privacy guarantees (see Sec. II-C for
further details): sequential release publishing [10] and con-
tinuous data publishing [11]. Both cases aim to anonymize
the next release so that the combination of information
from all already anonymized data (which obviously cannot
be modified) does not compromise the privacy of data
subjects [12]. In sequential release publishing, the set of
records is kept fixed, whereas the set of attributes changes
from one release to another. In continuous data publishing
it is the other way around: the set of attributes is fixed
and, in between releases, records can be inserted, deleted,
reinserted, and updated.

Sequential data publishing captures the behaviour of a
developing dataset, where the set of attributes is not yet
completed or the full publication of the dataset as a static
publication is not required. This may be the case, for example,
when a set of individuals is studied over time. The participants
do not change, but new information is added to the dataset
over time. The strength of sequential data publishing lies in
its ability to publish only what is relevant, while preserving
the ability to publish unreleased information at a later time
if necessary. This ‘‘publish only what is necessary’’ gives
the flexibility to preserve the utility of the first release with
respect to static data release. There are mechanisms to allow
sequential data publishing to include new tuples [12], [13],
but they come at a cost to utility and are not designed to allow
a constant flow of changes to the dataset. On the other hand,
continuous data publishing captures the essence of evolving

data, i.e., adding users, removing them or updating their
information. Examples include healthcare data, such as the
peoplewho stay in a hospital, who visit the intensive care unit,
and the evolution of their illnesses. The strength of continuous
data publishing lies in its ability to republish data while
preserving utility, with the ability to provide the latest version
of a changing dataset over time. This is important when it is
necessary to maintain a complete dataset, for example due to
limited data volume or to facilitate data analysis. This work
focuses on this latter scenario, which is by far themost studied
problem in the literature.

Since the publication of [11], the first model coping
with continuous data publishing, numerous proposals have
been developed that tackle a variety of aspects, including
database types, adversaries, attacks, and notions. However,
two important limitations are having an impact on the
fragmentation of the literature and on the development and
maturity of the research field itself. First and foremost,
the vast majority of anonymization algorithms are designed
for their own ad hoc privacy notion and threat model,
often without an evaluation of previous work. Obviously,
this hinders any attempt at generalizing or translating those
proposals to other contexts, which makes it difficult for new
practitioners to get an overview of the field. And secondly,
from the standpoint of privacy experts, the fact that almost
each proposal introduces its own nomenclature and notation
greatly complicates the understanding and comparison of the
claimed privacy guarantees.

A. CONTRIBUTION AND PLAN OF THIS PAPER
This work aims to conduct a systematization of knowledge
that addresses those limitations. Our main contribution arises
in response to the need for a unifying framework that
enables practitioners and non-experts to compare notions,
adversaries, and privacy guarantees (Sec. IV). Our theoretical
framework, however, harmonizes not only concepts and
terminology but also notation and nomenclature (Sec. III).
Under the perspective of this framework, we analyze the state
of the art and recent advances in the literature (Sec. IV).
Through this analysis, our systematic taxonomy of possible
datasets, adversaries, attacks, metrics of utility, notions of
privacy, and their guarantees, allows us to comprehend,
through numerous examples, the meaningfulness and suit-
ability of different combinations of all those aspects. This
way, we address a question of great practical relevance: given
a dataset type and adversary model, which privacy models
and guarantees could be achievable? Last but not least,
we identify and discuss research gaps and future directions
on anonymization technology (Sec. V). Next, we summarize
the major contributions of this work:

• We present a thorough, comprehensive taxonomy of
dataset types, adversaries, attacks, and privacy notions
in the field of continuous data publishing.

• We develop a theoretical framework that unifies ter-
minology, notation, and nomenclature. To this end,
we provide, whenever possible, existing definitions of
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all aspects above and novel ones to complete missing
information.

• We classify the existing literature to facilitate the choice
of an appropriate algorithm based on the dataset, the
attacker and the expected level of protection.

• We summarize the main advancements in syntactic
anonymization and classify algorithms based on the
developed taxonomy.

• We address the practical question of which privacy
guarantees can be achieved for a given dataset and
adversary.

• We discuss open research directions and critical aspects
for the future development of the field.

The methods used to ensure the confidentiality, integrity
and security of sensitive data during its processing in
a practical scenario are beyond the scope of this paper.
We focus on the algorithms used to create data releases.
We refer to [2], [14], and [15] as references.

The remainder of this paper is organized as follows:
Sec. II recalls general aspects of microdata anonymization
and describes the methodology used to survey the literature.
Sec. III defines key notation and concepts of the more
specific area of continuous data publishing, laying the
foundation for the rest of our contributions. Sec. IV presents
the proposed taxonomy, develops further the theoretical
framework formulated in the previous section, and surveys
the state of the art. Sec. V identifies research gaps and future
research directions. Finally, conclusions are drawn in Sec. VI.

II. BACKGROUND
This section aims to provide the reader with the necessary
depth to understand the technical contributions of this
work. First, Sec. II-A briefly examines the broader field of
statistical disclosure control (SDC), to which continuous data
publishing belongs. Sec. II-B elaborates on the differences
between the two main families of privacy notions, which
were briefly mentioned in the introduction. Afterwards,
Sec. II-C describes the three main data-publication scenarios
for dynamic databases under syntactic security. Finally,
Sec. II-D presents the methodology we used to perform our
work.

A. STATISTICAL DISCLOSURE CONTROL
The area of continuous data publishing belongs to the broader
field of statistical disclosure control (SDC) [16]. SDC is
the research field that deals with the inherent compromise
between protecting the privacy of the individuals in a
microdata set and ensuring that those data are still useful for
researchers.

In SDC, a microdata set is a database whose records
contain information at the level of an individual. In those
databases, each row corresponds to an individual and each
column to an attribute. According to the nature of attributes,
we may classify them into identifiers, quasi-identifiers or
confidential attributes. On the one hand, identifiers allow us

to unequivocally identify individuals. For example, it would
be the case of social security numbers or full names, which
would be removed before the publication of the microdata
set. On the other hand, key attributes are those attributes that,
in combination, may be linked with external information to
reidentify the individual to whom the records in themicrodata
set refers. Last but not least, confidential attributes contain
sensitive information about the individual, such as their health
condition, political affiliation, religion, or salary.

Before SDC was well-established, a common bad prac-
tice by data controllers was to eliminate all identifiers
appearing in microdata before its release. However, this is
totally insufficient to prevent re-identification or attribute-
disclosure attacks, as numerous privacy breaches (e.g.,
Netflix prize [17], Sweeney’s attack in 1997 [18]) have
unfortunately shown us.

The bulk of the work done in SDC investigates the
case of single data release, i.e., the publication of a single
anonymized dataset. Several notions have been proposed for
this case. By far, the most popular is k-anonymity [7], which
is the requirement that each tuple of quasi-identifier values
be shared by at least k records in the database. To satisfy
this requirement, quasi-identifier values are altered via gen-
eralization and suppression, two perturbation mechanisms by
which those values are respectively coarsened and eliminated.
As a result of applying these methods, all quasi-identifier
values within each group are replaced by a common tuple, and
thus a record cannot be unambiguously linked to any public
database containing identifiers. Consequently, k-anonymity
is said to protect microdata against linking attacks.

B. SYNTACTIC AND SEMANTIC PRIVACY
With the appearance of new attacks, several alternative pri-
vacy notions were developed following an entirely different
approach. They can be broadly classified as syntactic and
semantic notions (or noise methods) [6].

Syntactic security derives from the imposition of a certain
structure on the published, protected dataset. Examples
include k-anonymity [7], l-diversity [8], [19] and t-close-
ness [9]. Semantic notions, on the other hand, enforce some
property on the anonymization algorithm. The best-known
semantic notion is ε-DP [3], [14], [20], which guarantees the
presence or absence of any single record within a dataset will
not be noticeable up to an exponential factor of ε. Although
DP can take advantage of a composition property to preserve
(to a limited extent) the privacy guarantee after repeated data
releases, it is at the cost of a significant degradation in data
utility [21], [22], an effect that is even exacerbated if one
wishes to publish changing microdata multiple times (also
known as the non-interactive setting of DP). This important
limitation is typically addressed with unreasonably large
values of ε, which unfortunately vanishes any expectation of
privacy for data subjects [5], [23].
To the best of our knowledge, the DP-based proposals [24],

[25] that consider the publication of the dataset in a dynamic
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scenario, are limited to data streams. Even in this case, DP has
difficulties in preventing information leakage [26]. No clear
DP-based method exists for the scenario of continuous data
publishing. Since the use of DP has not been developed
for continuous data publishing, we focus our attention on
the existing literature on syntactic privacy with the aim of
facilitating in a unified way the work that has already been
done.

On the other hand, although it is not explicitly stated,
syntactic approaches assume quasi-identifiers are the main
target to be attacked and consequently aim to modify the
values of those attributes while keeping the sensitive ones
unmodified. Furthermore, in contrast to ϵ-DP (which does
not make any assumption on the attacker’s background
knowledge), syntactic models are regarded as rigid in their
assumptions of knowledge available to intruders. While
this is what allows clear proofs and guarantees in terms
of the privacy offered, it is not always clear if such
assumptions are reasonable in real practice [4]. For a detailed,
complete explanation on the subject, the reader is referred
to [2].

C. DATA-PUBLISHING SCENARIOS
Although the focus of this work is continuous data publishing,
it is important to recall which other scenarios concerning
dynamic-database publishing have been studied with syntac-
tic privacy protection [12]:

• Multiple data release. Several views of the same
underlying dataset are published simultaneously, i.e.,
publications with all tuples but only a subset of their
attributes. This can be useful when several institutions
demand different information from the same dataset and
the publication of the whole dataset is not necessary.

• Sequential data release. Views of a dataset are sequen-
tially published. This case can be considered when the
underlying dataset is being completed as publications
are made. In most publications, the number of tuples
is assumed to be fixed, with two notable excep-
tions [12], [13] that consider an increasing number of
tuples.

• Continuous data publishing. Publications of a dataset
that is updated in between releases. The dataset changes
via insertions, deletions, reinsertions, and updates of
tuples. The set of attributes is fixed.

D. METHODOLOGY
Our taxonomy of the literature was conducted based on the
methodology of [27] to find relevant papers in continuous
data publishing. Our objective was to find the bulk of
publications done in continuous data publishing with a
focus on syntactic privacy guarantees and algorithms. In one
question, ‘‘What is the state of the art in syntactic data privacy
for dynamic datasets with continuous data releases?’’.

To this end, a search was carried out on Google Scholar,
IEEE xplorer, ACM Library and the Digital Bibliography &
Library Project (DBLP) which yield hundreds of publications

from 2006 to 2021. Publications were excluded if: the
publication did not reach peer-reviewer quality; the dataset
studied was not a table (graph, queries, counts, etc); the
dataset was not dynamic; the paper was a partial work of
a more complete publication; the privacy was not attained
using syntactic security (differential privacy, etc); not enough
detail/high level explanations/ not significant results; and the
publication was not in English. Once the corpus was filtered
out, a final set of 37 publications was considered for this
work.

III. NOTATION AND KEY CONCEPTS
Numerous definitions of key concepts in the field have been
proposed independently multiple times, often with identical
meanings but different names or identical names but different
meanings. One of the aims of this work is to harmonize not
only nomenclature but also notation. To this end, this section
begins by defining key notation and concepts, which will be
complemented later on in Sec. IV with additional definitions
to complete missing information and unify the work done in
the literature. This section, therefore, lays the foundation for
the rest of our contributions.

A. NOTATION
The following is a complete notation set for the problem
of continuous data publishing. Henceforth, the phrase ‘‘the
dataset’’ will refer to the underlying dataset that is constantly
updated and needs to be protected.

• t: tuple, i.e., a finite list of quasi identifiers and sensitive
attributes.

• p: user. A source that generates tuples.We identify a user
with its tuple when it does not leave space for error, but
a user can have different tuples associated with it.

• t∗: anonymized tuple. If the anonymization is achieved
through generalization, we shall refer to the anonymized
tuple as the generalized tuple.

• TS: Timestamp of a tuple. The moment in time when it
was released.

• ID: identifier. Each user has a unique identifier.
• QI: quasi identifiers.
• sd: sensitive attribute(s).
• Lifespan [x,y] of t: (maximal) interval of time where the
tuple is in the underlying dataset. Note that a tuple can
have several lifespans. For example, if tuple t is in the
dataset in time instants 1,2,4,5 and 6, it has lifespans
[1,2] and [4,6].

• L: life of a tuple, i.e., set of lifespans.
• Ti: dataset at time i.
• Qi: Class. A class is a subset of tuples of a dataset
satisfying some relation.

• T = {Q1, . . . ,Qm}: disjoint classes of T . Two elements
are in the same class if they have the same QI
(generalization) or share SD class (anatomization).

• T = {T1, . . . ,Tn}: historic values of the dataset, i.e,. the
different values it has taken over time.
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• g1, . . . ,gl : repetition subsets of a class Q, i.e., partition
of the class into sets, each one containing tuples with a
common sensitive attribute.

• TTR: dataset of all tuples at each time (with possible
repetitions).

• T ∗

i : anonymized release of Ti.
• T∗

= {T ∗

1 , . . . ,T ∗
n }: historic values of the anonymized

dataset.
• TT ∗

R : dataset of all published tuples (with possible
repetitions).

• SD(T ) = {sd1, . . . ,sdl}: set of sensitive attributes of
tuples in T (without repetition).

• SDR(X ): multiset of sensitive attributes of tuples in X
(with repetition).

• t∗1 ∼ t∗2 : relation of agreement, i.e., they could represent
the same user.

• p≈ t∗: t∗ is a tuple that represents p in the database.
• t∗1 ≈ t∗2 : t

∗

1 and t∗2 represents the same user.
• C(t,Ti): set of tuples in Ti that agree with t.
• Q(t,T ∗): class that contains t in T ∗.
• t[A]: attribute A of tuple t .
• AK : attacker knowledge.

B. KEY CONCEPTS
Next, we define key concepts commonly used in the
literature. In general, we shall assume that privacy notions
come with some guarantee of privacy that will be of interest
to justify their application.
Definition 1: We call T ∗ anonymized dataset of some

dataset T to a dataset derived from T which satisfies
some form of privacy while keeping some of its utility.
We call historic values T = {T1, . . . ,Tn} to the set formed
of the different versions of a dataset and the historic
anonymizations T∗

= {T ∗

1 , . . . ,T ∗
n } to the set of anonymized

datasets of the elements in T.
Definition 2 (Privacy Breach): the sensitive informa-

tion of at least one tuple in the dataset has been
revealed.

1) RANDOM WORLD ASSUMPTION
The random world assumption [28] is stated or implicitly
assumed in several papers analyzed in this work. For the sake
of completeness, we provide a brief explanation of what this
assumption implies.
Definition 3: The (Naive) Random World Assumption

states the following: the probability that an answer to a
question is the correct solution is equal to 1/mwhere m is the
number of reasonable answers. ‘‘Reasonable’’ signifies that
a world where such an answer was correct would not cause
any contradiction with our knowledge.
Definition 4: The (Smart) Random World Assumption

states the following: the probability that an answer a
to a question is the correct solution cs is equal to
P(cs = a|AK ), where AK is our knowledge. In other
words, the likeliness of an answer is conditioned by our
knowledge.

The following example illustrates the two concepts.
Example 1: Suppose that a coin is tossed. The Naive

Random World assumption states that two new worlds are
possible, one where the coin shows tails and another where
the coin shows heads, and that each one of them is equally
possible. Additionally, it states that we do not consider worlds
where the coin stays floating in the air since it contradicts
our logic and knowledge of the world. The Smart Random
World assumption agrees with the naive one if we do not have
knowledge about the coin. However, if we know that 7 out
of 10 times the coin shows heads, then it suggests that the
probability of being in the world where the coin shows heads
is 0.7 and not 0.5 as in the previous case.

In most works, the Random World assumption, regardless
of whether naive or smart, is employed to justify the definition
of privacy risk being used. In the sequel, we elaborate on the
privacy risks typically considered in the literature.

2) RISK
Not entirely surprising, the concept of privacy risk can
change depending on the type of dataset and adversary. Next,
we provide definitions of risk that will be central to our
taxonomy of privacy notions.
Definition 5 (Generic Risk): Let T be the historic values

of a dynamic dataset, T∗ the historic anonymized releases,
and AK the adversary knowledge. Let p be a user that
participates in T. We define the risk of p at timestamp ts,
risk(p, ts) as the probability to link correctly the user with
the sensitive attribute of their associated tuple at timestamp
ts knowing AK.

Notice from the previous definition that the value of
risk(p, ts) will depend on the probabilistic framework consid-
ered, i.e., how the adversary knowledge affects the probability
of linkage.
Definition 6 (Re-publishing Risk): Let T be the historic

values of a dynamic dataset and T∗ be the historic anony-
mized releases with |T∗

| = n. We define the re-publishing risk
of a user p as

risk(p) = max
1≤j≤n

risk(p, j).

A definition of privacy risk based on Random World
assumption follows.
Definition 7: Let T be the historic values of a dynamic

dataset and T∗ the historic anonymized releases. We define
the ‘‘risk 0’’ of a user p as

risk0(p) =
nc
ntotal

,

where nc is the number of possible T that could derive T∗

and assign correctly p to its sensitive attribute; and ntotal is
the total number of possible T that could have generated T∗.
The previous definition states that the probability of some

linkage is equal to reconstructing T in such a way that
we ‘‘casually’’ link correctly user with sensitive attribute.
Observe that the concept of ‘‘risk 0’’ is coherent only if we
assume the Naive Random World assumption.
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Nowwe give a definition of risk for fully dynamic datasets.
A dataset, or more specifically, a microdata, is fully dynamic
if, in between releases, records can be inserted, deleted,
reinserted, and updated. A more detailed discussion of fully
dynamic datasets can be found in Sec. IV.
Definition 8: Let T be the historic values of a fully

dynamic dataset and T∗ be the historic anonymized releases.
We define the ‘‘risk 1’’ of a user p at timestamp ts as

risk1(p,sd,ts) = max
1≤j≤ts

nc(p, j)
ntotal(p, j)

,

where nc(p, j) is the number of T′ that could have generated
T∗ that assign to tuple p at timestamp ts the sensitive
attribute sd and ntotal the total number of T′ that could have
generated T∗.
Like in the previous case, this definition assumes that

all possible tables that can derive T∗ are equally likely,
and consequently, the adversary will take one such table
randomly, which reduces the risk to a problem of luck.

IV. A TAXONOMY OF ANONYMIZATION TECHNOLOGY
This section presents the main contribution of this work,
a taxonomy of the most important ingredients in continuous
data publishing, including datasets, attackers and attacks,
metrics of utility, notions of privacy, and their guarantees.
In our systematic analysis of the most relevant contributions
in this area, we shall also survey the state of the art in
anonymization algorithms and introduce novel definitions of
those ingredients to unify the work done in the literature. This
section is organized as follows: Sec. IV-A focuses on datasets
and adversary models; Sec. IV-B on attacks; Sec. IV-C on
privacy notions; Sec. IV-D on anonymization algorithms; and
Sec. IV-E on utility metrics.

A. DATASETS AND ADVERSARY MODEL
Relying upon the classification of [29], we begin defining
which dataset types are considered in the literature. After-
wards, we define the attackers that have been used more
frequently in the field, which, as far as we know, has not been
done before.

1) DATASETS
Most progress made in SDC has only considered static
datasets, but nowadays the capacity to handle dynamic
datasets is crucial for several purposes. To create a well-suited
algorithm for a concrete dataset, a clear understanding of
what can happen and what cannot in a dataset must be known.
Next, we provide a classification of datasets based on their
update capacity. This classification was originally presented
in [29].
Static: the static datasets are the ones considered in the

single release model where only one anonymized dataset
is published; incremental: only new records are added
(see Fig. 2); external dynamic: additions and deletions are

TABLE 1. Table of possible databases.

considered.2 (see Fig. 1); fully dynamic: the most general
model where all editions can be done, from updating sensitive
data to deleting and reinserting a tuple. This model does
not allow horizontal updates, i.e., increasing the number of
attributes of the tuples (see Fig. 4).

2) ADVERSARIES
Due to the lack of common notation for attackers, it is difficult
to know against which knowledge an algorithm can protect.
Next, we present a novel classification of attackers.

Table 2 shows the different attackers and their knowledge.
Singular means of only one user; bounded, less than a
constant number; and P. bounded, upper bounded by a
constant probability. Each field (i.e., column) of the table
corresponds with: participants: users in the dataset; Temporal
K.: knowledge of the insertions, deletions, and reinsertions.
The knowledge can be total if all changes are known,
or bounded if it is limited to a certain number of tuples.
S.D.K (Sensitive data Knowledge): knowledge of the sensitive
values of some users; S.B.K. (Sensitive Background Knowl-
edge): knowledge of the correlation between QI and SDs;
C.B.K (Correlation Background Knowledge): knowledge of
the correlation between a sensitive attribute and its possible
updates.

In this table and throughout this work, we assume any
adversary knows:

• The algorithm used to anonymize the dataset.3

• The dimensions of the dataset, i.e., the number of
columns and the attributes that appear.

• The internal hierarchy of each attribute, i.e., the structure
that underlies each attribute.4

In some circumstances, adversaries can have knowledge
of the updates of sensitive attributes, which may cause some
corner cases that generate vulnerabilities. We say that an
adversary is aware if it has such knowledge.

Among all cases identified in Table 2, minimal and
trivial adversaries represent a powerless type of attacker that
endeavors to acquire information with almost no previous
knowledge. In most cases, the static privacy notions are good
enough to stop their attack.

Incomplete, target, limited, and complete adversaries
represent a more organized menace. Since they can track the

2It is important to notice that this model is not suitable to update tuples
via deletion and the addition of the updated version since this can cause
information leakages derived from the model assumption that each addition
corresponds to a new user.

3We do not consider security through obscurity.
4The hierarchy normally indicates specificity. For example, illness is less

specific than stomach illness, which is less specific than gastritis. This
relation of specificity defines a rooted graph or hierarchy.
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TABLE 2. Table of adversaries and their knowledge.

participants in the dataset and their QI, they can associate
to each participant a subset of tuples and, accordingly, can
make reasonable guesses on the SD of the participants. Static
privacy notions cannot stop their possible attacks, nor can
stronger ones.

Unlike the previous attackers, an interior adversary has
partial knowledge of the sensitive information in the dataset.
They can cause a cascade effect by acquiring several chunks
of information. In general, a defense against them is unlikely
unless some bound is assumed in the amount of sensitive
information they have.

Finally, the probabilistic attacker utilizes statistical knowl-
edge to train a classifier and thus deduce with high probability
the sensitive information of the participant tuples. Their
capacity includes all the possible attacks of complete or
weaker attackers. Furthermore, they can mimic an interior
attack using probabilistic assumptions, i.e., assuming the
values of some attributes with high probability.

3) SUBTLETIES OF DATASETS
It is important to know the particular behaviour of the dataset,
not only from its updateability but also from how the tuples
may change.
Definition 9 ([30], [31]): A dataset has arbitrary updates

if there is no correlation between previous values and new
values of the attributes. In other words, the update of some
attribute of a tuple is an event of a random distribution which
does not depend on the previous attribute value.

In general, a fully dynamic dataset with arbitrary updates
can be protected with mechanisms from a dynamic dataset
since an updated tuple cannot be distinguished from a new
one; see [31] for further discussions.
Definition 10 [32]: An attribute value is permanent if a

tuple with that particular value in that attribute cannot be
updated to any other value for that attribute. If an attribute is
not permanent, it is transient.
Examples of permanent values are ‘‘deceased’’ for medical
records or the date of birth.

Another factor to keep in mind is the size of the update.
If only one tuple is added to a dataset, it is very likely that
a weakness emerges from the similarity of the two releases.
In general, we assume that the updates are big enough to avoid
such problems unless the method used already prevents such
weaknesses. Consider, for example, a complete attacker. If an
update of the dataset only consists of the addition of a tuple,

he can easily deduce which tuple is new and, from it, deduce
their sensitive attribute.

4) SUBTLETIES OF ATTACKERS
Other weaker forms of knowledge from the dataset are
possible; since most works in the literature do not tackle this,
we give a brief commentary on some of them.
Definition 11 ([30], [31]): An adversary A is aware if

it knows when tuples attributes change (not necessarily
knowing the value).

In general, updates in QI are an extra difficulty for
attackers, and updates in SD are source of weaknesses.
An aware attacker has the capacity to derive consequences
from those updates.

For example, an attacker knows that a tuple is updated
in some attribute. In the previous release, the QI class that
contained such a tuple had sensitive attributes FLU,CANCER
I and the new one has GASTRITIS,CANCER II. The attacker
could consider an update from CANCER I to CANCER II.
Definition 12: If an aware attacker knows which value has

updated the attribute (if it was known in the previous release),
it is an up-to-date attacker.

If an attacker is up-to-date, even if quasi identifiers change
dramatically, they can still relate tuples to users.

B. ATTACKS
For the different combinations of datasets and attackers,
several attacks are possible. In this subsection, we elaborate
on them. Table 3 provides a summary of our analysis.Attacker
indicates which knowledge is necessary to feasibly perform
such an attack, and achievement refers to the final objective
of the attack.

We start with attacks derived from the insertion of new
tuples. These attacks exploit weaknesses that can appear in
increasing, external dynamic and fully dynamic databases.

1) INTERSECTION ATTACK
This attack derives from the knowledge of which datasets
contain a particular user and the capacity to partially identify
that user.
Example 2: Let Fig. 1(a) and Fig. 1(c) be two instances of

an increasing database, and 1(b) and 1(d) be their 2-diversed
versions. A curator may believe that 2-diversity provides
satisfactory protection. However, if an adversary is aware
of the quasi identifiers of user 1 and their participation in
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TABLE 3. Main attacks in continuous data publishing.

TABLE 4. Combinations where intersection attacks may happen.

FIGURE 1. Historic values and 2-diverse publications of an external
dynamic dataset at different timestamps. Example of intersection attack
and critical addition/deletion.

the database, they can infer from Table 1(b) that the user
has HIV or flu, and from Table 1(d) that they have either
HIV or acne. Therefore, it can be concluded that user 1 has
HIV.
Definition 13: Let A be an attacker, and T = {T1,T2, . . . ,

Tn}, T∗
={T ∗

1 ,T ∗

2 ,. . .,T ∗
n} be the historic values of a database

and their respective anonymizations. An intersection attack
proceeds as follows: Let p be a user with known QI.

• For each T ∗

i ∈ T∗, use the QI’s of p to compute Ci =

C(p,T ∗

i ), that is, the set of tuples that could belong to
him/her.

• For each maximal interval [x,y] where p has
not changed their sensitive attribute, compute the
intersection

y⋂
i=x∧Ci ̸=∅

SD(Ci),

where SD(C) denotes the subset of sensitive attributes
of C. Then, the sensitive attribute of p is in that
intersection.

2) CORRESPONDENCE ATTACK

TABLE 5. Combinations where correspondence attack may happen.

From temporal knowledge, three possible attacks emerge:
forward-attack, cross-attack and backward-attack. They were
formalized in [33] and the first example appears in [11]. The
following examples and tables are from [33].
The main weakness is the fact that for each pair of releases,

the records can appear or not in each release. See Table 6 for
clarification.

TABLE 6. Types of correspondence attacks.

a: FORWARD-ATTACK
The attack focuses on reducing the candidate tuples for a
particular user. By using the information derived from two
consecutive releases, knowing that the target user tuple was
in two consecutive releases.
Example 3: Suppose that an adversary studies a user,

Alice, with QI = [France,Lawyer] and knows that she
was in Table 2(b) and 2(d) (see Fig. 2) which satisfy
5-anonymity. Since there are only two tuples in Table 2(d)
with [France, PROF., FLU], one of the records 1,2,3 of
Table 2(b) cannot belong to Alice; otherwise, the three of
them would be of the form [France, Lawyer, Flu]. With
this, we have compromised the 5-anonymity of Alice in
Table 2(b).
Definition 14 [33]: Let A be an attacker and T =

{T1,T2, . . . ,Tn}, T∗
= {T ∗

1 ,T ∗

2 , . . . ,T ∗
n } be the historic values

of a database and their respective anonymized versions.
A forward-attack proceeds as follows:
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FIGURE 2. Historic values and 5-anonymous publications of an
incremental dataset. Example of Forward, Cross and Backward-attack.

Let p be a user with known QI.
• For each lifespan [x,y] of p where it does not change
their sensitive attribute, consider each pair T ∗

i ,T ∗

i+1 with
i ∈ [x,y−1] and:

- - Compute the set Ci = C(p,T ∗

i )
- - Compute the set of tuples in T ∗

i+1 that agree with
the ones in Ci and with the QI of p. The tuple of p is
among them.

b: CROSS ATTACK
The attack focuses on reducing the candidate tuples for
a particular user using the information derived from two
consecutive releases, knowing that the target user tuple was
in both releases.
Example 4: Let Alice be a user with QI [France,Lawyer]

that appears in Tables 2(b) and 2(d) (see Fig. 2) which satisfy
5-anonymity. From records 4,5,6 in Table 2(d) it can be
deduced that at least one was not in Table 2(b) since only two
cases of HIV were published. From here, it is clear that one
of those registers does not belong to Alice, thereby breaking
5-anonymity.
Definition 15: Let A be an attacker, and T = {T1,T2, . . . ,

Tn}, T∗
= {T ∗

1 ,T ∗

2 , . . . ,T ∗
n } be the historic values of a

database and their respective anonymizations. A cross-attack
proceeds as follows:
Let p be a user with known QI.

• For each lifespan [x,y] of p where p does not change
their sensitive attribute, consider each pair T ∗

i ,T ∗

i+1 with
i ∈ [x,y−1] and:

- - Compute the set Ci+1 = C(p,T ∗

i+1)
- - Compute the set of tuples in T ∗

i that agree with the
ones in Ci and with the QI of p. The tuple of p is
among them.

c: BACKWARD ATTACK
The attack focuses on reducing the candidate tuples for
a particular user using the information derived from two

consecutive releases, knowing that the target user tuple was
in the latter but not in the former release.
Example 5: Let Alice be a user with QI [UK,Lawyer]

which appears in Table 2(d) but not in 2(b) (see Fig. 2) which
satisfy 5-anonymity. From records 1,2,3 of Table 2(d) it is
clear that at least one cannot be Alice. Otherwise, at least one
of the records 1,2,3 in Table 2(b) would not have an instance
in Table 2(d).
Definition 16: Let A be an attacker, and T = {T1,T2, . . . ,

Tn}, T∗
= {T ∗

1 ,T ∗

2 , . . . ,T ∗
n } be the historic values of a

database and their respective anonymizations. A backward-
attack proceeds as follows:
Let p be a user with known QI.
• For each lifespan [x,y] of p where p does not change
their sensitive attribute, consider the pair T ∗

x−1,T
∗
x :

- - Compute the set Cx = C(p,T ∗
x )

- - Compute the set X of tuples in T ∗
x that represent

some user of T ∗

x−1. The tuple of p is in Cx \X.

3) CRITICAL ABSENCE/ADDITION
Critical absence is a phenomenon originally presented in [34]
that occurs when an uncommon tuple is removed from the
dataset. If the anonymization method does not take into
account the rarity of such tuples, their absence can be
notorious to attackers with temporal knowledge. Similarly,
critical addition occurs when a new tuple with a new sensitive
attribute value (i.e., not observed in the database previously)
is added; this phenomenon is a particular case of a backward
attack.

TABLE 7. Combinations where critical absence may happen.

TABLE 8. Combinations where critical addition may happen.

Example 6: Let Tables 1(a),1(c),1(e) (see Fig. 1) be the
historic values of a dataset, and Tables 1(b),1(d),1(f) (see
Fig. 1) be their anonymizations. If an adversary has temporal
knowledge of user 4, they can learn that that user participated
in Table 1(d) but not in 1(f). Since the value COUGH does
not appear in Table 1(f) the adversary can link it to user 3.
Similarly, user 5 can be linked to HIV (critical addition).
Definition 17: Let A be an attacker, and T = {T1,T2, . . . ,

Tn}, T∗
= {T ∗

1 ,T ∗

2 , . . . ,T ∗
n } be the historic values of a

database and their respective anonymizations. A critical
absence/addition attack proceeds as follows:
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For each pair Ti,Ti+1 where deletions/additions are made:
• Compare the quantities of each sensitive attribute in T ∗

i
and T ∗

i+1.
- - Each sensitive attribute that has been reduced in

quantity must belong to some user deleted from the
dataset. (critical absence) (if no sensitive updates)

- - Each sensitive attribute that has increased in
quantity must belong to a new or reinserted user.
(critical addition) (if no sensitive updates)

In combination with the intersection attack, it is called the
join attack [38].

4) EQUIVALENCE ATTACK
The authors of [35] present value-equivalence attacks. Instead
of searching for data leaks, the value-equivalence attack tries
to relate the sensitive attributes of users. In other words, it tries
to find two disjoint subsets of tuples with common sensitive
attributes.

TABLE 9. Combinations where equivalence attacks may happen.

FIGURE 3. Historic values and 2-diverse publications of an external
dynamic dataset. Example of equivalence attack.

Example 7: Let Tables 3(a) and 3(c) be the historic values
and Tables 3(b) and 3(d) be their anonymizations (see Fig. 3).
Observe that users 1 and 3 are in the same class in the first
release (Table 3(b). Since users 3 and 5 are in the same class
in the second release (Table 3(d), from the fact that in both
releases the sensitive attributes were FLU and ACNE, we
deduce that users 1 and 5 have the same sensitive attribute.
Definition 18 [35]: Let TTR be the list of historic tuples,

TT ∗

R the list of anonymized tuples historic values of a
database, and T = {T ∗

1 , . . . ,T ∗
n } the anonymized releases.

We say that there is an e-value equivalence attack if an
adversary can find P1 and P2 two sets of tuples such that:

• P1 ∩P2 = ∅ and P1,P2 ⊂ TT ∗

R .
• ∀t1, t2 ∈ P1 ∪P2, t1 ̸≈ t2.
• |P1| = |P2| = e
• SDR(P1) = SDR(P2).
Example 8: From Tables 3(b) and 3(f) (see Fig. 3) with

quasi identifiers and temporal knowledge, it can be seen that
P1 = {1,3} and P2 = {5,6} have the same sensitive attributes,
namely {FLU ,ACNE}. This implies that there exists a 2-value
equivalence attack.
Definition 19 [35]: Let TT ∗

R be the list of all published
tuples, and let {P1, . . . ,PN } be a partition of TT ∗

R , U (T∗) =

{p1, . . . ,pn} be the users in T∗ and SD(TT ∗

R ) = {sd1, . . .sdl}
the sensitive attributes in TT ∗

R . We define:
• Sk = [s1, . . . ,sn] as the vector with si = 1 if pi is in Pk
and zero otherwise.

• The person matrix S =

S1...
Sn

.
• Uk = [u1, . . . ,um] as the vector with value ui the number
of occurrences of sdi in Pk .

• The value matrix U =

U1
...

Un

.
Definition 20 [35]: Let TT ∗

R be a database of historic
releases, S be its person matrix, and U its value matrix.
We say that W = [w1, . . . ,wn] is an instance of an
e-equivalence attack if

• W ̸= 0⃗
• e=

||W ·S||1
2 ̸= 0

• W ·U = 0⃗
• W ·S ∈ Zn

Furthermore, if ||W ·S||1
2 is minimal among all instances of an

equivalence attack, we say that it is a minimum equivalence
attack.
Example 9: Consider Tables 3(b) and 3(d) (see Fig. 3) it

has person matrix

S =


1 0 1 0 0
0 1 0 1 0
1 0 0 1 0
0 0 1 0 1

 ,

with partitions P1 = {1,3},P2 = {2,4} in Table 3(b) and
P3 = {1,4},P4 = {3,5} in Table 3(b) which are the classes
of each release. Each si,k has value 1 if tuple/user k appears
in partition Pi and 0 otherwise. The user matrix has value

U =


1 1 0
1 0 1
1 0 1
1 1 0

 ,

where ui,1 has the number of instances of FLU in Pi,
ui,2 the number of instances of ACNE in Pi and ui,3 the
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number of instances of HIV in Pi. Examples of instances
of an e-equivalence attack are W1 = (1,0,0,−1) and W2 =

(0,1,−1,0). Checking each condition, we have:
• W1,W2 ̸= 0.
• e=

||W1·S||1
2 =

||W2·S||1
2 = 1 ̸= 0.

• W1 ·S = (1,0,0,0,−1) ∈ Z5,W2 ·S = (−1,1,0,0,0) ∈

Z5.
The pair of multisets related to the equivalence attack can be
extracted from the value W ·S = (ws1, . . . ,wsn). One multiset
is the i’s tuples with wsi = 1 and the other is the i’s tuples with
wsi = −1. In the cases of our examples, we deduce that tuples
1 and 5 have common sensitive attribute and that tuples 1 and
2 also have common sensitive attribute.

5) INTERIOR ATTACK
Daniele et. al. [36] present interior attacks. An attacker
knows the sensitive attributes of some users and wants to
extract more using them. This attack can be done using
the equivalence attack in combination with known sensitive
attributes. It can also be done probabilistically, i.e., assuming
with high probability the sensitive attributes of some tuples.

TABLE 10. Combinations where interior attacks may happen (p
probabilistic).

In general, knowledge of sensitive values can be used to
attack a dataset by studying its historical correlations.
Definition 21 ( [36] (Historical correlation)): Let T ∗

i ,

T ∗

j ∈ T∗ with i ̸= j be two releases, Q1 ∈ T ∗

i ,Q2 ∈ T ∗

j be two
classes with SDR(Q1) = SDR(Q2) and U1,U2 ⊂ U (TTR) are
two sets of users. We say that U1 and U2 are in historical
correlation if

• U1 ⊂ U (Q1).
• U2 ⊂ U (Q2).
• U (Q1)\U1 = U (Q2)\U2.
• The attributes of the users U (Q1∪Q2) have not changed
in the interval [i, j].

Theorem 1 [36]: If two sets of users U1,U2 are in
historical correlation, then SDR(U1) = SDR(U2).
Definition 22: An interior attack exploits the knowledge

of the sensitive attributes of some compromised tuples via
equivalence attacks, a study of historic correlation or some
other method to obtain sensitive information from users.

6) PROBABILISTIC ATTACKS

TABLE 11. Combinations where probabilistic background knowledge
attacks may happen (p probabilistic).

The Probabilistic Background Knowledge attack (PBK)
consists of using probabilistic knowledge of the data to be

able to guarantee that a tuple has a certain sensitive attribute
with some probability p. If an adversary can do that, we
say that it has done a p-value association attack. This kind
of attacks are strongly based on the Smart Random World
Assumption since they use their knowledge to decide which
raw dataset is more likely. The main work on this subject for
continuous data release is done in [37].

C. PRIVACY NOTIONS
Now that we have seen the principal attacks that can be
presented in the continuous data release, the next step is
to show in which cases a method of protection is known.
Although there are several methods to protect data privacy,
in most of them there are not clear results that show the
guarantee of privacy that they provide [42], [43], [44].
We present here the ones with a clear guarantee. Table 12
summarizes the different notions.

Tables 14,15 or completely solved in the literature. If some
case is not always achievable, it is because some property
of the dataset is assumed. For the definitions of risk, see
Sec. III-B2.

1) BCF-ANONYMITY
A method to protect against Backward, Cross and Forward
attacks [33] is presented. This method is limited to incremen-
tal datasets. All of the attacks mentioned try to discard tuples
among the candidate set of a particular user. Such tuples are
called cracked tuples.
Definition 23 (Repetition Subset): We call repetition sub-

set to the subsets g1, . . . ,gn of the class Q1 ∈ T ∗

1 satisfying

• gi∩gj = ∅ for all i ̸= j.
• |SD(gi)| = 1.
•

⋃n
i=1 gi = Q1.

First, we define cracked tuples for Forward attacks.
Definition 24 [33]: (FA, crack size) Let p be a user that

appears in T ∗

1 ,T ∗

2 . Let Q1 ∈ T ∗

1 and Q2 ∈ T ∗

2 be the classes
where the tuple of p appears. Let g1, . . . ,gn be repetition
subsets of Q1 where gi is the set of tuples with the i-th sensitive
attribute in Q1. Then, gi has a crack size of c with respect to
p if c is the biggest integer such that at least c users in U (gi)
do not have the same quasi identifiers as p.

In other words, the crack size of a class with respect to p is
the number of tuples that we can guarantee that do not belong
to p because they must belong to another tuple with different
quasi identifiers.
Example 10: Consider the Fig. 2, a user A has quasi iden-

tifiers [FRANCE,LAWYER] and matches the classes Q1 =

[EUROPE,LAWYER] = {1,2,3,4,5} with g1 = {1,2,3} and
g2 = {4,5}, and Q2 = [FRANCE,PROF .] = {4,5,6,7,8}
with g′

1 = {4,5,6} and g′

2 = {7,8}. The set g1 has crack size
(at least) 1 with respect to A, because if all U (g1) had the
same quasi identifiers as A, then the second release would
have had at least three tuples of the form [FRANCE, PROF .,

FLU ].
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TABLE 12. Main privacy notions in continuous data publishing.

TABLE 13. Cases where some notion of risk is bounded for incremental
datasets. X ′ : not always achievable, Xa : includes aware adversaries.

TABLE 14. Cases where some notion of risk is bounded for dynamic
datasets. X ′ : not always achievable, Xa : includes aware adversaries.

TABLE 15. Cases where some notion of risk is bounded for fully dynamic
datasets. X ′ : not always achievable, Xa,u : includes aware adversaries
and assumes arbitrary updates.

Definition 25 ( [33] (F-anonymity)): Let F(p,Q1,Q2) be
the sum of the crack sizes of each gi of Q1 with respect to
p. Let F(Q1,Q2) be the maximum among all F(p,Q1,Q2),
with p a user that appears in Q1 and Q2. Let F(Q1) be
the maximum among all F(Q1,Q2), with Q2 a class in T2.
We define FA(T ∗

1 ,T ∗

2 ) (or FA) the F-anonymity of (T
∗

1 ,T ∗

2 ) as
the minimum value of (|Q1|−F(Q1)) among all Q1 in T ∗

1 .
Now we state the theorem that computes the crack size.
Definition 26: We define CG(Q1,Q2) as the set of pairs

(gi,g′

j) ⊆ Q1 ×Q2 of repetitions subsets satisfying SD(gi) =

SD(g′

j).

Theorem 2 [33]: Let p be a user that participates in Q1 ∈

T ∗

1 andQ2 ∈ T ∗

2 . Let g1 ∈Q1 and g2 ∈Q2 be repetition subsets
such that SD(g1) = SD(g2), then:

• The crack size of g1 with respect to p is equal to |g1|−
min(|g1|, |g2|).

• F(Q1,Q2) =
∑

(gi,g′
j)∈CG(Q1,Q2) |gi|−min(|gi|, |g′

j|)
Corollary 1 [33]: The (FA) crack size of a repetition

subset is not dependent on the user.
Now we present the same work for Cross attacks.
Definition 27 [33]: (CA,crack size) Let p be a user that

participates in Q1 and Q2. A repetition group g2 ∈ Q2 has
crack size c with respect to p if c is maximal such that at least
c users in U (g2) do not coincide in quasi identifiers with p or
have different timestamps with respect to the releases T ∗

1 ,T ∗

2 .
Definition 28 [33]: (C-anonymity) Let C(p,Q1,Q2) be

the sum of the crack sizes of each gi of Q1 with respect to
p. Let C(Q1,Q2) be the maximum among all C(p,Q1,Q2),
with p a user that appears in Q1 and Q2. Let C(Q2) denote
the maximum C(Q1,Q2) among all Q2 classes in T ∗

2 . The
C-anonymity of (T ∗

1 ,T ∗

2 ) denoted by CA(T
∗

1 ,T ∗

2 ) or CA is the
minimum (|Q2|−C(Q2)) among all Q2 classes of T ∗

2 .
Theorem 3 [33]: Let p be a user that participates in Q1 ∈

T ∗

1 andQ2 ∈ T ∗

2 . Let g1 ∈Q1 and g2 ∈Q2 be repetition subsets
such that SD(g1) = SD(g2), then:

• The crack size of g2 with respect to p is equal to |g2|−
min(|g1|, |g2|).

• F(Q1,Q2) =
∑

(gi,g′
j)∈CG(Q1,Q2) |g

′

j|−min(|gi|, |g′

j|)
Corollary 2 [33]: The (CA) crack size of a repetition

subset is not dependent on the user.
We state a theorem that relates CA and FA.
Theorem 4 [33]: The values of FA and CA coincide, i.e.,

FA(T ∗

1 ,T ∗

2 ) = CA(T ∗

1 ,T ∗

2 ).
We now state now the definitions for Backward attacks.
Definition 29 [33]: Let p a user that participates in Q2.

A repetition subset g2 of Q2 has crack size c with respect to
p if c is maximal such that at least c records in U (g2) have
participated in T ∗

1 .
Definition 30 [33]: Let B(p,Q2) be the sum of the crack

sizes of all repetition subsets in Q2 with respect to P. Let
B(Q2) be the maximum B(p,Q2) among all p that appear in
Q2. The B-anonymity of (T ∗

1 ,T ∗

2 ) denoted by BA(T
∗

1 ,T ∗

2 ) or
BA is the minimum (|Q2|−B(Q2)) among all Q2 ∈ T ∗

2 .
Theorem 5 [33]: Let p be a user that appears in Q2 but

not in T ∗

1 . Let g2 be a repetition subset of Q2. Let G1 be the
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set of tuples in T ∗

1 that could belong to g2, and G2 be the set
of tuples t∗ in T ∗

2 that satisfy t
∗
∼ t ′∗ for some tuple t ′∗ in G1.

• If |G2| < |g2|, g2 has crack size 0 with respect to p.
• If |G2| ≥ |g2|, g2 has crack size c = max(0, |G1| −

(|G2|− |g2|))
• B(Q2) =

∑
gi∈Q2

cgi where cgi is the crack size of gi with
respect to any p.

Finally, we state BCF-anonymity.
Definition 31 [33]: Let T∗ be the historic values of an

anonymized increasing dataset. Then it is BCF-anonymous
with parameter k if BA,CA and FA are bigger or equal to k.
This condition guarantees that BCF attacks cannot reduce the
candidate tuples of any user to less than k .

TABLE 16. Cases where m-invariance (◦) or τ -safety (×) prevents attacks.

2) m-invariance AND τ -SAFETY
The notion of m-invariance [34] was proposed to prevent
intersection attacks for incremental and dynamic datasets;
τ -safety [30], [31] is an improvement that extends
m-invariance to fully dynamic datasets. Several implemen-
tations and variations for both notions exist [45], [46].
Definition 32: Let Qi be a class in T ∗

i for any i∈ [1,n]. The
signature of Qi is the set of sensitive attributes in Qi denoted
by SD(Qi).
Definition 33 [34]: (m-invariance) An anonymized table

T ∗
= {Q1, . . . ,Qk} is m-unique if each class in T ∗ contains

at least m tuples, and all tuples in the class have different
sensitive attributes.

T∗
= {T ∗

1 , . . . ,T ∗
n } is m-invariant if the following condi-

tions hold:
• T ∗

j is m-unique for all j ∈ [1,n].
• For any tuple t ∈ TT ∗

R with lifespan [x,y], it is satisfied
SD(Q(t,T ∗

i )) = SD(Q(t,T ∗

j )) for all i, j ∈ [x,y].
Clearly, m-uniqueness implies m-diversity. With that, it

follows that all releases satisfying m-invariance have the
privacy guarantees that m-diversity yields for any static
attack. Now we state definitions that will be used to prove
the privacy guarantee of m-invariance.
Definition 34 [34]: Consider T and T∗ of a dynamic

dataset. Let U∗ be the set of tuples in TT ∗

R restricted to
attributes TS,QI ,SD and B the set of tuples in TT ∗ restricted
to L,QI, without repetitions, i.e., only one tuple per user.
We define a rebuilding function f : U∗

→ B as an exhaustive
function that, for each f (t∗) = b, satisfies:

• User b[L] contains timestamp t∗[TS].
• Tuple t∗[QI ] generalizes b[QI ].
• User b appears in class Q(t∗,T ∗

t∗[TS]).

Observe how each rebuilding function defines a unique f −1

that represents a possible correspondence between tuples and
users, but not all rebuilding functions are feasible. That is why
we now define reasonable rebuilding functions.
Definition 35 [34]: A rebuilding function f as defined

in 34 is reasonable if it satisfies
• For all b ∈ B

- - SD(f −1(b)) has only one sensitive attribute.
- - For all x in some lifespan of b[L], there exists a tuple

t∗ ∈ f −1(b) with t∗[TS] = x.
• The correspondence derived from f −1 satisfies the
generalization principles assumed by T∗.

Now observe that for each reasonable f there exist a T and
T∗ such that f −1 sends each user to the tuples derived from
it.
Theorem 6 [34]: If a dynamic dataset satisfies

m-invariance, for any tuple p, not more than 1
m percent of

reasonable rebuilding functions send that tuple to the correct
sensitive attribute.

Proof: Let t be a user and b be their corresponding tuple
in B as defined in 34. Let f be any reasonable rebuilding
function, and let AQ(b, f ) be the set of classes of each T ∗

∈T∗

that contain at least a tuple in f −1(b).
We define a class over the set of all reasonable rebuilding

functions where two functions f ,g are in the same class
if and only if AQ(b, f ) = AQ(b,g). Let cnt(Fi,sd) denote
the number of surjections in the i-th class Fi such that the
sensitive value of t is assigned as sd .

Fromm-invariance it is deduced that all classes in AQ(b, f )
have the same signature. Let sd1, . . . ,sdx be that signature.
From m-invariance, x ≥ m.

Let f1 be a function that reconstructs the sensitive attribute
of t as sd1. We will construct a reasonable rebuilding function
f2 such that it reconstructs the sensitive attribute as sd2. Let
QI be a class with two tuples t∗1 , t∗2 such that t

∗

1 [SD]= sd1 and
t∗2 [SD] = sd2, then f2(t∗1 ) = f1(t∗2 ) and f2(t

∗

2 ) = f1(t∗1 ). For all
the other cases, f2(t∗) = f1(t∗). It is straightforward to check
that f2 ̸= f1 and that f2 is a reasonable rebuilding function.
Notice that AQ(b, f1) = AQ(b, f2), which implies f2 ∈ Fi.

From the construction of f2, we derive that cnt(Fi,sd1) ≤

cnt(Fi,sd2). Using the same argument with f2 and sd1 we have
(Fi,sd1) = (Fi,sd2). Again, using the same argument for all
sensitive attributes, we conclude (Fi,sd1) = (Fi,sd2) = . . . =

(Fi,sdx) =
|Fi|
x as claimed. □

Corollary 3 [34]: For any database and attacker combi-
nation in Table 16, if T∗ is m-invariant, then

risk0(p) ≤
1
m

for any user p. (as defined in Def 7)
Proof: Since risk(p) is the number of reasonable rebuilding

functions that send the tuples derived from p to the correct
sensitive attribute over all reasonable rebuilding functions,
from the proof of theorem 6 we have

risk0(p) =

∑nc
i=1 cnt(Fi, t[SD])

ntotal
≤

∑nc
i=1 |Fi|

m ·ntotal
=

1
m
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where nc is the number of classes, ntotal is the number of
reasonable rebuilding functions, and the inequality follows
from (Fi, t[SD]) =

|Fi|
x ≤

|Fi|
m . □

τ -safety generalizes m-invariance to fully dynamic data-
sets and aware adversaries. The main particularity is that it
assumes arbitrary updates, unlike m-invariance, and treats
sensitive attribute updates as new tuple insertions.
Definition 36 (τ -safety [30], [31]): T∗

= {T ∗

1 , . . . ,T ∗
n } is

τ -safety if it satisfies the following conditions:
• T ∗

j is m-unique for all j ∈ [1,n].
• For any tuple t ∈ TT ∗

R with lifespan [x,y], it is satisfied
SD(Q(t,T ∗

i )) = SD(Q(t,T ∗

j )) for i, j ∈ [x,y].
• For any tuple t with consecutive lifespans [x,y], [i, j] ∈

L(t) holds SD(Q(t,T ∗
x )) = SD(Q(t,T ∗

i )).
Theorem 7 ( [30], [31]): If a dataset satisfies τ -safety,

for any tuple p, not more than 1
m percent of reasonable

rebuildings of the dataset send that tuple to the correct
sensitive attribute at any timestamp.

Proof: Notice that the argument of the proof of
Theorem 6 can still be applied to the fully dynamic dataset if
we assume that a tuple that has updated the sensitive attribute
is a new tuple. This assumption can be made because we
consider only arbitrary updates. □
Corollary 4: For any T and any aware attacker combina-

tion in Table 16, if T ∗ is τ -safety, then

risk0(p) ≤
1
m

for any user p at any timestamp. (as defined in Def. 7
considering each tuple after a sensitive attribute update a new
user)

This definition of τ -safety can be slightly generalized with
the following version to not treat sensitive attribute updates
as new tuple reinsertions.
Definition 37 (τ -safety v2 [47]): T∗

= {T ∗

1 , . . . ,T ∗
n } is τ -

safety if it satisfies the following conditions:
• T ∗

j is m-unique for all j ∈ [1,n].
• For any tuple t ∈ TT ∗ with lifespan [x,y], it is satisfied

SD(Q(t,T ∗

i )) = SD(Q(t,T ∗

j ))

or

SD(Q(t,T ∗

i ))∩SD(Q(t,T
∗

j )) = ∅

for each i, j ∈ [x,y].
• For any tuple t with consecutive lifespans [x,y], [i, j] ∈

L(t) holds

SD(Q(t,T ∗

y )) = SD(Q(t,T ∗

i ))

or

SD(Q(t,T ∗

y ))∩SD(Q(t,T
∗

i )) = ∅.

Like m-invariance, τ -safety does not protect against
probabilistic attacks, that is, because the guarantee of both
methods relies on the quantity of possible reconstructions of
the dataset and not on their reasonability, i.e., it uses the Naive
Random World Assumption.

FIGURE 4. Historic values and 2-diverse publications of a dataset.
Example of probabilistic attack.

Example 11: Observe Fig. 4, the releases are τ -safe.
An aware adversary knows that tuple 4 was updated. Before
and after the update, the possible sensitive attributes of tuple
4 are FLU,HIV, and CROUP,AIDS respectively. It is more
likely that tuple 4 had HIV and evolved into AIDS than any
other combination. Such an attack on the sensitive attribute
of tuple 4 was not prevented with τ -safety since it assumed
an arbitrary update behaviour, which is not satisfied.

The only publication that addresses the attack shown in 11
is due to Amiri et. al. [37], and a general solution for such
attacks is still pending.

3) m-DISTINCT
The notion of m-Distinct [29], [40] appears as an improve-
ment in m-invariance. It studies how to provide protection
when the dataset is fully dynamic. When a tuple can be
updated, we assume that there is a certain pool of options
to which it can be updated; that set is called the Candidate
update set.
Definition 38 ([29] (Candidate Update Set)): Let a be a

particular value of an attribute A. We denote as CUS(a) the
set of possible values of attribute A to which a can be updated.
Definition 39 [29]: (Update Set Signature) Let Q be

a class in T that contains n records and SDR(Q) =

{sd1, . . . ,sdn}. Then we define the Update Set Signature
USS(Q) of Q as the multiset {CUS(sd1), . . . ,CUS(sdn)}
Definition 40 [29]: (Legal Update Instance) A set of

sensitive attributes S = {sd1, . . . ,sdn} is a legal update
instance of a USS(Q) of some Q if:

• |S| = |USS(Q)|.
• For all sd ∈ S, there exists some CUS ∈ USS(Q) such
that sd ∈ CUS.

• For all CUS ∈USS(Q) there exists sd ∈ S such that sd ∈

CUS.
We finally state the definition of m-Distinct.
Definition 41 [29]: (m-Distinct) Let T ∗ be the historic

releases of a fully dynamic dataset. T ∗ is m-Distinct if:
• For all i ∈ [1,n], T ∗

i is m-unique.
• Let t ∈ Ti ∩ Tj for some i, j ∈ [1,n] with i < j and t∗i
its anonymized version in T ∗

i , then for all i ∈ [1,n],
SDR(Q(t∗,T ∗

i )) is a legal update instance of USS(ti)
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The capacity of m-Distinct can be slightly improved with
the following version.
Definition 42 [29]: (m-Distinct’) Let T ∗ be the historic

releases of a fully dynamic dataset. T ∗ is m-Distinct’ if:
• It is m-Distinct.
• For any user that appears for the first time as a tuple t∗

in T ∗, for all pairs CUSi,CUSj ∈USS(t∗), holds CUSi∩
CUSj = ∅.

This notion guarantees the following notion of security.
Theorem 8 [29]: If a historic release of a fully dynamic

dataset is m-Distinct’ then the republication risk satisfies
risk(p) ≤ 1/m for all users p.
The main limitation of this method is that the second

condition of m-Distinct’ cannot always be satisfied.

4) Pvr-safety
The notion of ct-pvr-safety (compromised tuple-value restric-
tion) [36] appears to give protection under the assumption
that some tuples have been compromised, for example, if the
attacker appears in the database or some information has been
leaked.

TABLE 17. Cases where pvr-safety gives protection against interior
attacks.

Definition 43 [36]: Let p be a user, Sp the set of possible
sensitive attributes of p, T ∗ an historic dataset, and K the
compromised tuples in the dataset. We define the function ct−
pvr(p,Sp,T ∗,K ) as

ct−pvr(p,Sp,T ∗,K ) = Sp \ {a ∈ Sp | ∃i ∈ [1,n],∃Q ∈ T ∗

i |

∀t ∈ Q, t[SD] = a⇒ t ∈ K }

where Q is a class of T ∗

i . In words, the image is the set of
possible sensitive attributes of p minus the set of sensitive
attributes that we can dismiss with the knowledge of the
compromised tuples K . To do this, we check at each class of
each release if some sensitive attribute of such class was from
a compromised tuple. If that is the case for all the instances
of a particular sensitive attribute, then we can guarantee that
it does not belong to our target user p.
Definition 44 [36]: (hc-pvr function) Let p be a user, Sp

the set of possible sensitive attributes of p, and R(T ∗,p) be
the sets of users in historical correlation with p, we define
the function

hc−pvr(p,Sp,R(T ∗,p)) = Sp \ {a ∈ Sp | ∃R ∈ R(T ∗,p),

∀r ′
∈ R,a /∈ Sr ′}

In other words, the image is the set of possible sensitive
attributes of p minus the set of sensitive attributes that
cannot be of a historically correlated tuple. Recall that two
historically correlated sets of tuples have the same sensitive
attributes; if one of the sets cannot have a particular attribute,
neither can the other.

To present the guarantee of privacy, first a generalization
of m-invariance is presented.
Definition 45 [36]: (weak m-uniqueness) An anonymized

table T ∗
= {Q1, . . . ,Qk} is weak m-unique if each class

Q ∈ T ∗

• Contains at least m tuples with different sensitive
attributes.

• All the sensitive attributes in SDR(Q) have the same
number of occurrences.

Definition 46 [36]: (weak m-invariance) A historic data-
set T ∗ satisfies weak m-invariance if

• For all i ∈ [1,n], the set T ∗

i satisfies weak m-uniqueness.
• For all anonymized tuples t∗1 , t∗2 if t

∗

1 , t∗2 ∈Qi and t∗1 ∈Qj
then SD(Qi) = SD(Qj).

Definition 47 [36]: (hc-safety) Let T ∗ be a historic
dataset and Q a class of some Ti with i ∈ [1,n]. Q is hc-safe
with degree n if either

1) No set of users is historically correlated with the set of
users in Q.

2) The cardinality of each set of historically correlated
users with the users of Q is greater or equal to n.

Definition 48 [36]: ((m,n)-historically safety) Given
m,n ∈ N with n ≤ m and T ∗ a historic dataset. T ∗

is historically safe (normally refers to the generalization
function) if

• All Ti satisfy weak m-invariance.
• Each class Q ∈ Ti for all i ∈ [1,n] is hc-safe with degree
n with respect to {T ∗

1 , . . . ,Ti}.
The second condition is the one that protects against

historic correlations.
Definition 49 ( [36](pvr-safe)): A historic dataset T ∗ is

pvr-safe with threshold h ∈ (0,1] if, for each tuple t ∈ Ti for
any i ∈ [1,n] holds

ppb(t) < h

where ppb is the probability that a privacy breach of tuple t
can occur using ct-pvr and hc-pvr functions.
Theorem 9 [36]: Let q be the probability that a particular

tuple is compromised, L the maximum number of times that
a single tuple can be republished, h ∈ (0,1] the threshold
for pvr-safety, and m ∈ N+ the required level of weak m-
uniqueness. If there exists the smallest natural number n∈ N+

such that(
1− (1−q)L ·

(
1−

(
q−

q
m

)n)L⌊
m
n ⌋

)m−1

< h

then if T ∗ is (m,n)-historically safe, it is also pvr-safe with
threshold h.

5) OTHERS
Here we state other methods that provide some interesting
insight but that their presentation would be too large to simply
state or that they do not give a clear guarantee of privacy.
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a: HD-COMPOSITION
HD composition [32] was defined to give privacy against
limited adversaries in the presence of permanent sensitive
attributes in fully dynamic databases. To do that, a system
of holder and decoys is used, i.e., whenever a tuple with
a permanent sensitive attribute (a holder) appears in the
dataset, a set of tuples with non-permanent sensitive attributes
(decoys) are associated with it. With this system, no limited
adversary can deduce who the tuple with the sensitive
attribute is. The guarantee of privacy that HD composition
gives is the following.
Theorem 10 [32]: If T ∗ a historic dataset of a fully

dynamic database satisfies HD-composition (or refined HD-
composition) then

risk1(p,sd,n) ≤
1
l

for any user p, any sensitive attribute sd, and any time n,
where l is the parameter of HD-composition.

b: BAYESIAN-BASED PROTECTION
In [37], a method to protect against probabilistic attackers is
presented as an improvement of [48]. It focuses onmimicking
the procedure that an attacker would do with a Bayesian
approach and then edits the publications to reduce the amount
of information that can be extracted with such methods. Its
main limitation, however, is that it does not present a clear
and close guarantee of privacy.

c: MICROAGGREGATION METHOD
In [41], a method intended for fully dynamic datasets is
presented. It does not explicitly give any strong guarantee of
privacy, but it is remarkable since it uses microaggregation
instead of generalization or anatomization, unlike many other
publications in the field.

D. ANONYMIZATION ALGORITHMS
The first work on continuous data release was proposed
by Byun et. al. [11]. The authors were the first to identify
how independent releases of the same underlying table
can cause redundant computations, vulnerabilities, and low
utility. To mitigate some of these issues and particu-
lar vulnerabilities, they propose ‘‘buffering’’ records until
l-diversity is guaranteed. Therefore, whenever an equivalence
class is split, it is checked to see if an inference is possible via
different attacks. However, we note that this is problematic
since those checks are made with all previous releases, which
increases the workload as more datasets are released. In the
current context of big data, it seems unreasonable from a
utility and security standpoint.

Xiao et. al. [34] continued the work of [11] but with
dynamic datasets. In their proposal, the deletions can cause
a critical absence, i.e., the disappearance of a sensitive
attribute. To address this problem, the proposed algorithm
adds counterfeits to the classes whenever necessary to ensure
the m-invariance guarantee. This guarantee gives conditions

on the structure of the tuple classes, imposing that each class
has, at most, one sensitive attribute of each kind, at least
m different sensitive attributes, and that two classes where
a common tuple is contained must have the same sensitive
attributes. The process by which the algorithm creates the
releases is via bucketization. The tuples are split into groups,
each of which has a common signature; then each group is
balanced, filled, and changed until m-invariance is satisfied.
During this process, some counterfeits are added. While
this is a great improvement with respect to [11], since the
algorithm is less dependent on previous releases (making it
much more efficient and general), the addition of counterfeits
is hard to avoid, and it can be problematic for some sensitive
datasets, i.e., sparse datasets with many sensitive attributes
or those related to making far-reaching decisions, such as
medical trials.

Another work that addresses the incremental case is [49].
The main idea is generalizing the tuples in a consistent
manner to keep a monotonic rule in the information released
(same information or less generalization). More specifically,
the algorithm checks if a tuple can be less generalized at
each release. While the proposed solution provides more
utility than previous algorithms, it assumes a weaker attacker
which makes it unsuitable to counter against background
knowledge attacks, in particular those with information of
the quasi identifiers. The proposed method is therefore not
reasonable for most plausible attackers, which makes it an
unlikely option.

Fung et. al. [33] proposed so-called correspondence (BCF)
attacks. The authors showed how these attacks are hard to
prevent optimally, showing that the problem is NP-hard.
The algorithm searches on (a taxonomy tree) a minimal
release in the sense that it is as refined as possible and
still prevents BCF-attacks. Such attacks are only defined for
the incremental case, and a deeper study in more general
cases is still pending (or correspondence with other attacks).
The proposed algorithm assumes a not powerful attacker
and only provides security for BCF attacks, which makes it
unreasonable for most situations.

The authors of [50] extended [34] with a critique of m-
invariance. They argue that this privacy notion comes at the
expense of a significant utility loss. Besides, they claim that,
if some sensitive information is leaked, a data breach can
occur under this guarantee. To tackle these two issues, the
proposed solution uses a random noise system that groups
each sensitive attribute into a set where each element is a
possible sensitive attribute of the tuple. Due to the particular
publication system, it may not be suitable for classical models
that assume a specific value for each entry.

The fully dynamic case was first tackled by Bu et. al. [32].
It makes a differentiation between transient and permanent
sensitive attributes, stating that protection for permanent
sensitive attributes is, in general, unfeasible. To protect tuples
with permanent sensitive attributes (holders), the proposed
solution uses other tuples (decoys) with transient sensitive
attributes to hide which one corresponds to a permanent
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attribute. Although the system works for fully dynamic
datasets, the protection is limited to weak adversaries and
assumes the number of holders is reduced. The utility of the
proposed algorithm was studied in range queries, which is a
common practice in differential privacy methods.

Numerous aspects related to internal/external updates as
well as the use of counterfeits were investigated in [29].
A thorough analysis of the assumptions on such updates
resulted in the m-distinct (and m-distinct’) guarantee.
Although the proposed notion provides one of the strongest
guarantees of security, it is not always achievable since it
depends on certain properties of the dataset to be protected.
A slight improvement of this work is presented in [51].
The authors of [52] presented an alternative to gener-

alization and anatomization, where the sensitive attributes
of the different classes are permuted among the tuples in
it. The algorithm implements permutations in such a way
that the m-invariance guarantee is satisfied. It represents an
alternative to previous algorithms, but, depending on the
metric of utility, it can yield an extremely lossy system.

Riboni et. al. [36] studied the interior attacker, in which
an attacker knows the sensitive attributes of some tuples.
The authors showed probabilistic formulas for the capacity
of an attacker, assuming it has some bounded amount of
sensitive information. In contrast to other methods, the
protection given is a bound on the probability that an attack
succeeds instead of a bound on the probability of a correct
linkage between users and attributes. The algorithm structure
is similar to the one in [34] but with an additional step
to impose ‘‘(m,n)-historical safety’’, which prevents some
interior attacks.

A related work is [54], which presents its own method
to impose a guarantee of security on the probability that
any tuple can be linked with their sensitive attribute. While
it does not provide definitions or concepts of security, the
proposed method constitutes a good standalone system to
ensure privacy for the fully dynamic dataset case.

The ‘equivalence attack’ was developed in [35] and
investigated an attacker’s ability to relate sets of tuples with
common sensitive attributes, without necessarily knowing
their precise sensitive values. The authors proved that the
decision problem of knowing if an equivalence attack of a
particular size exists in a dataset is NP-hard. As argued in
Sec. IV-B, these attacks represent a very dangerous threat
since they allow for very powerful cascade effects once
the sensitive attribute of some tuple is compromised. The
proposed algorithm enforces m-invariance, since it was the
state-of-the-art in security at that moment, and e-equivalence,
which protects against equivalence attacks of e or lower
size.

Anjum et. al. [30], [31] proposed τ -safety, a notion of
security that extends m-invariance to fully dynamic datasets
with arbitrary updates, i.e., the behaviour in which the
sensitive attribute of the tuples change does not depend on
previous values. The authors proved that τ -safety implies
that the capacity of any attack is bounded. This notion of

security represents the first attempt to safely publish fully
dynamic datasets. Sadly, the arbitrary update assumption (see
Sec. IV-C) is not always reasonable since in most datasets the
sensitive attribute updates are very dependent on the previous
values. To date, a general notion of privacy for fully dynamic
datasets is still lacking, and no significant improvements
have been made since the publication of τ -safety. For any
reasonably strong non-probabilistic attacker, τ -safety and
m-invariance are the security guarantees to compare with.

The authors of [41] show an alternative approach where
microaggregation is presented as an alternative to general-
ization and anatomization. The algorithm creates a Voronoi
diagram where each region is defined by its centroid (with
respect to the tuples inside). Each region contains k to 2k −

1 elements and is divided whenever the size exceeds 2k .
Although it is simple and mathematically tractable for the
fully dynamic case, however, it does not prove or guarantee
the security of the tuples.

A completely different approach is [55] and [56], which
is an anonymization algorithm that aims to handle bigger
datasets using fuzzy systems and cuckoo filters. While
this approach provides a large improvement in terms of
computation efficiency with respect to previous works, its
main limitation is the lack of a clear guarantee of security
for the information that is processed with their systems.

Lastly, [37] studied the probabilistic attacker from a
Bayesian perspective. The most remarkable aspect of this
work is that it is the only one that considers the capacity
of an attacker to decide, among all possible raw underlying
datasets, which one is more likely to be the generator of
the published dataset; that is, it assumes the Smart Random
World assumption. However, again, the main limitation is
the lack of a definition of the privacy guarantee assumed.
A deeper study of such probabilistic attackers and related
ones is still a strand of future research.

Table 18 shows a summary of the anonymization algo-
rithms examined in this section. The data fields in the table
are described next:

• METHOD: indicates which procedure has been used
to achieve protection; it can be generalization, the use
of fake/counterfeit tuples, permutation of QI (QIT-PT),
anatomization, microaggregation or segmentation.

• DYN. NOTION: core notion of privacy used in the
publication.

• DATASET: which dataset is considered in terms of
updateability.

• ADVERSARY: which adversary is considered.
• EMPIRICAL STUDY: which utility metric is used to
show the capacity of the proposed model.

E. METRICS OF UTILITY
As important as it is to guarantee data subjects’ privacy, it is
also to keep the utility of the dataset. In general, evaluating
the utility of a perturbed, protected dataset is a challenging
task, and a variety of metrics have been proposed to tackle it.
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TABLE 18. Main algorithms for continuous data publishing.

Next, we briefly examine some of the most relevant metrics.
Before we proceed, however, we show a table with the
datasets employed to evaluate the utility of the anonymization
algorithms examined in Sec. IV-D.

TABLE 19. Datasets employed by the most relevant anonymization
algorithms.

TABLE 20. Metrics of utility used in continuous data publishing.

1) QUERY ERROR
In most cases, not all information is needed, but only some
statistical information about it. When that is the case, query
error is the usual metric used.
Definition 50: A query is a request for information from a

dataset. An aggregate/count query is a query that asks for the
number of tuples in the dataset satisfying certain restrictions.
The restrictions are of the form (A1, . . . ,An) ∈ D1 × . . .×Dn,
where each Ai is an attribute of the tuple and each Di is
a subset of the domain of the attribute Ai. If all Di with
i ∈ [1, . . . ,n] are intervals, it is a range query.

The query error metric computes the difference between
the results of the raw dataset and its anonymization.
Definition 51: Let T be a dataset and T ∗ its anony-

mization. The query error metric computes the error of a
count query as

E =
|CQ(T ∗)−CQ(T )|

CQ(T )

where CQ(T ) is the answer of the count query on dataset T .

2) INFORMATION LOSS
Measures the intensity of the generalization process applied
to each tuple. The definition assumes a finite domain for all
attributes.
Definition 52 [11]: Let T ∗ be an anonymized dataset, and

let Q be a class of T ∗ where each tuple has m quasi identifiers.
The information loss of Q denoted as IL(Q) is

IL(Q) = |Q|

m∑
j=1

|Gj|

|Aj|

where |Aj| indicates the domain size of attribute j and |Gj|

indicates the length of the interval of attribute j.
When we refer to the length of the interval attribute, we

are assuming some form of measure on the attribute domain.
For example, if the attribute represents age and has a value
[18 − 30], normally we would establish the classical real
measure of intervals, which yields 30− 18 = 12. If the data
is qualitative but has some linear order, we could establish
a discrete distance. For example, bad < mediocre< good <

excellent < superb where we could establish the length of an
interval as the number of elements inside minus one.
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3) DISCERNIBILITY
The discernibility is the capacity to distinguish elements.
Since most protection methods try to make several tuples
indistinguishable from each other, this metric computes how
severe such a transformation is.
Definition 53: [60]: Let {Q1, . . . ,Qn} be the disjoint

classes of a dataset T ∗. The discernibility metric with
parameter k is equal to

DM (T ∗,k) =

∑
i∈{1,...,n}
s.t. |Qi|≥k

|Qi|
2
+

∑
j∈{1,...,n}
s.t. |Qj|<k

|T ∗
||Qj|

The objective of the parameter is to punish the existence
of classes with less than k tuples, i.e., penalize when the
algorithm does not generate classes big enough.

4) NORMALIZED CERTAINTY PENALTY
A natural approach to utility metrics is checking how much
the attributes have changed. With Normalized Certainty
Penalty (NCP), you can condense that information with the
bonus that you can also assign weights to the different
attributes depending on their importance.
Definition 54: Let t ∈ T be a tuple and t∗ = {[x1,y1], . . . ,

[xn,yn]} be its generalized tuple with attributes A1, . . . ,An.
The NCP on attribute Ai of t∗ is

NCPAi (t
∗) =

yi− xi
|Ai|

,

where |Ai| is max{t[Ai] | t ∈ T } −min{t[Ai] | t ∈ T }. The
weighted certainty penalty of t∗ with weights (w1, . . . ,wm) is

NCP(t∗) =

n∑
i=1

wiNCPAi (t
∗),

where each wi is a non-negative real number.

5) KL-DIVERGENCE
In general, most previous metrics were exhaustive and com-
putationally inefficient. A more competent method consists
of using the KL-Divergence, which captures differences in
the distributions of T and T ∗.
Definition 55: Let t1, . . . , tn be the tuples of T ∪T ∗ and let

pi be the probability of ti in T and p∗

1 its probability in T
∗.

We define KL-divergence as

KL(T ,T ∗) =

n∑
i=1

pi log
pi
p∗

i
.

The KL divergence is often referred to as relative entropy,
as it may be regarded as a generalization of the Shannon
entropy of a distribution relative to another. Although the KL
divergence is not a distance function, because it is neither
symmetric nor satisfies the triangle inequality, it does provide
a measure of discrepancy between distributions, in the sense
that KL(T ,T ∗) ⩾ 0, with equality if, and only if, T = T ∗.

V. DISCUSSION: RECENT ADVANCEMENTS AND
RESEARCH DIRECTIONS
The work carried out in this paper achieves a classification
of the different types of attackers, data publishing scenarios,
types of risk, and allows for a more complete view of the
state of the art on continuous data publishing. Now we devote
ourselves to provide a better understanding of the most recent
research directions and gaps in the literature.

This section identifies subareas of the field of continuous
data publishing for whichmissing or inadequate contributions
limit the ability of privacy designers to develop technology
that provides both high privacy and high utility guarantees
in practical, realistic data release scenarios. We start the
discussion contexualizing existing notions and guarantees of
privacy.

The anonymization algorithm proposed in [37] is intended
to counter probabilistic adversaries, but, as with many other
works in the literature, no clear guarantee of security is
proved for the intended attack (or for other types of attacks).
Similarly, although m-invariance and τ -safety handle most
attackers and datasets, notions defined for weaker adversaries
that yield higher utility would of course be of interest.
Likewise, [36] provides guarantees for the external dynamic
interior attack but not for the fully dynamic case, where again
a clear notion of security is still needed. Besides, whereas new
privacy notions are necessary to deal with the most complex
scenarios (e.g., fully dynamic datasets and/or probabilistic
attackers), the existing ones are not comparable in most cases.
In this sense, we believe an empirical comparison of the main
notions via privacy guarantees, utility, and capacity would
provide a better insight into which ones are better or worse
for a given scenario.

With regard to applications, SRS, which handles multiple
tuples for the same user, needs further attention. The same
happens with the study of rare events/attributes, which seems
to have been deprecated.

In the most complex case of fully dynamic datasets,
we notice that quasi identifiers can provide information about
sensitive attributes. Consider, for example, a quasi identifier
that corresponds to ‘‘status’’ level. If one of the sensitive
attributes is salary, it can be learned from the evolution of
‘‘status’’ (through several releases) that the salary must have
been updated to a higher value. Notice, however, that this
is not the same as Sensitive Background Knowledge, since
the information is derived from the changes in the quasi
identifiers and not from their particular values.

Another aspect that needs to be dealt with is multi-valued
sensitive attributes, i.e., the case where each tuple has several
sensitive attributes and the absence of particular entries in
the tuples of the dataset are all possibly interesting situations.
The anonymization of scarce datasets while preserving their
already reduced utility is still far from solved.

Since the field is fairly new, no deep study of algorithmic
complexity has been done. Finding lower bounds for the
anonymization of a database, optimality/minimality, the
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complexity of several algorithms, and their equivalence
with other problems has been almost left apart, with small
exceptions that can be derived directly from the NP-hardness
of the static case.

Regarding anonymization methods or strategies, the gen-
eration of counterfeits (i.e., fake records) may imply a
significant danger to the utility of the dataset. Searching for
a solution without counterfeits that preserves high utility or
investigating their necessity and the guarantees that can be
only guaranteed with them are naturally two open strands of
research of utmost importance, with initial proposals in [39]
and [64].

There are currently no implementations or packages
available in the public domain. This makes it difficult
to develop papers dedicated to improving usability while
maintaining the same levels of protection such as in [65]
and [66]. A common workspace is needed to demonstrate the
practical capabilities of each algorithm. It is also necessary
to find realistic dynamic databases, as in most cases they
are created artificially. All together this causes increased
complexity to replicate and improve the results from the
literature.

Some study has been done in the particular case of
decremental datasets, that is, dynamic datasets which only
accept tuple deletions [67], [68]. Other frameworks, such as
the one presented by Hossain et. al. [69], study trajectory data
as a particular intricate case of continuous data publishing and
are also interesting spaces of study.

VI. CONCLUSION
Anomymization is the tool that allows the circumvention of
the legal restrictions applicable to personal data. In this work,
we tackle the problem of anonymizing dynamic microdata,
that is, how to protect the next publication of a changing
microdata so that all previously anonymized versions of it,
when combined with this next release, do not compromise
individuals’ privacy.

Within this rather general problem, we focus on syntactic
privacy protection and continuous data publishing, where
the microdata, in between releases, can experience record
additions, deletions, insertions, and updates.

Since the first anonymization algorithm for continuous
data publishing, a variety of contributions have been proposed
aimed at addressing database types, adversaries, attacks,
and notions. However, the vast majority of anonymization
algorithms come with notions of privacy and adversarial
models crafted specifically for the occasion, with their
own nomenclature and notation, and very often without
an evaluation of previous work. All this poses serious
challenges to the scientific community and may compromise
the development and maturity of the research field at hand.

To mitigate these issues, we have made several contri-
butions. First, we have proposed a theoretical framework
that unifies concepts, terminology, notions, and nomenclature
in the literature. Our second and main contribution is a
comprehensive taxonomy of the field of continuous data

publishing, organized in terms of datasets, attackers and
attacks, metrics of utility, notions of privacy, and their
guarantees. In our extensive analysis of the literature, we have
covered the most relevant contributions in anonymization
techniques, provided numerous illustrative examples, and
introduced novel definitions of all those aspects to harmonize
the state of the art. Thirdly, we have addressed the practical
problem of finding out which privacy guarantee one could
obtain for several combinations of dataset and adversary
model. And finally, we have elaborated on research gaps and
future directions on anonymization technology.
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