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ABSTRACT Recent studies have demonstrated that the attention mechanism can effectively enhance
the effectiveness of deep convolutional neural networks. In this paper, we propose a ‘‘Pyramid channel
and spatial attention’’ (PCSA), which consists of reconstructing the features after pyramidal multiscale
convolution by extracting spatial weights and channel weights. This dual weight extraction process helps to
merge the multiscale information more accurately and enhances the model’s focus on the complex locations
of image objects. As a plug-and-play module, PCSA can be easily added to various backbone networks
to enhance the modeling effect. We apply the PCSA module to two kinds of backbone networks, VGG and
ResNet, and the improved models are named: VGG-PCSA and PCSANet, respectively. Experimental results
show that on the CIFAR-10, CIFAR-100, and NaSC-TG2 datasets, our model has a significant performance
improvement over the backbone networks while keeping the number of parameters low and performs better
than most of the state-of-the-art channel attention methods. In addition, we visualize feature maps and class
activation diagrams to explain the better performance of PCSA.

INDEX TERMS Image classification, attention mechanism, CNNs.

I. INTRODUCTION
Attention mechanism diverts attention to the most important
areas of the image and ignores extraneous parts. It play a
key role in computer vision by learning and focusing on the
most relevant features in an image to improve performance in
tasks such as image recognition, target detection, and image
segmentation [1], [2], [3], [4], [5], [6], [7], [8].

SE [9] first proposed an attention mechanism for learning
channel information. Attention mechanisms are mainly
divided into two types, channel attention represented by
SE mechanism and spatial attention represented by CBAM
[10]. Based on SE, ECA-Net [11], which models inter-
channel information, and Fca-Net [12], which is based
on the frequency domain, are proposed. CBAM used
average pooling and maximum pooling to introduce spatial
attention, and achieved multiplexed attention that fuses
channel and spatial information. Distinct from CBAM,
BAM [13] and DA-Net [6] used parallel ideas to combine
channel and spatial attention. However, they also suffer
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from not exploring multi-scale information and establish-
ing long-distance dependencies. To solve the multi-scale
feature extraction problem, the researchers proposed SK-
Net [14] using different sizes of convolutional kernels and
branching designs, which makes the feature maps of different
receptive field branches have different importance. PyConv
[15] proposed a pyramidal multi-scale grouped convolution
module to extract multi-scale features. Coordinate Attention
[16] constructed global dependencies by embedding spatial
information in the channel feature maps. EPSA (Efficient
Pyramid Squeeze Attention) [17] mechanism combines
pyramidal convolution and channel attention, which has
a more granular multi-scale representation capability and
develops long-range channel dependency. To address these
limitations, we propose a novel attention mechanism PCSA
(Pyramid Channel and Spatial Attention). PCSA combines
spatial weights with multi-scale channel weight extraction,
integrating global location information into the feature map
constructed from channel weights to establish a global
dependency. Furthermore, as a plug-and-play module, PCSA
needs to be applied to a backbone network to function. In this
paper, two backbone networks, VGG and ResNet, are used.
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Firstly, VGG [18] is one of the milestones of convolutional
neural networks and is suitable as a backbone network
because of its simple and effective structure. However,
it also has problems such as inadequate feature extraction
and large number of model parameters. To solve these
problems, researchers have developed many improved VGG
models in terms of simplifying the model structure [19],
[20] and adding attention to enhance the model effectiveness
[21], [22], [23]. However, these models suffer from the
drawbacks of not considering multi-scale information and
network degradation after model deepening. To address these
problems, we improve VGG using the PCSA mechanism
and propose a new VGG-PCSA model that achieves the
unification of feature extraction capability and number of
parameters. Secondly, to further validate the generalization
performance of the PCSA module, we propose a ResNet-
style network PCSANet. It is more common to combine
attention mechanisms with ResNet, and the network structure
is simpler compared to VGG-PCSA. The main contributions
of this work include.

• We propose a new attention mechanism, PCSA block,
which can extract and combine multi-scale information
more efficiently by fusing channel weights and spatial
weights. As a plug-and-play module, the PCSA block
can be applied to the backbone network for improving
the performance of the model.

• We apply PCSA to two backbone networks, VGG and
ResNet, and the improved models are named VGG-
PCSA and PCSANet, respectively. They can learn
richer multi-scale features with fewer parameters and
adaptively adjust inter-channel weights precisely.

• We conducted extensive experiments on CIFAR-10,
CIFAR-100, and NaSC-TG2 and showed that PCSA
obtained better performance than other attention
mechanisms.

II. RELATED WORK
This section first introduces related work on attention
mechanisms, and then presents research on the application
of attention mechanisms to VGG and ResNet backbone
networks.

A. ATTENTION MECHANISM
SE (Squeeze-and-Excitation) [9] is a classical and commonly
employed attention mechanism, which models channel
attention to enhance performance. However, SE overlooks
spatial attention and fails to consider inter-channel rela-
tionships. Spatial attention such as CBAM [10] and BAM
[13] proposes spatial attention, aggregating both spatial
and channel attention information more comprehensively
and reliably. A2Net proposes a dual-attention mechanism
that collects key features of the space into a compact
set and then adaptively distributes them to each location.
Dual-attention [6] proposes a new dual parallel attention
model based on dilated convolution. On the other hand,
for the inter-channel relationship problem, ECA-Net [11]

is proposed, which integrates adjacent channel information
using 1×1 convolution to obtain more accurate channel
attention. The subsequent Fca-Net [12] proves that the
GAP of channel compression is a special case of feature
decomposition in the frequency domain, and proposes a novel
multi-spectral channel attention.

However, they still have two limitations: the inability
to capture information at multiple scales and the inability
to establish long-range channel dependencies. To tackle
these challenges, researchers have proposed various methods
for multi-scale information representation and cross-channel
information interaction. Based on the first problem, the
researchers proposed methods for multi-scale information
representation and cross-channel information interaction.
SK-Net [14] utilized parallel 3×3 and 5×5 convolutions
to extract features in parallel. Inspired by SK-Net, PyConv
[15] employed image pyramids to achieve multi-scale feature
extraction. Differently from PyConv, which used different
size convolutions, Res2Net [24] achieved multi-scale feature
extraction by constructing hierarchical residual connec-
tions. To address the second problem, researchers proposed
Coordinate Attention [16], which embedded location info
into channel attention, capturing long-range information
for understanding global dependencies. However, these
approaches often suffer from the complexity of models and
a high number of parameters.

In order to efficiently extract multi-scale features while
establishing channel dependencies, EPSA [17]mechanism
was proposed, which extracted the weights of multi-scale
convolution groups through the SEmechanism and efficiently
implements the global and local feature dependencies. How-
ever, EPSA only extracts channel weights and ignores the
attention to spatial weights, and the resulting weights cannot
accurately combine multi-scale feature maps. Based on this,
this paper proposes a new attentionmechanism, PCSA,which
uses a improved pyramidal multi-scale convolution with
simplified parameters to obtain multi-scale information, and
fuses channel weights and spatial weights in parallel to obtain
a more informative feature map.

B. ATTENTION MECHANISMS IN BACKBONE NETWORKS
Attention mechanisms are usually applied in different
backbone networks to enhance the effectiveness in different
computer vision tasks. Commonly used backbone networks
in image classification tasks are ResNet and VGG, etc.
SENet is composed by inserting the SE module into the
residual structure of ResNet. Fca-Net, ECANet are similar
to SENet, which are further improved based on ResNet.
Unlike the above mentioned channel attention extraction of
only the features extracted from the backbone network, the
EPSA module also uses multi-scale convolution. EPSANet
uses the PSA module instead of the convolutional layers
of ResNet and recombines the features between each
multiscale convolution using the channel attention weights.
The PCSANet proposed in this paper is inspired by EPSANet,
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based on ResNet34, ResNet50 and incorporating new PCSA
modules.

In addition to ResNet, we added PCSA to the VGG
backbone network. VGG, as a classical convolutional neural
network, has a small convolutional kernel, a large receptive
field and a simple network structure. These advantages make
VGG an important backbone network. Researchers have
proposed a combination of multiple attention mechanisms
and VGG to solve image classification tasks. Paper [23]
improves VGG by adding SE mechanism. Distinct from
channel attention, the paper [21] uses the addition of spatial
attention on hopping connections to enhance the extraction
of spatial information by VGG. In addition to focusing on
feature information, Paper [25] proposes a discrete wavelet
transform-based Wavelet- Attention mechanism and used
it for the improvement of VGG. However, there are two
problems with these improvements: firstly, the introduced
attention mechanism lacks multi-scale consideration, and
secondly, as the model becomes more complex, model
degradation and excessive parameter amount of VGG. As a
result, this paper proposes the newVGG-PCSA applied to the
backbone network VGG.

III. CNN WITH PCSA MECHANISM
This section first presents a review of the channel weights
and spatial weights extraction methods used by PCSA, then
presents the detailed design of the novel attention mechanism
PCSA, and finally introduces the newly proposed VGG-
PCSA and PCSANet.

A. REVISITING CHANNEL AND SPATIAL ATTENTION
1) CHANNEL ATTENTION
In PCSA, CA (Channel Attention) [10] is used for the
extraction of channel weights. The CA mechanism is shown
in Fig. 1. It performs average pooling and global maximum
pooling on the feature map, generating two distinct spatial
context description vectors for each channel. These vectors
represent the average pooling feature and the maximum
pooling feature. A MLP (Multilayer Perceptron) is applied
to model the channel relationship. The resulting description
vectors are then combined through element-wise leveling and
summation to obtain the channel attention vector. The CA
mechanism can be defined as:

CA = Sig(Conv1×1(AvgPool(F))

+ Conv1×1(MaxPool(F))) (1)

Conv1×1 (X) = W1(σ (W0(X ))) (2)

where the W0 ∈ Rc× c
r and W1 ∈ R

c
r ×c is 1 ×1

convolution, σ is the ReLU activation function, X is the
input feature, which can be the result of Maxpool(F)
or AvgPool(F). We use 1×1 convolutional layers instead
of fully connected layers to more effectively combine
linear information between channels and achieve information
interaction between channels.

FIGURE 1. CA structure.

2) SPATIAL ATTENTION
In PCSA, SA (Spatial Attention) [10] mechanism is used
for obtaining spatial information weights at the spatial pixel
level. The SA structure is shown in Fig. 2. Different from
channel attention, spatial attention is more concerned with
information location. In computing spatial attention, firstly,
average pooling and maximum pooling are performed in
each channel, and the obtained feature map stitching is
performed by channel, and then output after convolution layer
and Sigmoid activation function. The SA mechanism can be
defined as:

SA = Sig(Conv3×3([AvgPool(Fi);MaxPool(Fi)])) (3)

whereConv3×3 is 3×3 convolution, Sig is Sigmoid activation
function, AvgPool is global average pooling and MaxPool is
global max pooling.

FIGURE 2. SA structure.

B. PCSA MECHANISM
Inspired by PSA, the motivation of this work is to establish a
more precise and efficient attention mechanism. The PCSA
(Pyramid Channel and Spatial Attention) can be divided
into four parts. First, we use improved Pyramid Convolution
Module to obtain grouped multiscale convolution results.
Second, channel and spatial features are extracted in parallel
for multi-scale features. Third, the channel and spatial
features are rescaled with Softmax function to obtain the
channel and spatial weights, respectively. Fourth, the features
are reconstructed according to the 0-1 weights, and the
adjusted features are linearly fused and output by 1×1
convolution adaptive combination.

We design new pyramidal multiscale convolution to extract
multiscale features. PCM using pyramid-shaped multiscale
dilated group convolution and point-wise group convolution.
Compared to ordinary convolution, this design can effectively
reduce the number of parameters. To extract multi-scale
features, the inputs are divided into 4 groups for group
convolution with receptive fields of [3, 5, 7, 9] and
group sizes of [1, 4, 8, 16], respectively. The number of
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channels of input X is C , and the channel dimension of the
multi-scale convolution group Fi is C

4 . The output feature
maps from these convolutions are combined to form a multi-
scale representation. The dilated group convolution (DGC)
operation can be defined as:

DFi = Conv(ki × ki, di,Gi)(Xi) i = 1, 2, 3, 4 (4)

where Gi ∈ {1, 4, 8, 16}, ki ∈ {3, 3, 7, 5}, di ∈ {0, 1, 0, 1},
F ∈ RC×W×H is the multi-scale feature map after
stitching by channel, DF is the grouped convolution result.
Since the use of grouped convolution may result in some
missing information, point-wise convolution (PWC) is then
introduced to correct the information. In order to be consistent
with the grouped convolution, the input to the PWC is also
divided into 4 parts. The point-wise convolution operation
can be defined as:

PFi = Conv1×1(Xi) i = 1, 2, 3, 4 (5)

where PFi is the point-wise convolution result. After that
we directly sum DF and PF to cancel out the grouping
information loss.

Fi = DFi + PFi i = 1, 2, 3, 4 (6)

Next, channel attention (CA) extraction and spatial attention
(SA) extraction are performed on F, respectively.

CAi = ChannelWeight(Fi), i = 0, 1, 2, 3 (7)

SAi = SpatialWeight(Fi), i = 0, 1, 2, 3 (8)

where CAi ∈ RCi×1×1 is the channel weight vector and
SAi ∈ R1×W×H is the spatial weight matrix. After extracting
the features, soft attention is used to adaptively select the
weights of the different channels and spatial pixels.

CWi = Softmax(CAi) =
exp(CAi)∑4
i=0 exp(CAi)

(9)

SWi = Softmax(SAi) =
exp(SAi)∑4
i=0 exp(SAi)

(10)

We multiply the two weights with their extracted feature
counterparts and add the results linearly to achieve the fusion
of local and global features.

Zi = CWi ⊙ Fi + SWi ⊙ Fi (11)

where the ⊙ is the corresponding multiplication of elements.
The multi-scale feature maps with reassigned weights are
stitched by channel to obtain the final output with fused
channel and spatial information.

Z = Cat ([Z1,Z2,Z3,Z4]) (12)

By linearly fusing the features of the channel weight
combination with those of the spatial weight combination,
we obtain a new and more accurate multi-scale feature
combination. The fused feature map constructs the inter-
relationship between channels by 1×1 convolution. The

use of 1×1 convolution kernel can increase the nonlinear
characteristics and make the network deeper by adding
the activation function while keeping the feature map
scale unchanged. In summary, PCSA integrates multi-scale
information more precisely and enhances the model’s focus
on global information through the embedding of spatial
information.

C. APPLICATION OF PCSA IN VGG: VGG-PCSA
For the problems of inadequate VGG feature extraction,
easy overfitting, network degradation and excessive number
of parameters, we propose the VGG-PCSA improvement
model. VGG-PCSA uses VGG16 as the backbone network
and utilizes BN (batch normalization), residual structure
and PCSA mechanism. The model structure is shown
in Fig. 4.

First, we insert the BN layer between the convolutional
layer and the activation function to regulate the input of each
layer. Then, we add the newly proposed PCSA mechanism,
which enable VGG16 to better extract the channel and
spatial information capability of multi-scale features. By
calibrating the channel weights and spatial weights of multi-
scale features, the model obtains a feature map with more
reasonable information interaction between channels and
richer features contained, which improves the ability of
the model to extract features. However, the addition of
PCSA makes the network deeper and network degradation
occurs. To alleviate this problem, we use a residual structure
that adapts to VGG channel changes and downsampling
mechanisms.

Specifically, we use a 3 × 3 convolution layer with a step
size of 2 to achieve downsampling and channel variation on
the strip edges. This design not only preserves the extraction
of texture and edge features by maximum pooling while
downsampling, but also preserves a certain amount of local
information due to the introduction of the convolutional layer
on the residual connection to avoid the information loss that
may result from pooling. Finally, the model uses an adaptive
average pooling layer to replace the fully connected layer
with an excessive amount of parameters.

D. APPLICATION OF PCSA IN RESNET: PCSANET
The novel PCSA module integrates multiscale information
and constructs inter-channel links through multiscale feature
extraction, generating spatial and channel weights. The
inclusion by residual structure and 1×1 convolution makes
PCSA construct long-distance spatial dependency based on
the extraction of multi-scale attention. The new PCSANet
is obtained by stacking the PCSA modules according to
the ResNet style. The replacement PCSANet module is
composed as shown in Fig. 3. The PCSANet synthesizes the
layers of ResNet18 and the Block structure of ResNet50,
which allows it to maintain an excellent feature extraction
capability with a smaller number of parameters. The structure
of the PCSANet is shown in Table 1.

VOLUME 12, 2024 29065



Y. Zhang: PCSA: Enhancing CNN Performance With Pyramid Channel and Spatial Attention

FIGURE 3. Replacing 3×3 convolution in ResNet with PCSA module.

FIGURE 4. VGG-PCSA structure.

IV. EXPERIMENTS
In this section, we conduct extensive experiments on three
data sets to analyze the performance of the proposed VGG-
PCSA and PCSANet. The image classification benchmarks
include CIFAR-10, CIFAR-100 and NaSC-TG2. Top-1
accuracy is used as an evaluation metric for classification. In
addition, we repeated the experiment several times to prevent
the effect of fluctuation and took the mean value as the
experimental result.

A. DATA SETS
In this paper, we assess the generalization capability of
our model by conducting experiments on three bench-
mark datasets, including CIFAR-10, CIFAR-100 and
NaSC-TG2.

1) CIFAR-10 DATA SET
CIFAR-10 [26] is a small dataset for identifying pervasive
objects organized by Alex Krizhevsky and Ilya Sutskever.
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TABLE 1. PCSANet structure.

The dataset contains 60,000 32×32 color images divided into
10 categories with 6,000 images in each category.

2) CIFAR-100 DATA SET
The dataset has 60,000 color images with the same size of
32×32. There are in total 100 classes and each contains
600 images. Compared with CIFAR-10, CIFAR-100 divides
the 100 classes into 20 superclasses, i.e., each image has a
‘‘fine’’ label and a ‘‘coarse’’ label.

3) NASC-TG2 DATA SET
NaSC-TG2 [27] is the Tiangong-2 natural scene dataset. The
dataset includes 10 types of scenes: beach, circular farmland,
clouds, desert, woodland, mountains, rectangular farmland,
built-up areas, rivers, and snowy mountains, and there are
2000 color images per class.We use the division of paper [27]
and [28], with 20% for the test set and 80% for the training
set. The dataset preview is shown in the Fig. 5.

B. EXPERIMENTAL SETTINGS
Parameter settings of VGG-PCSA and PCSANet are consis-
tent in the paper. We use cross-entropy loss function with
label smoothing and set the label smoothing factor to 0.1.
SGD optimizer with a weight decay factor of 0.01 is adopted.
The learning rate is initialized to 0.05 and is reduced by
half every 30 epochs. We set the batch size to 128 and
the maximum epoch is 300. We use a cross-entropy loss
function with label smoothing as the loss of the model
with a label smoothing parameter of 0.1. For the CIFAR
dataset, the images are scaled to 224 × 224 and then input
to the model. For NaSC-TG2, we retained the original size
of the dataset of 256 × 256 as input to the model. All
experiments were run on a server with the following hardware
and software environment. The operating system is Ubuntu
20.04 with NVIDIA GeForce GTX 3080 GPU and Intel(R)

Xeon(R) Platinum 8255C CPU @2.50GHz. The methods
were implemented on PyTorch.

C. INTEGRATION METHOD
In order to explore the optimal insertion location of PCSA
blocks in VGG, we designed several integration methods,
as shown in Fig. 6. The integration of PCSA blocks in VGG
is a very simple process. 1) Standard, in which the PCSA is
placed inside the residual structure, after the VGG layer. 2)
PRE-PCSA, in which the PCSA block is placed inside the
residual structure, before the VGG layer. 3) POST-PCSA,
in which the PCSA block is placed outside the residual
structure, after theVGG layer. The results in Table 2 show that
the standardized integration method achieved the best results
in all three datasets, with an improvement of 1.59%, 1.41%,
and 0.94% over the least effective POST-PCSA method,
respectively. It also shows that placing the PCSA module in
the VGG block better utilizes the ability of PCSA to extract
the channel and spatial weights of themulti-scale features and
recombine them to significantly improve the performance of
the model.

TABLE 2. Classification accuracy changes with the combination of weight
extraction modules.

D. ABLATION EXPERIMENTS FOR PCSA
We designed the ablation experiments shown in Table 3
to verify its effectiveness on each dataset by replacing the
modules for extracting channel weights and spatial weights.
The experiments in Table 3 show that the CA mechanism
is more effective than the SE mechanism in channel weight
extraction due to the consideration of spatial information. The
SA mechanism, as a module for extracting spatial weights in
parallel, allows PCSA to embed global spatial information
in the generated feature maps, which improves the model
performance.

E. COMPARISONS WITH OTHER METHODS
As depicted in Table 4, the accuracy of our VGG-PCSA
model and PCSANet outperforms all previous networks
in all cases. We first compared the effect of some basic
backbone networks such as GhostNet and MobileNet. It can
be seen that the use of PCSA makes the VGG and ResNet
models gain significant improvement, in which VGG-PCSA
improves 13.21%, 9.27%, 4.01% over VGG, and PCSANet
improves 3.52%,6.04%, 9.42% over ResNet. Then we used
SENet, ECANet, EPSANet, SCConv with ResNet as the
backbone to compare with PCSANet, and the results showed
that PCSANet achieved better results, and its accuracy on
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FIGURE 5. NaSC-TG2 dataset. (a) beach; (b) circularfarmland; (c) cloud; (d) desert; (e) forest; (f) mountain; (g) rectangularfarmland; (h) residential;
(i) river; (j) snowberg.

FIGURE 6. Class activation map drawn on CIFAR-10 using the last layer of
the network. Darker colors indicate higher model attention.

TABLE 3. VGG-PCSA classification accuracy changes with the combination
of weight extraction modules.

CIFAR-10 reached the highest in the table, 96.50%. In
addition, we replaced the PCSA module in VGG-PCSA with
the attention mechanism mentioned above, keeping the other
structures unchanged, and these models were named VGG-
SE, VGG-CBAM, VGG-ECA, and VGG-EPSA. The results
showed that VGG-PCSAwas themost effective, and obtained
on CIFAR-100, NaSC-TG2, respectively, an 80.74%, 98.18%

accuracy. We plotted the training process curves of PCSANet
and VGG-PCSA, and as can be seen from Fig. 7, compared
to Baseline’s VGG and ResNet, our model is faster to train,
more accurate, and less likely to enter overfitting in the late
stage of training.

In terms of visualization of the model, we used the Grad-
CAM algorithm to plot the class activation images of the
model under different use of attention mechanisms, and the
results are shown in Fig. 8. PCSA enables the model to
pay more precise attention to objects than other attention
mechanisms. In addition, as shown in Fig. 9, we visualize the
feature maps of the first stage in PCSANet, and the results
show that PCSA can reduce feature redundancy and obtain
information at more scales.

F. PARAMETER ANALYSIS
To find the most suitable convolutional kernel size
for SA to focus on spatial information, we conducted
experiments on NaSC-TG2 as in Table 5. Experimental
results show that smaller convolutional kernels have a
smaller field of perception and can better perceive local
features, thus extracting a more discriminative feature
representation.

G. ANALYSIS OF MODEL COMPLEXITY
In this section, we will analyze the complexity of different
models by twometrics, which are parameters and FLOPs. The
input image size of VGG-PSA and VGG-PCSA in Table 6 is
64× 64, and that of the rest of themodels is 224× 224. VGG-
EPSA is the substitution of PCSA in VGG-PCSAwith EPSA.
It is evident that the parameter count of VGG-PCSA amounts
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FIGURE 7. Training process curves for PCSANet and VGG-PCSA.

TABLE 4. Accuracy (%) of the different methods on CIFAR-10, CIFAR-100,
NaSC-TG2 datasets.

to 13.4% of that in VGG16. Additionally, the parameter
count of VGG-PCSA is 3.3% lower compared to VGG-
EPSA. Notably, PCSANet comprises 4.72M parameters,

FIGURE 8. Class activation map drawn on CIFAR-10 using the last layer of
the network. Darker colors indicate higher model attention. Our method
has more bright regions in the heat map than other algorithms and pays
more attention to the edge properties of the object, indicating that our
method pays attention to more critical details and spatial information.

representing 22% of the parameter count in ResNet. The
corresponding FLOPs for PCSANet stand at 0.88G, equating
to 24% of the FLOPs seen in ResNet. Consequently, we can
draw the conclusion that PCSA effectively enhances model
performance while utilizing a reduced parameter count.
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FIGURE 9. Left: Features from the first-stage of original ResNet34, Right:
Features from the first-stage of PCSANet.

TABLE 5. Effect of using different convolution kernel sizes in SA on PCSA.

TABLE 6. Analysis of model complexity.

V. CONCLUSION
In this paper, we propose a new attention mechanism, PCSA,
which uses improved pyramid multiscale convolution for
feature extraction, extracted channels, and spatial attention
weights to recombine the multiscale features to fully extract
the spatial information of the image. We use dilated
convolution to replace traditional convolution based on
pyramidal group convolution to reduce computational cost,
and point-wise convolution to mitigate the information loss
caused by group convolution. In addition, PCSA extracts
channel and spatial attention weights to recombine the
features after multi-scale convolution. As a plug-and-play
generalized module, PCSA can be directly used in model
architecture. We apply PCSA to two backbone networks,
ResNet and VGG, and redesign their structures, and the
two new network models are PCSANet and VGG-PCSA,
respectively.In order to validate the model effect, we conduct
a large number of comparative experiments and ablation
experiments on three datasets, namely, CIFAR-10, CIFAR-
100, and NaSC-TG2. The results show that the network
structure embedded with PCSA is more accurate than some
art-of-state image classification methods. In subsequent
studies, we will continue to apply PCSA in the backbone
network for computer vision tasks such as target detection
and image segmentation to test its effect.
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