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ABSTRACT In order to suppress the intermodulation distortion and harmonic distortion caused by the
nonlinearity of a HF power amplifier (PA), this paper presents a nonlinear correction method for full wave
digital predistortion (DPD) of a HF PA based on amemory polynomial. First, the required full wave nonlinear
signal is obtained by using the negative feedback iteration method for the digital predistorter, and then a full
wave signal including the fundamental wave, each order harmonics and all intermodulation signals is con-
structed using the memory polynomial. Finally, the full wave memory polynomial model is constructed by
shifting the spectrum of the same order connected harmonics and their adjacent intermodulation components.
To verify the correctness of the method, the algorithm is simulated first, and then an actual PA is used to
verify the experiment. A 5W short-wave PA is used to test and verify dual-tone signals at different carrier
frequencies. The experimental results show that after linearization of full-wave DPD, the second and third
harmonic components are improved by more than 35 dB, and the intermodulation distortion is improved by
at least 9 dB, which effectively suppresses the intermodulation distortion and harmonic distortion.

INDEX TERMS Digital predistortion (DPD), full wave memory polynomial (FWMP), harmonic suppres-
sion, linearization, spectrum shifting.

I. INTRODUCTION
Shortwave communication has always been an important
means of wireless communication, especially for emergency
communication, aviation communication and navigation,
military communication and other application scenarios, due
to its unique advantages such as a long transmission distance
and no dependence on ground base stations. For short-wave
communication systems, the fundamental signal amplified
by the short-wave power amplifier (PA) produces serious
inter-harmonic distortion due to the non-linearity of the PA.
Intermodulation distortion is commonly compensated for
by employing baseband digital predistortion (DPD) technol-
ogy [1], [2], [3], [4], [5], while harmonic and higher-order
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intermodulation distortion signals are typically subjected to
filtering or suppression. However, due to the wide frequency
range of 1.6MHz to 30MHz in shortwave communication
systems, a single filter, as depicted in Figure 1, is insuffi-
cient for achieving harmonic suppression across the entire
shortwave band. Therefore, it becomes necessary to employ a
bulky filter bank comprising up to seven filters that cover dif-
ferent frequency ranges. Consequently, this not only results in
the proliferation of large-sized shortwave radio stations but
also significantly amplifies system complexity. Therefore,
the suppression of harmonic and high-order intermodulation
distortion generated by PA to eliminate or simplify the filter
group has always been a pivotal technical challenge encoun-
tered in shortwave communication. Particularly in recent
years, with the emergence of applications such as drones,
there is an urgent demand for miniaturization and lightweight
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FIGURE 1. Block diagram of a traditional communication system.

design of shortwave communication systems. Consequently,
it has become imperative to employ advanced digital tech-
niques to address this issue.

In order to remove the complex short-wave filter banks,
Kashchenko [6] proposed a harmonic injection method,
which involves introducing a harmonic injection channel in
the high-frequency path to compensate for harmonic distor-
tion across the entire output frequency range. The present
work by Pazhouhesh and Kitchen [7] presents a novel
approach for enhancing the efficiency of a wideband AB
class push-pull PA with second harmonic injection, achieved
through injecting the second harmonic via the center tap of
a uniform harmonic trap, thereby extending its frequency
bandwidth. Wang et al. [8] proposed a methodology to
investigate the trade-off between power efficiency of PA
and the corresponding complexity of digital pre-distortion
models required for linearization. Singhal and Rawat [9]
proposed a transmitter structure without filters, incorporating
digital-assisted harmonic cancellation by employing neural
networks to accurately model harmonics and intermodulation
distortion. Cho et al. [10] proposed a multi-stage predistor-
tion linearization circuit that ingeniously integrates second
harmonic and difference frequency techniques. The HTBP
model, proposed by Chen et al. [11] and Xu et al. [12],
is based on the Hilbert transform technique. This model
applies the Hilbert transform to the fundamental wave signal
and utilizes harmonic polynomials to accurately represent
intermodulation distortion and harmonic distortion. The har-
monic cancellation memory polynomial (HCMP) model,
proposed by Ren et al. [13], is derived from the basis of
MP and exhibits significant advancements in the mitiga-
tion of second and third harmonic distortions. The harmonic
cancellation-decomposed vector rotation (HC-DVR) model,
proposed by Liu [14], enhances the harmonic cancellation
performance based on the decomposed vector rotation (DVR)
model.

The aforementioned method exhibits a favorable suppres-
sion effect on harmonic and higher-order intermodulation dis-
tortion signals; However, there still exists a notable residual
of such distortions. Further optimization and refinement are
imperative to enhance the efficacy of DPD methods in atten-
uating harmonic and higher-order intermodulation distortion

signals. The present article proposes a novel full-wave DPD
model based on memory polynomials, thereby enhancing the
fitting accuracy of the model for harmonic and intermodu-
lation distortion signals through refinement of higher-order
termswithin thememory polynomial. By effectively compen-
sating for intermodulation distortion, this approach achieves
superior precision in suppressing harmonic distortion.

The rest of the paper is organized as follows: The second
part provides a comprehensive analysis of the generation
method for complex fundamental wave signals, along with
harmonic and higher-order intermodulation distortion sig-
nals. It explores the correlation between traditional memory
polynomials and harmonic and intermodulation distortion
signals, proposes a frequency spectrum shifting approach for
harmonic and higher-order intermodulation distortion sig-
nals, and elucidates the characteristics of full-wave memory
polynomials (FWMP). Additionally, the algorithm’s theo-
retical derivation is presented. The third section presents
the digital simulation and experimental verification results
of full-wave DPD utilizing memory polynomials. Finally,
a comprehensive summary is provided for the experimental
findings and the entire paper.

II. FULL WAVE DPD METHOD BASED ON MEMORY
POLYNOMIAL
DPD linearization is commonly employed in the baseband or
intermediate frequency domain to preprocess signals using a
digital predistorter, prior to up-conversion to radio frequency
(RF), for mitigating intermodulation components induced by
inherent nonlinearity of RF PA. In order to effectively sup-
press the fundamental-wave’s various harmonic components,
and their adjacent intermodulation components generated by
the nonlinearity of the PA and its neighboring intermodu-
lation components, it is necessary to perform predistortion
linearization processing on the modulated RF signal (fun-
damental wave signal). This distinguishes from traditional
DPD techniques that primarily compensate for intermodu-
lation components near the fundamental wave, as full-wave
DPD performed on the RF channel can suppress various
intermodulation components along with harmonic compo-
nents. The term ‘full-wave’ refers to digitally linearizing not
only the fundamental wave signal and its harmonics but also
intermodulation signals near both fundamental and harmonic
frequencies.

The schematic diagram in Figure 2 illustrates the fun-
damental principle of a full-wave DPD system. To extract
predistorter parameters and obtain the desired signal, an iter-
ative application of negative feedback to the PA’s feedback
signal is necessary [10]. The principle of the negative feed-
back iterative method is shown in formula (1).

xk (n) = xk−1 (n) + w0 (u (n) − λỹk (n)) (1)

where xk (n) and ỹk (n) denote the normalized input and
output of PA in the k-th iteration, and u (n) is the original
input signal here is fundamental wave. λ denotes the feed-
back depth, and w0 is a control factor used to adjust the
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FIGURE 2. Full wave DPD system block diagram.

FIGURE 3. The flowchart of the negative feedback iteration.

convergence of negative feedback iteration. In [16] and [17]
λ can be seen as the average power gain. In [11], λ and w0
were carefully chosen to be 1 and 0.6, respectively. It should
be pointed out that when we use the negative feedback itera-
tion method, the system cannot be pre-distorted it works for
offline training, as shown in Figure 2, the switch can only
be in position 1 or position 2. Negative feedback iteration
can be regarded as a training mode of DPD. Figure 4 shows
a flowchart that explains the negative feedback iteration
scheme in detail.

A. NONLINEARITY ANALYSIS OF HIGHER-ORDER TERMS
OF POLYNOMIALS
The conventional memory polynomial, as depicted in
equation (2), is specifically tailored for baseband signals and
lacks the capability to accurately represent harmonic and
adjacent intermodulation signal components. The utilization
of the memory polynomial expressed by equation (3) is
imperative when dealing with full-wave signals that encom-
pass fundamental, harmonic, and intermodulation compo-
nents. In formulas (2) and (3), k is the polynomial order,
q is the memory depth, and ckq is the undetermined model
parameter. The x (n) in (2) refers to the baseband complex
signal, and the x (n) in (3) refers to the fundamental real
signal which is baseband signal modulated signal after digital

FIGURE 4. Comparison of the initial phase of monophonic.

up-conversion.

y (n) =

M−1∑
q=0

K∑
k=1

ckqx (n− q) |x (n− q)|k−1 (2)

y (n) =

M−1∑
q=0

K∑
k=1

ckqxk (n− q) (3)

Due to the fact that the fundamental wave signal is a
purely real signal without any imaginary component, it not
only generates harmonics of the same order and intermod-
ulation components in close proximity to these harmonics,
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but also gives rise to numerous lower-order harmonics and
intermodulation components surrounding these harmonics.
Consequently, this intricate phenomenon adds complexity
to the comprehensive analysis. Therefore, we will initially
examine the relationship between the fundamental wave and
harmonics. Taking a single-tone signal with an angular fre-
quency ω, initial phase ϕ, and signal amplitude A as an
example using formula (4), it is important to note that the
second harmonic component of the fundamental wave signal
x (n) is not solely generated by x2 (n), but also by higher-
order even terms such as x4 (n), x6 (n), etc., as demonstrated
in formulas (5)-(7). This is also a significant contributing fac-
tor to the suboptimal full-wave predistortion effects observed
in traditional polynomial fitting methods.

x (n) = Acos (ωnT s + ϕ) (4)

x2 (n) =
1
2
A cos (2ωnT s + 2ϕ) +

1
2
A (5)

x4 (n) =
1
8
A cos (4ωnT s + 4ϕ) +

1
2
A cos (2ωnT s + 2ϕ)

+
3
8
A (6)

x6 (n) =
1
32
A cos (6ωnT s + 6ϕ)

+
3
16
A cos (4ωnT s + 4ϕ)

+
15
32
A cos (2ωnT s + 2ϕ) +

5
16
A (7)

The fundamental signal and its harmonic signals exhibit
the following characteristics:

1) In a full-wave signal, the initial phase of harmonics is
an integer multiple of the initial phase of the fundamental
wave. Theoretically, the initial phase of the second harmonic
is twice that of the fundamental wave, while for higher-order
harmonics such as the third harmonic, their initial phases are
proportional to their respective harmonic numbers in relation
to the fundamental wave.

2) The phases of harmonics of different orders may not
necessarily be identical. In theory, adjacent harmonics exhibit
distinct initial phases when ϕ ̸= 0.

3) The lower-order harmonic components generated by
higher-order terms of the fundamental signal are not neces-
sarily smaller than those generated by lower-order terms at
the same order. Generally, the same-order harmonic compo-
nents produced by higher-order terms tend to be smaller in
magnitude compared to those produced by lower-order terms.

At ϕ = π /2, during the first half cycle of x (n), the fun-
damental wave and the second and fourth harmonic waves
demonstrate contrasting trends. Conversely, in the second half
cycle of x (n), these waves exhibit similar trends, as depicted
in Figure 5. Diverse initial phase of the fundamental wave
results in distinct harmonic characteristics. Constructing a
predistorter necessitates not only fitting the amplitude of the
full-wave signal but also aligning its phase characteristics.
As PA operate in the real domain, they inherently introduce
phase distortion. When harmonic phases are not multiples of

FIGURE 5. The negative feedback loop for iteration.

FIGURE 6. Spectrum analysis of the higher-order terms of the
fundamental waves for dual-tone signals.

the fundamental phase, fitting becomes challenging. Com-
plexifying the fundamental signal offers a clear advantage
in adjusting the phase and enables better fitting of the PA’s
full-wave characteristics. This allows for construction of a
full-wave predistortion linearizer based on this approach.

The relationship between the fundamental wave and inter-
modulation components is subsequently examined. When the
fundamental signal comprises dual-tone or multi-tone sig-
nals, the nonlinearity of the PA not only gives rise to harmonic
components but also engenders intermodulation components.
To avoid excessive verbosity while effectively illustrating
this issue, simulated spectral results of the fundamental wave
signal, along with its second, fourth, and sixth-order are
employed as exemplars for analysis. Due to the inherent sym-
metry between positive and negative frequencies, Figure 6
illustrates the positive frequency component. The coefficients
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of x2 (n), x4 (n), and x6 (n) are uniformly set to 1. To facilitate
comparison, a downward shift of 50 dB and 100 dB has
been applied to x4 (n) and x6 (n) respectively. As depicted
in Figure 6, it is evident that x6 (n) exhibits a spectrum com-
prising of a direct current component (zero frequency), the
fundamental wave, harmonics, and intermodulation compo-
nents around both the fundamental wave and each harmonic.

Considering the characteristics of PA’s harmonics and
intermodulation components discussed earlier, if our objec-
tive is to solely suppress the second harmonic of the PA’s
output along with its adjacent intermodulation components,
it becomes imperative not only to modify x2 (n), but also
x4 (n), x6 (n), and even higher even power terms. However,
altering x4 (n) and x6 (n) would inevitably lead to modifi-
cations in other associated components such as fourth har-
monics, sixth harmonics, related sum-frequency components,
and difference frequency components. This observation high-
lights that the model presented in equation (2) oversimplifies
the accurate representation of amplifier harmonics and inter-
modulation characteristics.

B. GENERATING HARMONIC AT THE SAME ORDER AS
HIGHER-ORDER TERMS AND INCORPORATING
SUM-FREQUENCY COMPONENTS WITHIN HARMONIC
The electromagnetic field serves as the medium for sig-
nal propagation, which can be mathematically expressed
using complex numbers. A single tone signal with angular
frequency ω and amplitude A (t) can be represented by for-
mula (8), where its real part is cos (ωt), its imaginary part is
sin (ωt), and i denotes the imaginary unit.

A (t) eiωt = A (t) cos (ωt) + iA (t) sin (ωt) (8)

The NTH harmonic can be represented by formula (9),
where n is a positive integer, in accordance with the expres-
sion provided.When n = 1, it corresponds to the fundamental
wave; when n = 2, it represents the second harmonic; and
when n= 3, it signifies the third harmonic, continuing in this
manner.

A (t) einωt = A (t) cos (nωt) + iA (t) sin (nωt) (9)

The baseband modulated signal is assumed to have an
angular frequency of ωb and an amplitude of A (t), while
the carrier signal (i.e., the fundamental wave) has an angular
frequency ofωup. Upon quadratic modulation of the baseband
signal onto the carrier, a complex form of the fundamental
signal (referred to as the fundamental complex signal) is
obtained, as shown in equation (10). The first bracket repre-
sents the real part of the fundamental complex signal, which
corresponds to the fundamental signal denoted as u (n). The
second bracket encompasses the imaginary component of the
primary complex signal, which is derived by multiplying the
real component of the baseband signal with the imaginary
part of NCO and also by multiplying the imaginary part of the
baseband signal with the real part of NCO, denoted as v (n).
The basic complex signal can be represented by formula (11)
accordingly. It is worth noting that the fundamental signal

FIGURE 7. Analysis the higher-order of fundamental complex signal for
dual-tone signals.

can also yield the basic complex signal through Hilbert trans-
form [8], [9]. Unlike the Hilbert transform, which requires
convolution of the fundamental signal, our approach in this
paper solely relies on multiplication and addition operations,
offering a more convenient implementation.

z = A (t) eiωbteiωupt

= A (t) (cos (ωbt)+i sin (ωbt))
(
cos

(
ωupt

)
+i sin

(
ωupt

))
= A (t)

{
cos (ωbt) cos

(
ωupt

)
− sin (ωbt) sin

(
ωupt

)}
+ iA (t)

{
sin (ωbt) cos

(
ωupt

)
+ cos (ωbt) sin

(
ωupt

)}
(10)

z (n) = A (t) u (n) + iA (t) v (n) (11)

From a spectral analysis perspective, the higher-order
terms of a complexified fundamental signal exclusively com-
prise harmonics, parasitic and intermodulation components
within the harmonic frequencies, while excluding lower-
order harmonic components, adjacent beat or sum-frequency
components, as well as DC components. For instance, consid-
ering a dual-tone signal characterized by angular frequencies
ω1 and ω2, an initial phase ϕ of 0, and an amplitude of 1,
the complex representation of the fundamental wave can
be described using equations (12)-(14). The corresponding
spectrum is depicted in Figure 7. The term z4 (n) denotes
the fourth harmonic along with its associated sum-frequency
components within the harmonics. Notably, there are no
lower harmonics or related components present; instead, the
sum-frequency components within the harmonics surpass the
harmonic components themselves. The modification of the
higher-order terms in the pluralized fundamental signal has
no impact on other lower-order terms, thereby enabling opti-
mization of the model structure.

z2 (n) =

(
A1 (t) eiω1nT s + A2 (t) eiω2nT s

)2
= A21 (t) ei2ω1nT s + A22 (t) e

i2ω2nT s

+ 2A1 (t)A2 (t) ei(ω1+ω2)nT s (12)
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z3 (n) =

(
A1 (t) eiω1nT s + A2 (t) eiω2nT s

)3
= A31 (t) ei3ω1nT s + A32 (t) e

i3ω2nT s

+ 3A21 (t)A2 (t) e
i(2ω1+ω2)nT s

+ 3A22 (t)A1 (t) ei(ω1+2ω2)nT s (13)

z4 (n) =

(
A1 (t) eiω1nT s + A2 (t) eiω2nT s

)4
= A41 (t) e

i4ω1nT s
+ A42 (t) e

i4ω2nT s

+ 4A31 (t)A2 (t) ei(3ω1+ω2)nT s

+ 4A21 (t)A22 (t) e
i(2ω1+2ω2)nT s

+ 4A32 (t)A1 (t) e
i(ω1+3ω2)nT s (14)

C. SPECTRAL DISPLACEMENT OF HIGHER-ORDER
COMPONENTS IN THE FUNDAMENTAL WAVEFORM
SIGNAL
This section focuses on the lower-order harmonics generated
by higher-order terms and explores methods for optimizing
intermodulation components of sum and difference fre-
quencies. As the higher-order term increases, so does the
difference frequency component around the lower-order har-
monic component. As depicted in Figure 6, there is a greater
presence of differential frequency components surrounding
the second harmonic of x6 (n) compared to that of x4 (n).
Hence, it is insufficient to solely employ the complex har-
monic polynomial of the fundamental signal z(n) for fitting
the entire waveform. However, the second harmonic and
fourth harmonic of x4 (n) in the frequency spectrum exhibit
equidistant sum and difference components, with the funda-
mental frequency interval serving as the fundamental unit.

By employing z4 (n) and shifting its spectrum, we can
effectively accommodate the second harmonic along with
adjacent difference components as well as sum components
of x4 (n), wherein the shift distance on the frequency spec-
trum is measured in terms of units relative to the center
frequency of the fundamental signal. Similarly, by perform-
ing two shifts on z6 (n) ’s spectrum, we can respectively
obtain the fourth harmonic, second harmonic, and associated
sum and difference components of x6 (n). After determining
the calculation of the smallest unit fc for spectrum shifting,
it is essential to establish a precise methodology, and fc is the
central frequency of the fundamental wave. The frequencies
of both the baseband signal and modulated signal are known,
with f0 representing the lowest frequency and f1 denoting the
highest frequency of the baseband signal. Additionally, fup
corresponds to the carrier signal’s frequency. Formula (15)
illustrates the calculation approach, wherein m signifies the
number of leftward shifts.

fc,m = −2m
(

(f0 + f1)
2

+ fup

)
(15)

D. FWMP NONLINEAR MODEL
When m=1 is displaced by 1 unit, the digital sampling of
fc,1 becomes straightforward fc,1 (n). To enhance clarity in

FIGURE 8. Fundamental complex signal spectrum shift.

expression, the frequency spectrum of the higher order term
zk (n) is shifted by l units can denoted as zk_l (n) as shown
in formula (16). For instance, by shifting the spectrum of
the fundamental complex signal z6 (n) to the left once and
twice, we obtain z6_1 (n) and z6_2 (n), respectively, as shown
in Figure 8. The method of spectral shifting changes the
position but not the shape of the spectrum for z6 (n). In theory,
lower-order components of higher-order terms in the funda-
mental wave can be obtained by performing spectral shifts
on complexified higher-order terms. As higher-order terms
require more spectral shifts, memory polynomial models with
increasing parameters can further optimize model structure.

zk_l (n− q) = fc,l (n) zk (n− q) (16)

To address the issue of reduced accuracy in nonlinear
modeling of full-wave signals using conventional memory
polynomials, we propose a decomposition approach that sep-
arates the fundamental signal, harmonics, and surrounding
components such as sum and difference frequencies associ-
ated with the harmonics. Based on the previously discussed
method of fitting the higher-order term into two parts sep-
arately, the higher-order term xk (n − q) of the memory
polynomial can be sorted into formula (17), where L is the
largest integer not exceeding (K+1)

2 , and bk is the lower-order
harmonic coefficient of the higher-order term.

xk (n− q) = zk (n− q) +

L∑
l=1

bk fc,l (n) zk (n− q)

= zk (n− q) +

L∑
l=1

bkzk_l (n− q) (17)

Subsequently, the fitted higher-order term xk (n − q) is
incorporated into the memory polynomial equation (3),
yielding the comprehensive FWMP model as depicted in
equation (18). Herein, akq represents the coefficient of the
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FIGURE 9. The FWMP-PA model proposed in this article.

corresponding order component within the higher-order term,
while bkql denotes the coefficient of its associated low-order
component. The Hilbert transform of the PA output in the real
number field gives yc (n).

y (n) =

M−1∑
q=0

K∑
k=1

ckqxk (n− q)

yc (n) =

M−1∑
q=0

{
K∑
k=1

{
akqzk (n− q) +

L∑
l=1

bkqlzk_l (n− q)

}}
(18)

Unlike conventional pre-distortion techniques, the uti-
lized fundamental signal in this approach which is digitally
modulated real domain signal and it is derived by complexi-
fied same-order plus frequency shifting, fundamental signal
encompassing both the characteristics of the original base-
band signal and those of the up-shifted signal. The scheme of
proposed FWMP model shown as Figure 9.

E. PARAMETER EXTRACTION OF FWMP MODEL
As shown in Figure 2, in the stage of predistortion model
extraction, the switch is set to position 1, and the initial value
of the memory polynomial model is set to 1. This means
that the fundamental signal u (n) is directly outputted from
FWMP-DPD, and after negative feedback, we obtain the out-
put signal xd for the predistorter. When u (n) −λỹk (n) ≈ Ö0,
which indicates that a linearized output will be obtained
from the iteration format as equation (1), in this case xk (n)
is xd; In order to determine the parameters of the FWMP
model, we utilize the fundamental signal as input for the
FWMPmodel and obtain xd through feedback. Subsequently,
we employ the least square method [15] to extract the param-
eters of this model. Once it achieves sufficient accuracy, it can
be represented by formula (19), where U denotes the matrix

representing the FWMP and a represents its parameter vector.
Please refer to equation (21) for solving for the undetermined
coefficient a.

xd = Ua (19)

Among them, U =


z (1)
z (2)

...

z (n− m+ 1)

z (2)
z (3)

...

z (n− m+ 2)

. . .

. . .

. . .

. . .

z (m)

z (m+ 1)
...

z (n)


z2 (1)
z2 (2)

...

z2 (n− m+ 1)

z2 (2)
z2 (3)

...

z2 (n− m+ 2)

. . .

. . .

. . .

. . .

z2 (m)

z2 (m+ 1)
...

z2 (n)


z2_1 (1)
z2_1 (2)

...

z2_1 (n− m+ 1)

z2_1 (2)
z2_1 (3)

...

z2_1 (n− m+ 2)

. . .

. . .

. . .

. . .

z2_1 (m)

z2_1 (m+ 1)
...

z2_1 (n)


. . .


zk (1)
zk (2)

...

zk (n− m+ 1)

zk (2)
zk (3)

...

zk (n− m+ 2)

. . .

. . .

. . .

. . .

zk (m)

zk (m+ 1)
...

zk (n)


zk_1 (1)
zk_1 (2)

...

zk_1 (n− m+ 1)

zk_1 (2)
zk_1 (3)

...

zk_1 (n− m+ 2)

. . .

. . .

. . .

. . .

zk_1 (m)

zk_1 (m+ 1)
...

zk_1 (n)


. . .


zk_l (1)
zk_l (2)

...

zk_l (n− m+ 1)

zk_l (2)
zk_l (3)

...

zk_l (n− m+2)

. . .

. . .

. . .

. . .

zk_l (m)

zk_l (m+1)
...

zk_l (n)




(20)

a =

(
UHU

)−1
UHxd (21)

III. ALGORITHM SIMULATION AND EXPERIMENTAL
VERIFICATION OF FWMP PREDISTORTION MODEL
A. ALGORITHM SIMULATION
Firstly, the PA characteristics are simulated. The fundamental
wave consists of dual-tone baseband signals which is 100KHz
and 150KHz and the up-conversion signal frequency which is
2MHz. The fundamental wave is utilized in MATLAB. Con-
sidering the minimum sampling rate requirement of 125M for
arbitrary function generators (Keysight M8190A), we have
opted for a signal generation sampling rate of 126MHz.
A fifth-order memory-free polynomial is assumed as the
full-wave nonlinear model for the PA, with respective coef-
ficients of 1, 0.1, 0.01, 0.001, and 0.0001. As depicted in
Figure 10, simulation results demonstrate that the full wave
comprises not only the fundamental wave component but also
harmonics, their sum and difference components along with
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FIGURE 10. Comparison of predistortion performance between FWMP
model and HTBP model.

DC components; moreover, the sum of harmonics surpasses
individual harmonic components while there exists a lower
magnitude difference frequency component beyond harmon-
ics range - consistent with theoretical analysis presented in
Part II. Prior to implementing full wave predistortion tech-
nique, obtaining target output from predistorter necessitates
employing negative feedback iteration method wherein neg-
ative feedback coefficient values λ = 1.0 and w0 = 0.6 are
used for nine iterations.

Subsequently, the HTBP model and the FWMP model
are employed for parameter extraction of the predistorter.
Subsequently, the original test two-tone signals undergo pre-
distortion using HTBP-DPD and FWMP-DPD respectively
before being transmitted to the PA model. The resultant full-
wave signals from the PA reflect the linearization effect
of predistortion. Figure 10 illustrates spectrum simulation
results of PA output full-wave signals obtained through dif-
ferent predistortion models after linearization. The proposed
FWMP-DPD model in this study exhibits superior suppres-
sion capabilities for harmonics, intermodulation, as well
as sum and difference frequencies compared to HTBP-
DPD model. Specifically, an improvement of approximately
15 dB is achieved for second-harmonic and sum-frequency
components.

In each iteration, the input and output signals of the PA’s
model are updated, and Figure 11 illustrates the residual error
of the harmonic-to-fundamental in the original input-output
relationship of the PA. It is evident that negative feedback
iterations exhibit rapid convergence, effectively mitigating
second and third harmonics, thereby satisfying linearization
requirements.

In addition, the AM/AM and AM/PM curves of the input-
output signals of the FWMP-DPD scheme, as depicted in
Figure 12. It is important to note that, for a more accurate
representation of the phase information of the PA, both the
complex values of the PA input signal and output signal be

FIGURE 11. Iterative changes in the NMSE and sum-frequencies.

FIGURE 12. AM/AM and AM/PM curves for the fundamental dual-tone
signals.

obtained by converting real into complex values. Without
employing the HC-DPD scheme, distinct distortions between
positive semicircles (where signal amplitude is positive) and
negative semicircles (where signal amplitude is negative)
can be clearly identified in different branches within the
AM/AM curve. The proposed FWMP-DPD scheme signif-
icantly enhances system linearity, thereby eliminating the
need for a filter bank as PA output satisfies linearization
requirements.

B. TEST SETUP AND TEST RESULTS
In order to assess the linearization performance of the
proposed FWMP model, a DPD shortwave test platform
was constructed, as depicted in Figure 13. The input fun-
damental wave signal for the PA was generated using
MATLAB, employing dual-tone signals with baseband fre-
quencies of 100KHz and 150KHz as test signals, sampling
rate of 126MHz, while carrier signals at digital up-conversion
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FIGURE 13. Full wave DPD experimental verification platform.

frequencies of 2, 6, 12, and 18MHz were utilized. The base-
band signal, post digital modulation, is converted into an
analog signal by employing an arbitrary waveform generator
(Keysight M8190A) as the input for the PA. Subsequently,
the amplified full-wave output undergoes a 40 dB attenuation
before being captured using a digitizer (Keysight M9703B).
Both the arbitrary waveform generator and digitizer operate
on synchronized clocks, with the former serving as the trigger
source for the latter. In this study, a high-frequency PA with
an output power of 5 watts and a gain of 47 dB, fabricated
using CMOS technology, was employed as the test amplifier.
Spectrum analysis and data storage were performed using the
Keysight 89600 Vector Signal Analysis software.

In order to comprehensively validate the suppression
capability of the proposed FWMP towards harmonic and
intermodulation components in the full-wave signal, separate
modeling of the PA and predistorter is conducted. Initially,
the output of the PA is collected, followed by employing
various PA models such as MP model and HTBP model for
characterization purposes, thereby comparing their respective
nonlinear modeling capabilities.

The Normalized Mean Square Error (NMSE) was
employed for assessing the efficacy of the modeling
approach. The NMSE is computed using formula (22), where
N represents the length of the test signal, y (n) denotes the
actual output of the model, and ỹ (n) signifies the fitted value
of the model’s output.

NMSE = 10lg

(∑
N |y (n) − ỹ (n)|2∑

N |y (n)|2

)
(22)

The test results for PA modeling are presented in Table 1,
wherein the NMSE of the MP model is approximately 8 dB

TABLE 1. Comparison of fitting effect of different PA model’s NMSE.

FIGURE 14. Predistortion performance comparison at 2MHz.

higher compared to that of the HTBP model. Moreover, the
FWMPmodel exhibits a 7 dB increase over theMPmodel and
around a 15 dB increase over the HTBP model. In contrast to
MP and HTBP models, FWMP demonstrates superior accu-
racy in simulating PA’s time domain output characteristics.
The predistorter output is obtained through negative feedback
iteration method incorporating the PA model, while DPD
model is constructed using FWMP. Table 1 and Table 2 the
real framework length for DPD training is 504000.
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TABLE 2. linearization results of different DPD models.

FIGURE 15. AM/AM and AM/PM curves for the fundamental dual-tone
signals.

The original signal passes through digital predistorter and
sent to the PA. Due to the sum-frequency component nearby
second and third harmonics is the largest. For instance, in the
case of a modulated signal which is fundamental wave com-
prising two frequencies, f1 and f2, the second harmonics
would be 2f1 and 2f2 respectively. Apart from these second
harmonics, there exists a sum-frequency component f1+f2,
which exhibits the highest energy in proximity to the second
harmonics as depicted in formula (12) and Figure 7. Similarly,
the sum-frequency around the third harmonics is the largest.
The statistics presented in Table 2 exclusively depict the sum-
frequency components improve value of the second and third
harmonics under different carriers. Based on the measured
data, it is evident that the FWMP-DPDmodel outperforms the
HTBP model. In comparison to HTBP, a minimum improve-
ment of 35 dB can be achieved for harmonics, along with
an approximate enhancement of 8 dB for intermodulation.
Figure 14 illustrates a typical predistortion effect, which
aligns with formulas (12)-(14) discussed in Section II and
simulation results obtained from our algorithm. The signal
output from the PA exhibits a higher sum-frequency compo-
nent compared to the second harmonic itself, and a higher
sum-frequency component compared to the third harmonic.

Figure 15 illustrates the verification results of the AM/AM
and AM/PM characteristics of the actual PA. Similar to the
simulation presented in Figure 12, these data points represent
complex values obtained by converting the real-domain input
and output signals of the PA. The dispersion observed in
these curves indicates a certain memory effect present in
the PA. However, after FWMP-DPD processing, a notice-
able enhancement in linearity is achieved, as evidenced by
improved convergence between AM/AM and AM/PM char-
acteristics, consistent with algorithm simulation outcomes.

Following DPD linearization, significant improvements
are observed in both the harmonic components and their
respective sum and difference frequency components.
Notably, there is a remarkable enhancement of 34 dB for
the second harmonics and 36 dB for the sum-frequency
component.

IV. CONCLUSION
This article presents a novel full-wave DPD model, which
revolutionizes the conventional memory polynomial model
employed for baseband DPD by effectively mitigating both
intermodulation and harmonic distortion in PA. The compre-
hensive mathematical derivation of the proposed full-wave
DPD is provided, verification. The distinctive aspect of
this study lies in utilizing the fundamental wave signal
that is modulated signals, constructing harmonic signals
through complexification of the fundamental wave polyno-
mial, as well as introducing methods for complexification of
the fundamental wave signal and frequency spectrum shift-
ing. Simulation results along with experimental validation
demonstrate the remarkable efficacy of the proposed full-
wave predistortion model in suppressing intermodulation and
harmonic distortion in shortwave PA.
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