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ABSTRACT Aiming at the problem that the feedforward neural network blind equalization algorithm has a
slow convergence rate and a large steady-state error when equalizing the high-order non-constant modulus
signals, a trigonometric coordinate transformation blind equalization algorithm based on Bi-direction long
and short-term memory (BLSTM) neural networks (BLSTM-TCT-CMA) is proposed. First, the BLSTM
neural network has a strong processing ability for one-dimensional long-sequence signals, which is suit-
able for high-order signal sequence information. Secondly, a triangular coordinate transformation method
was introduced in the BLSTM neural network loss function to transform the statistical modulus of the
non-constant modulus signal into a constant modulus value, which speeds up convergence and further
reduces the steady-state error. It was observed through the simulation that compared with the constant
modulus blind equalization algorithm (CMA), the square contour blind equalization algorithm based on BP
neural networks (SCA-BP-CMA) and the tunable activation functions blind equalization algorithm based on
complex BP neural network (TAF-CBP-CMA).When the BLSTM-TCT-CMA equalized the 32QAM signal,
the steady-state error was -13dB, and the loss function converged at 800 steps. When the 64QAM signal was
equalized, the steady-state error was -10.5dB, and the loss function converged at 1200 steps. It is concluded
that both indicators were optimal, and the CT-GRUNN-CMA output signal constellation was the clearest.

INDEX TERMS Blind equalization, long and short-term memory, convergence speed, neural networks,
coordinate transformation.

I. INTRODUCTION
In modern wireless communication systems, Inter-Symbol
Interference (ISI) caused by environmental noise and channel
multipath effect is the main reason for the high bit error
rate at the receiving end of communication systems. Blind
equalization technology only needs the statistical mode value
of the input signal without a training sequence. It adjusts the
weight vector of the equalizer in real time through the selected
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algorithm model, effectively reducing the inter-symbol inter-
ference [1], [2].

The blind equalization algorithm based on a feedforward
neural network can effectively reduce inter-symbol interfer-
ence. Still, the network weight vector parameters are few,
the input signals are independent of each other at the time
before and after, and the feature extraction ability of the input
sequence with rich information is less [3], [4]. Yu et al. [5]
provided a detailed exposition on the evolution of RNN
networks to LSTM and analyzed the gating cell structure
in LSTM. Xu et al. [6] employed the SCLSTM model to
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predict the temporal relationship of RIS-UE channels, achiev-
ing more accurate channel state information acquisition.
There are input gates, forgetting gates, and output gates in
the hidden layer units of the BLSTM neural network, which
control the retention and abandonment of input information
in real time, and the weight parameters of each gate are
controlled by the input at the current time and the output
at the previous time, so it has strong adaptive adjustment
and fault tolerance ability [7], [8]. The Trigonometric Coor-
dinate Transformation based CMA (TCT-CMA) algorithm
transforms the constellation coordinates of high-order non-
constant modulus signals to the origin of coordinates through
trigonometric functions, and the statistical modulus val-
ues are transformed from nonconstant modulus to constant
modulus [9], [10], [11], [12], [13]. Therefore, it will be a
meaningful research topic to apply the BLSTM neural net-
work and TCT-CMA to blind equalization technology.

In this paper, based on giving full play to the advantages
of BLSTM neural network and TCT-CMA, a bidirectional
long and short-term memory neural network triangular coor-
dinate transformation blind equalization algorithm (BLSTM-
TCT-CMA, BLSTM-based TCT-CMA) is proposed. The
algorithm uses a BLSTM neural network to fit the inverse
channel of the nonlinear noise channel [14]. It uses TCT-
CMA to reduce the steady-state error further and accelerate
the convergence speed of the loss function. The simula-
tion results verify the excellent blind equalization effect of
BLSTM-TCT-CMA for high-order QAM signals.

To ensure clarity in symbol usage throughout the paper
and enhance readability, the symbols and mathematical nota-
tions used in the entire document are defined as follows: a
represents the input signal, h denotes the channel impulse
response, x represents the channel output, w stands for Gaus-
sian white noise, y represents the equalizer input, l denotes
the convolutional weight vector, z represents the equalizer
output, â signifies the decision output, c represents the tap
coefficient, C represents the cell state, s denotes the hidden
layer state, i represents the input gate, g stands for the forget
gate, o represents the output gate, W denotes the weight, J
signifies the loss function, and n, t and k respectively repre-
sent the signal sequence, time step, and hidden layer unit.

II. BLIND EQUALIZER ALGORITHM BASED ON
FEEDFORWARD NEURAL NETWORK
The structure of the blind equalizer algorithm based on a
feedforward neural network is shown in FIGURE 1.

FIGURE 1. Block Diagram of Blind Equalizer Algorithm Based on
Feedforward Neural Network.

In FIGURE 1, a (n) is the input signal sequence, h (n)
is the impulse response of the channel, x (n) is the output
sequence of the channel, w (n) is the white Gaussian noise,
y (n) is the input sequence of the blind equalizer, l (n) is the
equivalent convolution weight vector of the blind equalizer,
and is the recovery output signal sequence. â (n) is the deci-
sion output signal sequence. The output of the equalizer is

z (n) = l (n) ⊗ [a (n) ⊗h (n)+ w (n)] (1)

In the formula, ⊗ represents the convolution operation.
Since the equalizer is applied to the inter-symbol I nterfer-
ence caused by channel distortion, the influence of noise is
temporarily ignored here. Then, the output z (n) of the blind
equalizer can be expressed as

z (n) = l (n)⊗ h(n)⊗ a (n) (2)

Let c (n) be the combined tap factor of the entire blind
equalizer, then it can be written as

c (n) = l (n)⊗ h (n) (3)

The blind equalizer achieves optimal performance when
the central tap scalar modulus is one, and all other elements
are zero, i.e.,

c =
[
0, . . . , 0, ej∅, 0, . . . , 0

]T
(4)

In the above formula, ∅ is a constant phase shift, and can
be removed using the discriminator.

III. BLSTM NEURAL NETWORK TRIANGULAR
COORDINATE TRANSFORMATION BLIND
EQUALIZATION ALGORITHM
A. BLSTM NEURAL NETWORK BLIND EQUALIZATION
MODEL
The number of neurons in the input layer of the BLSTM
neural network is the tap length of the transverse filter, and the
weight vector in the network is adaptively adjusted through
the loss function so that the network output sequence is
gradually close to the original transmission sequence [15],
[16], [17], [18]. BLSTM neural network hidden layer unit
structure, as shown in FIGURE 2.

FIGURE 2. Bi-direction LSTM neural network hidden layer unit structure
diagram.
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In FIGURE 2, C t represents the cell state at the time t ,
xt represents the hidden layer input at the time t, st represents
the hidden layer output at the time t , and σ represents the
sigmoid function. Multiple isomorphic units constitute the
hidden layer of the BLSTM neural network. The information
flow transmission formula of the K -th unit at time t in the
hidden layer of the BLSTM neural network is.

gt (k) = σ
[
Wgs (k) · st−1 (k)+Wgx (k) · xt (k)

]
(5)

it (k) = σ [W is (k) · st−1 (k)+W ix (k) · xt (k)] (6)

Ĉ t (k) = tanh [W cx (k) · st−1 (k)+W cx (k) · xt (k)] (7)

ot (k) = σ [Wos (k) · st−1 (k)+Wox (k) · xt (k)] (8)

C t (k) = gt (k) · C t−1 (k)+ it (k) · Ĉt (k) (9)

st (k) = ot (k) · tanh [C t (k)] (10)

In the formula, g is the forgetting gate value, i is the input
gate value, o is the output gate value, W is the connection
weight vector, and Ĉ is the intermediate state. The Sigmoid
function controls the three gate values between 0 and 1.When
the gate value is close to 1, the cell state and the intermediate
state at the previous time are fully preserved. Otherwise, they
are discarded. The BLSTM neural network is unfolded along
the time direction, as shown in FIGURE 3. The forward layer
and the back layer are connected to the same output layer,
which can process the bidirectional information of the signal
sequence at the same time.

s⃗t (k) = W x (k) xt (k)+W s⃗ (k) s⃗t−1 (k) (11)
←s t (k) = W x (k) xt (k)+W←s (k)←s t−1 (k) (12)

yt (k) = W s⃗y (k) s⃗t (k)+W←s y (k)←s t (k) (13)

FIGURE 3. Bi-direction LSTM neural network structure.

In the formula, s⃗t (k) is the output at the time t of the
KTH unit in the backward layer, ←s t (k) is the output at
the time t of the K-th unit in the forward layer, yt (k) is the
value at the time t of the KTH unit in the output layer, and
W is the connection weight vector. Since the magnitude of
the output signal modulus of the blind equalizer is determined
by different modulation types, the BLSTM neural network

output layer transfer function is defined as

f (x) = x+ β
ex − e−x

ex + e−x (14)

In the formula, the value of the transfer constant β is
determined by the amplitude of the modulation signal. The
output of the network at time t is

out (t) = f
[
Wout (t) · yt

]
(15)

In the formula, Wout (t) is the output layer weight vector at
time t.

B. CONSTANT MODULUS BLIND EQUALIZATION
ALGORITHM BASED ON TRIANGULAR COORDINATE
TRANSFORMATION
The tap coefficients of the Constant modulus algorithm
(CMA) are updated continuously by iterative calculation of
the loss function so that the modulus value of the output
signal of the blind equalizer gradually approaches the statis-
tical modulus value of the original signal. When the input
signal is a constant mode signal, the blind equalizer can
achieve the zero-forcing condition under ideal conditions.
However, when the input signal is a non-constant modulus
signal, CMA cannot achieve ideal equalization because the
statistical modulus value does not match the input constel-
lation diagram [19], [20]. This problem is solved effectively
by modifying the loss function to transform the non-constant
modulus constellation position to the constant modulus con-
stellation position.

The coordinate transformation algorithm varies for differ-
ent modulation signal types. The coordinate transformation
constant modulus blind equalization algorithm is restricted
to 16QAM signals. Although the enhanced coordinate trans-
formation constant modulus blind equalization algorithm can
be applied to MQAM and MPAM signals, the loss function
term needs to be adjusted as the signal order increases. The
expression of the loss function becomes more complex with
higher order, making it less universally applicable and requir-
ing more computational resources [17], [21]. In this paper,
a constant modulus blind equalization algorithm based on
triangular coordinate transformation is proposed for MQAM
and MPAM signals. When the input is MPAM real signal,
a new loss function is defined as

J (k) =
E

{
sin2 [y (k) · π ]− R2

}2
π

(16)

R2 =
E

{
sin4 [a (k) · π ]

}
E

{
sin2 [a (k) · π ]

} (17)

In the formula, y (k) is the equalizer output and a (k) is the
original transmitted signal. Since sin [a (k) · π ]≡ 0, R2 is
meaningless, the constellation positions are equalized to the
origin of coordinates, and the modulus value corresponding
to the transmitted signal is 0. When the input is a MQAM
complex signal, taking the 16QAM signal as an example, the
constellation distribution after coordinate transformation is
shown in FIGURE 4.
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FIGURE 4. Constellation after coordinate transformation.

According to Equation (16), the complex signal loss func-
tion is defined as

J (k) =
E

{
sin2 [yr (k) · π ]− R2r

}2
π

+
E

{
sin2 [yi (k) · π ]− R2i

}2
π

(18)

The simplified modulus value and the order are
obtained.

J (k) =
E

{
sin2 [yr (k) · π ]

}
π

+
E

{
sin2 [yi (k) · π ]

}
π

(19)

The tap coefficient update formula is

f (k + 1) = f (k)+ µx∗k {sin [yr (k) · 2π ]+ jsin [yi (k) ·2π ]}

(20)

In the formula, µ is the length of the iteration step, x∗k is
the input sequence after taking the complex conjugate.

C. BLSTM NEURAL NETWORK TRIANGULAR COORDINATE
TRANSFORMATION BLIND EQUALIZATION ALGORITHM
Aiming at the problem that the statistical modulus value of the
non-constant modulus signal does not conform to the constel-
lation of the input signal, and further reduce the residual error
after the convergence of the loss function, this paper proposes
the BLSTM-TCT-CMA. The weight vector of the BLSTM
neural network is updated in real-time by the iterative error
obtained from the triangular coordinate transformation loss
function. Since the forward layer is like the back layer, only
the back layer is discussed in the hidden layer, and the update
formula of the network output weight vector is obtained by
Equation (19) and Equation (20):

∂J (k)
∂Wout (t)

= {sin [yr (k) · 2π ]+ j · sin [yi (k) · 2π ]}

· f ′
[
Wout (t) · yt

]
· y∗t (21)

Wout (t + 1) = Wout (t)+ µ
∂J (k)

∂Wout (t)
(22)

The updated formula of the output weight vector of the
backpropagation layer is

∂J (k)
∂W s⃗y (k)

= {sin [yr (k) · 2π ]+ j · sin [yi (k) · 2π ]}

· f ′
[
Wout (t) · yt

]
· yt · s⃗

∗
t (k) (23)

W s⃗y (k + 1) = W s⃗y (k)+ µ
∂J (k)

∂W s⃗y (k)
(24)

The gradient of the output layer values is

∂J (k)
∂yt (k)

= {sin [yr (k) · 2π ]+ j · sin [yi (k) · 2π ]}

· f ′
[
Wout (t) · yt

]
·W∗out (t) (25)

The gradient between the hidden layer value and the cell
state value is

∂J (k)
∂ s⃗t (k)

=
∂J (k)
∂yt (k)

·
∂yt (k)
∂ s⃗t (k)

=
∂J (k)
∂yt (k)

·W s⃗y (k) (26)

∂J (k)
∂C t (k)

=
∂J (k)
∂ s⃗t (k)

· ot (k) · tanh′ (C t (k)) (27)

The updated formula of the input weight vector of the
backward layer is

W x (k + 1) = W x (k)+ µ ·
∂J (k)
∂ s⃗t (k)

· xt (k) (28)

W s⃗ (k + 1) = W s⃗ (k)+ µ ·
∂J (k)
∂ s⃗t (k)

· s⃗t−1 (k) (29)

The updated formula of the input gate weight vector in the
backward layer unit is as follows

W ix (k + 1)

= W ix (k)+ µ ·
∂J (k)
∂C t (k)

· Ĉt (k)

· σ ′
[
W is (k) · s⃗t−1 (k)+W ix (k) · xt (k)

]
· x∗t (k) (30)

W is (k + 1)

= W is (k)+ µ ·
∂J (k)
∂C t (k)

· Ĉt (k)

· σ ′
[
W is (k) · s⃗t−1 (k)+W ix (k) · xt (k)

]
· s⃗∗t−1 (k)

(31)

The update formula of the forgetting gate weight vector is
given by

Wgx (k + 1)

= Wgx (k)+ µ ·
∂J (k)
∂C t (k)

· C t−1 (k)

· σ ′
[
Wgs (k) · s⃗t−1 (k)+Wgx (k) · xt (k)

]
· x∗t (k) (32)

Wgs (k + 1)

= Wgs (k)+ µ ·
∂J (k)
∂C t (k)

· C t−1 (k)

· σ ′
[
Wgs (k) · s⃗t−1 (k)+Wgx (k) · xt (k)

]
· s⃗∗t−1 (k)

(33)

The updated formula of the output gate weight vector is
given by

Wox (k + 1)

= Wox (k)+ µ ·
∂J (k)
∂ s⃗t (k)

· tanh [C t (k)]

· σ ′
[
Wos (k) · s⃗t−1 (k)+Wox (k) · xt (k)

]
· x∗t (k) (34)
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Wos (k + 1)

= Wos (k)+ µ ·
∂J (k)
∂ s⃗t (k)

· tanh [C t (k)]

· σ ′
[
Wos (k) · s⃗t−1 (k)+Wox (k) · xt (k)

]
· s⃗∗t−1 (k)

(35)

The updated formula of the intermediate state weight vec-
tor is given by

W cx (k + 1)

= W cx (k)+ µ ·
∂J (k)
∂C t (k)

· it (k)

· tanh′
[
W cs (k) · s⃗t−1 (k)+W cx (k) · xt (k)

]
· x∗t (k)

(36)

W cs (k + 1)

= W cs (k)+ µ ·
∂J (k)
∂C t (k)

· it (k)

· tanh′
[
W cs (k) · s⃗t−1 (k)+W cx (k) · xt (k)

]
· s⃗∗t−1 (k)

(37)

IV. SIMULATION RESULTS
To verify the effectiveness of BLSTM-TCT-CMA, CMA,
SCA-BP-CMA [14] and TAF-CBP-CMA [15] are com-
pared with BLSTM-TCT-CMA. The transmitted signal
adopts 32QAM signal and 64QAM signal, each transmitting
30000 characters; the channel is a typical wireless mobile
communication channel h = [0.005, 0.009, −0.024, 0.854,
−0.218, 0.049,−0.016], the signal to noise ratio of Gaussian
white noise is 15db. The number of input units in the neural
network is equal to the number of taps in the equalizer, and
then perform computer MATLAB simulation.

A. MODEL PARAMETER OPTIMIZATION
Grid search [22] refers to projecting N parameters that need
to be optimized into an N-dimensional space and dividing it
into a grid based on the range and step size of each parameter,
then traversing all the intersection points in the grid.When the
parameter step size is small enough, grid search is more likely
to find the global optimal solution. In the case of discrete val-
ues for the number of hidden units and propagation constants
of BLSTM-TCT-CMA, grid search is used to determine these
values. The multi-class hyperparameters for CMA, SCA-BP-
CMA, and TAF-CBP-CMA algorithms are set according to
reference literature. The sensitivity test of hyperparameters
for 32QAM and 64QAM experiments of BLSTM-TCT-CMA
is shown in FIGURE 5 and 6.

FIGURES 5 and 6 respectively demonstrate the process of
grid search for selecting the number of hidden units and prop-
agation constants for BLSTM-TCT-CMA. Only the results of
the optimal parameter values within a range of 2 to 3 steps are
shown in FIGURE 5 and 6. The numbers in the grid represent
the final Mean Square Error (MSE) after convergence of
the loss function, measured in dB. The experimental results
in FIGURES 5 and 6 indicate that for 32QAM signals, the

FIGURE 5. Model Parameter Optimization Experiment (32QAM).

FIGURE 6. Model Parameter Optimization Experiment (64QAM).

optimal number of hidden units and propagation constant for
BLSTM-TCT-CMA are 25 and 8, respectively. For 64QAM
signals, the optimal number of hidden units and propagation
constant are 29 and 12, respectively.

B. 32QAM SIGNALS
When the transmitted signal is a 32QAM modulated signal,
the number of taps of the CMA blind equalizer is 15, and
the iteration step is 0.000006. The network structure of SCA-
BP-CMA is (15, 10, 1), and the learning rate of the neural
network is µSCA−BP = 0.0002. The network structure of
TAF-CBP-CMA is (15, 7, 1), and the learning rate of the neu-
ral network is µTAF−CBP = 0.0005. The network structure
of BLSTM-TCT-CMA is (15,25,25,1), the transfer constant
is β = 8, and the learning rate of the neural network is
µBLSTM−TCT = 0.00015. Monte Carlo simulation experi-
ments were performed 500 times, and the results are shown
in FIGURES 7 and 8.

FIGURES 7and 8 compare CMA, SCA-BP-CMA,
TAF-CBP-CMA, and BLSTM-TCT-CMA, respectively.
In terms of convergence speed, BLSTM-TCT-CMA is about
1200 steps faster than TAF-CBP-CMA, about 2700 steps
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FIGURE 7. 32QAM Simulation experiment output constellation.

FIGURE 8. 32QAM Simulation experiments mean square error curve.

faster than SCA-BP-CMA, and about 1200 steps faster
than CMA. In terms of steady-state error, BLSTM-TCT-
CMA reduces about 3.5dB compared with TAF-CBP-CMA,
about 5dB compared with SCA-BP-CMA, and about 11dB
compared with CMA. The output constellation map of
BLSTM-TCT-CMA is more focused and clearer than that of
TAF-CBP-CMA, SCA-BP-CMA, and CMA.

C. 64QAM SIGNALS
When the transmitted signal is a 64QAM modulated signal,
the number of taps of the CMA blind equalizer is 17, and
the iteration step is 0.0000008. The network structure of
SCA-BP- CMA is (17, 13, 1), and the learning rate of the
neural network is µSCA−BP = 0.0005. The network structure
of TAF-CBP-CMA is (17, 9, 1), and the learning rate of
the neural network is µTAF−CBP = 0.0065. The network
structure of BLSTM-TCT-CMA is (17,29,29,1), the transfer
constant is β = 12, and the learning rate of the neural
network is µBLSTM−TCT = 0.00015. Monte Carlo simulation

FIGURE 9. 64QAM Simulation experiment output constellation.

FIGURE 10. 64QAM Simulation experiments mean square error curve.

experiments were performed 500 times, and the results are
shown in FIGURES 9 and 10.

FIGURES 9 and 10 compare CMA, SCA-BP-CMA,
TAF-CBP-CMA, and BLSTM-TCT-CMA, respectively.
In terms of convergence speed, BLSTM-TCT-CMA is about
1000 steps faster than TAF-CBP-CMA, about 2500 steps
faster than SCA-BP-CMA, and about 1000 steps faster
than CMA. In terms of steady-state error, BLSTM-TCT-
CMA reduces about 2dB compared with TAF-CBP-CMA,
about 4dB compared with SCA-BP-CMA, and about 8dB
compared with CMA. The output constellation map of
BLSTM-TCT-CMA is more focused and clearer than that of
TAF-CBP-CMA, SCA-BP-CMA, and CMA.

V. CONCLUSION
This paper combines the BLSTM neural network with TCT
for application in the field of nonlinear channel blind equal-
ization. By leveraging the excellent sequence processing and
feature recognition capabilities of the BLSTM neural net-
work, as well as the adaptability of TCT to non-constant
modulus signals, it fits the inverse process of nonlinear noisy
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channels and achieves blind equalization of communication
channels. Simulation experiments show that BLSTM-TCT-
CMA improves the slow convergence speed and large
steady-state error of traditional blind equalization algorithms
such as CMA. The main conclusions of this study are as
follows:

(1) The TCT-CMA algorithm replaces the conventional
modulus cost function with a novel trigonometric coordinate
transformation cost function, which utilizes the periodicity
of trigonometric functions. It transforms all higher-order
non-constant modulus MQAM signals to the origin of the
coordinate system, expanding the algorithm’s applicability
and improving its nulling capability, while reducing the com-
putational complexity.

(2) The BLSTM-CMA algorithm utilizes the advantage
of the bidirectional hidden layers in the BLSTM neural
network to optimize the network’s processing capability
for one-dimensional long sequence signals. It fully utilizes
the BLSTM’s excellent fast global search ability and chan-
nel equalization ability. By processing the signal sequence
bidirectionally, it enhances the algorithm’s robustness and
learning capability.

(3) The BLSTM-TCT-CMA algorithm combines the
advantages of TCT-CMA and BLSTM-CMA. It utilizes
the real-time adjustment of the cost error by TCT-CMA to
the network weight vector of BLSTM, thereby achieving both
the computational convergence capability and the high-order
transformation adaptability of the algorithm.

Blind equalization technology is an important field in
modern digital communication. Inspired by the fact that arti-
ficial neural networks can fit any nonlinear process, this
paper uses BLSTM as the blind equalizer of the channel.
It also proposes TCT to transform constellation points at
different modulus values to the same modulus value, allow-
ing statistical modulus to summarize all signal features and
achieve theoretical nulling equalization. The introduction of
BLSTM-TCT-CMA overcomes the dependence of equal-
ization technology on carrier synchronization. It achieves
channel equalization through the inherent features of the
received signal, increasing the available bandwidth and
unleashing the system’s potential. In special communication
environments or objects such as seismic wave detection, radar
communication systems, and underwater wireless communi-
cation systems, where the transmission of training sequences
would occupy the effective channel of the signal, the system
cannot emit training sequences, thus affecting communica-
tion quality. BLSTM-TCT-CMA can fit the inverse channel
of the communication environment without relying on train-
ing sequences, realizing wireless mobile communication in
complex environments. However, BLSTM-TCT-CMA also
has certain limitations. The use of multi-gate structures to
process high-order signals enhances computational power,
but it requires strong computational support. Further research
is needed on how to improve the calculation method of
the gates to reduce computational complexity. In the future,
introducing the Transformer network [23] into the equalizer

can be attempted, utilizing its excellent feature recognition
and temporal information processing capabilities to further
improve the algorithm’s fitting ability and computational
speed.
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