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ABSTRACT This paper considers a reconnaissance task allocation problem for multiple unmanned
aerial vehicles (UAVs) in 3D urban environments. In this paper, we present an extended heterogeneous
targets reconnaissance task allocation model which introduced cuboid targets for 3D urban environment
to improve the fidelity of the model. A reconnaissance method is designed for each type of target, and
the mission is described as a heterogeneous target multi-traveling salesman problem model for solving
complex optimization problems with multiple constraints.To address these complex optimization problems,
multi-group symbiotic organisms search algorithms (MGSOS) are proposed, which maintain the diversity
of species in the population through multi-group strategies and enhance information exchange between
individuals in three stages. Real-number encoding is used to satisfy partial constraints and simplify the
search space, improving the optimization efficiency of the solution. The simulation results show that the
MGSOS algorithm can consider the characteristics of UAV sensor performance and heterogeneous targets.
It outperforms the common symbiotic organisms search (SOS) algorithm in terms of the optimality of
assignment results, and is suitable for larger scale urban reconnaissance task allocation problems.

INDEX TERMS 3D urban environment, generalized multi-traveling salesman problem, np-hard problem,
symbiotic organisms search, task allocation, unmanned aerial vehicle.

I. INTRODUCTION
As urban warfare increasingly becomes a vital form of
modern conflict, utilizing multi-UAV for rapid reconnais-
sance in 3D urban environments has become an essential
strategy. The irregular topography, densely packed buildings,
and constrained airspace inherent in urban environments
demand specialized task allocation strategies. Multi-UAV
collaborative reconnaissance is a typical mission for better
target finding and information acquisition. Task allocation is
an important problem in multi-UAV reconnaissance mission,
which can allocate necessary tasks and determine the
appropriate task execution sequence to the UAVs to minimize
system cost efficiently and maximize overall performance.
Researchers on multi-UAV task allocation primarily focus on
problem modeling and algorithm innovation.
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The basic task allocation problem that aims to find the
shortest flight path can be formulated as multi-traveling
salesman problem (MTSP) [1] or a vehicle routing problem
(VRP) [2] model for solution. It is also necessary to optimize
UAV’s locations or trajectories [3], [4], [5]. In Chen et al. [6],
the authors addressed the path planning issue for UAVs with
varying capabilities in multi-region systems. Optimal paths
were provided for UAVs to effectively visit all regions. The
coverage path planning problem of heterogeneous UAVs
was also studied, with the authors identifying optimal flight
paths for each UAV from the start region to the end region,
ensuring sequential coverage of all regions of interest in
the shortest time [7]. Based on these studies, the energy
consumption constrained scheduling problem of workflows
in heterogeneous multi-processor systems was addressed,
and a three-phase scheduling algorithm to ensure the correct
and efficient running of tasks was proposed [8].To address
the system constraints of UAVs, the Dubins path model
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is combined with the traveling salesman problem (TSP)
to obtain the Dubins TSP (DTSP) model [9]. Considering
the effective range of UAV sensors, the Dubins traveling
salesman problem with neighborhood (DTSPN) model is
proposed [10]. Some targets are time-sensitive, and the
UAV flight path may be affected due to the target time
window constraint. In this case, the task is described as a
TSP with time window (TSPTW) model [11]. Additionally,
the cooperative multiple task assignment problem (CMTAP)
model is proposed to describe the performance of classify,
attack, and verify tasks on UAVs [12]. Although algorithms
for solving these problems have been extensively studied,
the task allocation problem is often significantly simplified
when using these models without considering the nature
of the problem. Wang et al. [13] first considered the
heterogeneity of targets, and Cheng et al. [14] similarly
considered targets with heterogeneous features and sizes
to propose the Dubins multi-traveler problem based on
time windows, but these models only considered differences
between targets at the stage of entering and leaving after
allocation. Gao et al. [15] present a novel mathematical
model that classifies heterogeneous targets as point targets,
line targets and area targets to improve the fidelity of the
model. However, in 3D urban environments, there exist a
number of high-rise topographic features on the ground,
such as buildings and ground architecture [3], the model that
classifies heterogeneous targets as point, line and area targets
is not comprehensive.

Within urban environments, due to the obstruction of
various structures, the distribution of targets cannot be
directly perceived as lying on a single plane, nor can
the sensing direction of UAV sensors be solely directed
downwards. Thus, the issue of UAV reconnaissance in
urban environments cannot be fully explained with a 2D
model. In this paper, we consider target characteristics
and dimensions in a 3D sense within urban environments
and establish a UAV reconnaissance model. Targets are
categorized as point, line, area, and cuboid targets, each
represented by different feature points.

The task allocation problem is a classic NP-hard combi-
natorial optimization problem. Algorithms for solving this
problem can be categorized into two groups: optimization
methods and heuristics methods. The optimization Methods
like the branch and bound(BNB) method [16] and dynamic
programming(DP) [17] can find local optimal solutions
for low-dimensional problems, but struggle to find feasible
solutions as the number of UAVs and targets grows due to
the exponential increase in computational cost. In contrast,
the heuristics methods with low computational complexity
can effectively obtain workable solutions, primarily used for
addressing combinatorial optimization problems. Including
the genetic algorithm (GA) [18], simulated annealing (SA)
algorithm [19], gravitational search algorithm (GSA) [20],
ant colony optimization (ACO) algorithm [21], particle
swarm optimization algorithm(PSO) [22], shuffled frog leap-
ing algorithm, bacterial foraging optimization, artificial bee

colony(ABC) algorithm [23]. New algorithm structures are
used or the advantages of different algorithms are combined
to improve the quality and search speed of candidate
solutions [24], [25]. A comprehensive review paper on
swarm intelligence algorithms has been published, covering
various optimization techniques [26]. The reallocation in
emergent scenarios has been reported by [27]. To solve the
problem of reallocation, Tang et al. utilized the clustering
of UAVs based on fuzzy C-means (FCM), along with ACO.
In addition, Cheng and Prayogo [28] introduced the symbiotic
organisms search (SOS) as a meta-heuristic optimization
algorithm to extensively explore potential solution spaces.
This approach has gained significant traction in the fields
of numerical optimization and engineering design [29], and
has shown promise in addressing UAV mission assignment
challenges [30].

Urban environments are complex and have a very large
number of targets, while urban operations should reduce
civilian casualties and reduce the destruction of buildings.
Therefore, efficient and precisemission execution is required,
and the high number of targets requires a large number of
UAVs to perform the mission. With the increasing size of
UAVs and the number of targets, the efficiency and conver-
gence quality of heuristic algorithms are more demanding.
The SOS algorithm is used to solve task allocation problems
due to the advantages of easy implementation, paralleliz-
ability, strong search capability, and wide applicability.
It is suitable for solving the optimal search problem in
complex space. However, in high-dimensional spaces like
urban environments, the SOS algorithm still suffers from the
problems of falling into local optimum and precocity. In this
paper, we propose a new Multiple-Group Symbiotic Organ-
isms Search (MGSOS) algorithm to solve the multi-UAV
reconnaissance task allocation in 3D urban environments
problem. In MGSOS, The biological population is divided
into two subpopulations, each designated for exploring and
developing the optimal solution. By reinforcing individual
guidance, improved algorithmic exploration capabilities can
be achieved.

This paper’s main contributions are as follows. Firstly,
an extended heterogeneous targets reconnaissance task allo-
cation model which introduced cuboid targets for 3D urban
environment is presented. Secondly, the task is described
as an extended generalized multiple traveling salesman
problem (GMTSP) model. To improve the solution quality
and search efficiency of the assignment plan, a multi-
group symbiotic organisms search algorithm to solve the
multi-UAV reconnaissance task allocationmodel is proposed.
Improvements are applied to the symbiotic, coeval, and
parasitic phases of the SOS to enhance information inter-
action among individuals, improving the algorithm’s search
performance. Additionally, a real number encoding method
is employed to address variable constraint relationships,
reducing the search space and enhancing search efficiency.
Finally, we experimentally analyze the performance of our
algorithm and conduct comparative experiments of different
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FIGURE 1. Field of view of sensors.

FIGURE 2. Schematic diagram of point target.

scale scenarios. The results demonstrate that our algorithm
has superior capability.

II. RECONNAISSANCE MISSION MODELING IN URBAN
3D ENVIRONMENT
The UAV needs sensors for collaborative target reconnais-
sance in the city. In this study, the sensor view is considered
as a circular area facing the plane where the target is located,
as shown in Fig. 1. d is the distance between the UAV and
the target plane. When the target is on the ground, d is the
flight height of the UAV. ϕ is the field of view of the sensor.
When the target area is completely covered by the field of
view of the sensor, the target reconnaissance is completed.
To simplify the model, the field of view of the sensor is
assumed to be unaffected by the flight height and attitude of
the UAV.

A. TARGETS MODEL AND RECONNOITER STRATEGIES
In general, an important feature of the target is the target
shape. To facilitate the calculation of the target detection
time and flight path, the target shapes in the 3D urban
environment are classified as point targets, line targets, area
targets, and cuboid targets. The detection time of the same
UAV is different due to the different sizes of the targets. Flight
paths between targets are planned using the A* algorithm.
The path is planned from the starting point to the destination
point based on pre-existing obstacle information and free area
data in the prior map to avoid static obstacles.

1) POINT TARGET
A point target is a target smaller than the UAV detection
range r , as illustrated in Fig. 2. Typical point targets include

FIGURE 3. Schematic diagram of line target.

FIGURE 4. Schematic diagram of area target.

vehicles and enemy personnel. A feature point P is used to
represent the position of the point target. When the UAV flies
over the center of a point target, the reconnaissance task for
a point target is performed, and the position of the UAV is
represented by P′.

2) LINE TARGET
Line targets are indicated as having a length greater than the
reconnaissance width 2r of the UAV but a width less than the
reconnaissance radius of the UAV.As shown in Fig. 3, the best
way for the UAV to reconnoitre a line target is to leap along
the longest path of the target centerline. Therefore, the line
target has two entrances (P1 and P2 in Fig. 3) which results
in different exit locations but the same reconnaissance path
length for the UAV. So it is also necessary to consider the
distribution of target entrances in the flight path of the UAV.

3) AREA TARGET
For the area target, its length and width are larger than the
UAV detection width. To obtain complete information about
the target, this paper uses the ‘‘zigzag’’ shortest path method
to reconnoitre the area target as shown in Fig. 4. Four feature
points indicate area targets. For an area target, there are
two ‘‘zigzag’’ paths, as shown in Fig. 5, which h1 and h2
are the two side lengths of the rectangle. The shortest path
can be chosen by (1), with L denoting the distance of the
shortest path. When considering the reconnaissance problem,
different entrances need to be selected.

L = min
{
h2 +

⌈
h2
2r

⌉
· h1, h1 +

⌈
h1
2r

⌉
· h2

}
− 2r (1)

where ⌈·⌉ is upward rounding function.

VOLUME 12, 2024 30991



X. Tian et al.: Multi-UAV Reconnaissance Task Allocation in 3D Urban Environments

FIGURE 5. Illustrating two coverage paths for the area target.

4) CUBOID TARGET REPRESENTATION AND SCOUTED
STRATEGY
For cuboid targets, the height of the target is considered,
which is greater than the reconnaissance width of the UAV.
Generally, large buildings are considered as cuboid targets,
so they carry information about the number of floors fr ,
as shown in Fig. 6. Eight feature points indicate cuboid
targets. In this paper, the reconnaissance is carried out around
the cuboid target as shown in Fig. 7, where m1 = h3/2fr and
m2 = d . It can be seen from Fig. 7 that there are eight
entrances to the rectangular target, but the reconnaissance
paths are of the same length and are calculated as shown
in (2).

L = (h1 + h2 + 4d) ∗ 2fr + h3 ∗
fr − 1
fr

(2)

B. PROBLEM DESCRIPTION AND FORMULATION
The drones perform a reconnaissance mission before the
mission area identifies NT suspicious or high-risk targets
using other technical methods, requiring the use ofNV drones
in the mission area to reconnoiter the targets. The UAVs were
assigned to reconnoiter all the targets in the shortest possible
time and with the lowest consumption. In this paper targets
are heterogeneous, characterizing the location and shape
features where a target is located by multiple feature points,
in other words, these feature points collectively represent
a target. Targets can be classified as point, line, area and
cuboid. According to the targets model and reconnoiter
strategies proposed in Section II, when the entry point of a
target is known, the exit point is uniquely determined. The
mission execution cost can be divided into two parts: the
sum of the range of all UAVs performing the mission, and
the maximum time to complete the scouting mission. When
reconnoitering a target, the UAV needs to select the entrance
to the target in addition to considering the order of execution
of the target. Therefore, this paper describes this mission
assignment problem as the GMTSP problem.

The GMTSP problem can be represented on a fully
empowered graph G = (P,E,W ), where P is a set of
vertices, each vertex represents a feature point of a target or a
feature point of a take-off location(the takeoff location can be
represented by one feature point, similar to the point target),
which means P is also a set of feature points. E is a set of
arcs, representing a set of all edges with vertices connected
two by two, and W is a set of weights, representing the
distance between any two vertices in the graph G. Take T =

FIGURE 6. Schematic diagram of cuboid target.

FIGURE 7. Illustrating a coverage path for the area target.

{
T1,T2, . . . ,TNT

}
as a set of targets, V =

{
V1,V2, . . . ,VNV

}
as a set of drones, and D =

{
D1,D2, . . . ,DND

}
as a set

of takeoff locations, where D ⊆ T (the takeoff position is
considered as the point target). P =

{
P1,P2, . . . ,PNP

}
is

a set of NP points, with each point belonging to a target
in the set T , therefore, there exists a mapping relationship
f : P 7→ T . The number of feature points NP can be obtained
from (3).

NP =

NT∑
i=1

|Ti| +

ND∑
j=1

∣∣Dj∣∣ (3)

The path planning algorithm obtains the path setE between
feature points and the distance matrix W . The objective of
the mission is to conduct a reconnaissance of all targets and
then return to the takeoff location, while minimizing both fuel
consumption and the overall duration of the mission. In this
paper, the multi-objective optimization problem is solved
using the weighted summation method, and the evaluation
function of the assignment result is given by (4) [17]. The
GMTSP problem is to find a set of optimal decision variables
XVi(cm,cn)

to minimize (4).

min J = α · max
V i∈V

RVi + β ·

NV∑
i=1

RVi (4)

where α, β ∈ [0, 1] are the weights of the two optimized
indicators and α + β = 1. RVi denotes the total range
cost of the reconnaissance mission of the drone Vi, which is
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calculated as shown in (5).

RVi =

NP∑
m=1

NP∑
n=1

XVi(Pm,Pn)
W (Pm,Pn)

+

NP∑
m=1

NP∑
n=1

XVi(Pm,Pn)
LT∗=f (Pn), i = 1, 2, . . . ,NV (5)

The first component involves the drone’s travel distance
between targets.Pm andPn are two points in the setP,X

Vi
(pm,pn)

is a decision variable indicating whether droneVi travels from
Pm to Pn (1 if it does, 0 otherwise).W is the path cost matrix,
W (Pm,Pn) denotes the distance of the flight path of the UAV
from Pm to Pn. The second component accounts for the path
cost while scouting the next target, LT∗=f (Pn)is the path cost
scouting the target T∗, where T∗ is the image of Pn under the
mapping relationship f in the set T .
Moreover, to ensure that all targets can be reconnoitered

and that each target can only be detected once, the following
constraint is imposed on the allocation problem.

NV∑
i=1

NP∑
m=1

XVi(Pm,Pn)
= 1 , n = 1, 2, . . . ,NP

NV∑
i=1

NP∑
n=1

XVi(Pm,Pn)
= 1 ,m = 1, 2, . . . ,NP

XVi(Pm,Pn)
= 0 ,Pm ∈Dk ;Pn ∈ Dl (k, l = 1, 2, . . . .ND)

XVi(Pm,Pn)
= 0 ,Pm,Pn ∈ Tj (j = 1, 2, . . . ,NT )

(6)

The first constraint guarantees each target is detected
once. Similarly, the second constraint guarantees that each
target is detected. Meanwhile, the third constraint ensures
UAVs cannot fly directly between each other’s takeoff feature
points. The fourth constraint restricts UAVs from flying
between points within the same target.

III. OPTIMIZATION ALGORITHM DESIGN
For the traditional SOS algorithm, its guidance strategy is
to approach the best individuals in the population, which
results in a better exploitation capability but a relatively weak
exploration capability. The lack of exploration capability is
the main factor that leads the algorithm to fall into local
optima. Therefore, a multi-group strategy is adopted to divide
the population into subpopulations, and assign them with
separate exploration and exploitation tasks.

A. REAL NUMBER CODING DESIGN WITH LOW VARIABLE
DIMENSIONALITY
Flexible coding of organisms can effectively reduce the
complexity of the problem. The task assignment solution
needs to contain the serial numbers of the drones, the serial
numbers of the targets, and the order of execution. Therefore,
a low-dimensional real number encoding approach is used in
this paper. Each dimension on the real vector corresponds
to each target from left to right and is associated with the
index of the drone in the integer part. The magnitude of the

FIGURE 8. Real number encoding process.

corresponding decimal part is used to represent the execution
order of the target in the task sequence. Each creature is
an n-dimensional real vector. The vector is encoded by real
numbers to represent a solution to the task assignment.
According to the encoding method, the dimensionality of
the real vector n = NT and the range of values in the real
vector is [0,NV ). This encoding allows the UAV to assign
results that contain each target and the target is not repeatedly
reconnoitered, satisfying the constraints mentioned in the
model. For the same UAV, the target exit is determined when
the entrance to the target is determined. In this paper the
entrance of the target is selected using the shortest distance
flown, so GMTSP is transformed into MTSP.

Fig. 8 shows an example of real number encoding. There
are 6 targets and 3 drones. The dimension of the real vector
is 6 and the range of values is [0,3). The candidate organisms
can obtain the following task sequence after being encoded
using real numbers:

UAV1 ⇒ {T5 → T1},

UAV2 ⇒ {T6 → T2},

UAV3 ⇒ {T3 → T4}.

B. MULTI-GROUP SYMBIOTIC ORGANISMS SEARCH
ALGORITHMS (MGSOS)
The specific approach is to divide the symbiotic population
into two subpopulations of equal size based on the high
and low fitness values of the organisms. The subpopulation
with higher fitness values serves as the elite subpopulation,
whereas the one with lower fitness values serves as the
exploration subpopulation. The organisms in the elite sub-
population have a small difference in fitness values compared
to the global best individual and work together with the
best individuals to enhance their exploitation capability.
The organisms in the exploration subpopulation have a
large difference in fitness values compared to the global
best individual, and thus are not suitable for exploiting
the search space. However, due to their better diversity,
their individual information can be utilized to improve
the algorithm’s exploration capability and compensate for
the lack of exploration capability in the traditional SOS
algorithm.
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For the mutualistic phase, in addition to the current
organism Xi, one organism Xe is randomly selected from the
elite subpopulation and one organism Xs is randomly selected
from the exploration subpopulation. The organism Xe from
the elite subpopulation is responsible for exploitation,
whereas the organism Xs from the exploration subpopulation
is responsible for exploration. The current organism Xi
interacts with the organisms Xe and Xs randomly according to
the mechanism of the traditional algorithm in the mutualistic
symbiosis stage. The updated method of the mutualistic
symbiosis stage after improvement is shown in (7)–(10).

MV1 =
Xi + Xe

2
MV2 =

Xi + Xs
2

(7)

Xnew
i =

{
Xi + rand(0, 2) × (Xbest − MV1 × BF1), r < m
Xi + rand(0, 2) × (Xbest − MV2 × BF2), r ≥ m

(8)

where Xbest is the global optimal biology, BF1 and BF2 are
mutual benefit factors equal to 1 or 2, r is a random number
between 0 and 1, and m is an artificially set threshold, which
is usually taken as 0.5 to have better results.

Elite creatures undertake exploitation tasks, mainly inter-
acting with the optimal creatures and searching near the
optimal creatures.

Xnew
e

=

{
Xbest + rand(0, 2) × (Xe − MV1 × BF1), r < m
Xbest + rand(0, 2) × (Xbest − MV1 × BF2), r ≥ m

(9)

Exploring populations exploit their diversity and interact
with organisms Xi to achieve global exploration.

Xnews = MV2 + rand (0, 2) × (Xs −MV2 × BF3) (10)

In the traditional Commensalism phase, an organism Xj
is randomly selected and the best organism Xbest ’s bootstrap
information about organism Xj is used to update the current
organism Xi. This stage does not fully utilize the individual
information of other high-quality organisms, so we use the
better-adapted individuals in the elite subpopulation to guide
the current organism Xi, which improves the convergence
speed of the algorithm whereas also using a certain degree of
diversity in the elite population to maintain the exploration
ability in this stage. The improved deviation from the
symbiotic stage is updated as shown in (11).

Xnewi = Xi + rand (−1, 1) × (Xe − Xi) (11)

For the parasitism phase, the traditional parasitism phase
method parasitizes a randomly selected organism Xj by
mutating Xi. During the iteration of the algorithm, since Xi
traverses the whole population, often most of the organisms
do not have a superior fitness value, and it is difficult to
obtain a parasitic organism with a superior fitness when
mutating them. Therefore, we have decided to restrict the
mutation phase to the elite subpopulation. As the elite

subpopulation has higher fitness values, individuals have a
greater chance of obtaining high-quality organisms through
mutation. The specific implementation method is to use the
current organism Xi as the host and select an individual from
the elite subpopulation for mutation, resulting in a parasitic
organism Pa. Finally, the fitness levels of the two organisms
are compared, and the winner is retained.

C. PROCEDURE OF MGSOS
The pseudo-codes of MGSOS are shown in Algorithm 1.The
procedure of MGSOS algorithm for solving 3D urban envi-
ronment multi-UAV reconnaissance task allocation problem
is as follows:

Algorithm 1 MGSOS for 3D Urban Environment
Multi-UAV Reconnaissance Task Allocation Problem

1: Initialize ecosystem with Np, target Nt
2: Set runningTime, startTime
3: Calculate fitness: f (Xi), Xbest
4: while nowTime−startTime < runningTime do
5: for i = 1 to Np do
6: /* Mutualistic Phase */
7: Randomly select Xe, Xs
8: CalculateMV1,MV2
9: for k = 1 to Nt do

10: Update Xnewi , Xnewe conditionally
11: Perturb Xnews randomly
12: end for
13: if f (Xnew) < f (X ) then
14: Update X
15: end if
16: /* Commensalism Phase */
17: for k = 1 to Nt do
18: Update Xnewi commensally
19: end for
20: if f (Xnewi ) < f (Xi) then
21: Update Xi
22: end if
23: /* Parasitism Phase */
24: for k = 1 to Nt do
25: if rand(0, 1) < rand(0, 1) then
26: Update Xparasite,k
27: end if
28: end for
29: if f (Xnewparasite) < f (Xi) then
30: Update Xi
31: end if
32: end for
33: Calculate fitness: f (Xi), Xbest
34: end while
35: return Xbest as solution

Step 1: Initialize the ecosystem with the number of
organismsNp. Set the target number toNt . Set the algorithm’s
running time as runningTime and the start time as startTime.
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FIGURE 9. Distribution of drones and targets in the city.

The fitness value of each organism was calculated according
to f (Xi) and the best organism was selected as Xbest from it.
Step 2: The better half of the ecosystem is considered as

the elite population and the rest as the exploratory population
according to the fitness value of the organisms.
Step 3: Each organismXiin the ecosystem is subjected to

three phases of mutualistic, commensalism, and parasitism,
respectively.
Step 4: The fitness value of each organism was calculated

according to f (Xi) and the best organismwas selected as Xbest
from it.
Step 5: If NFE is less than max_NFE , the process jumps

to Step 2; otherwise, output the current Xbest as the result and
the iteration process stops.

IV. SIMULATION AND ANALYSIS
In this section, the multi-UAV task allocation algorithm
is validated through simulation experiments and compared
with other methods of multi-UAV task allocation problem
through comparison tests. The simulation is run in a
Python environment on a PC with Intel(R) Core(TM)
CPU i7-11800H 2.30 GHz and 16 GB RAM hardware
configuration and running Windows 10 operating system.
Table 1 shows the key parameters of the simulation
phase.

The field of view of the sensor ϕ is set to be 50 deg; the
weight factors α and β of the two optimized indicators are
both set to be 0.5. To simplify themodel, the distance between
the UAV and the target plane d is set to be 10m.

A. URBAN ENVIRONMENTAL RECONNAISSANCE TASK
SIMULATION EXPERIMENT
First of all, we validate the proposed model. The initial
positions of the 3 UAVs are (3,116,0), (56,3,0), and
(129,226,0). In the current scenario, 13 different types of
targets exist, and the details are shown in Table 2. The
Table 2 presents information about different targets with
corresponding numbers, types (point, line, area, cuboid), and

TABLE 1. Parameters related to the MGSOS algorithm.

TABLE 2. Target attributes.

their respective feature point counts. For example, Target No.
1 is a point with 1 feature point, whereas Target No. 12 is a
cuboid with 8 feature points.

The distribution of the targets is given in Fig. 9, where
the blank areas are unknown, and the UAVs will not
pass through these dangerous areas for flight safety in
mission planning.The assignment results are calculated using
MGSOS, and the resulting task sequence for the UAV is as
follows:

UAV1 : T7[1] → T9[7] → T13[8]

UAV2 : [t]T10[1] → T6[1] → T11[1]

→ T3[1] → T2[1] → T1[1]

UAV3 : T5[2] → T4[6] → T12[1] → T8[1]

The numbers in square brackets denote entry positions
during target reconnaissance, corresponding to feature points
defined in target modeling. For example, in the UAV1
sequence, T7[1] indicates UAV1 starts at the first feature
point of target T7, and then proceeds to survey T9 and T13.
Similarly, for UAV2, T10[1] signifies entry at the first feature
point of T10, followed by reconnaissance of other targets in
the specified order.

Fig. 10 shows the convergence curve of the algorithm,
which provides insights into how the MGSOS algorithm
progresses towards finding optimal solutions, showcasing its
effectiveness and efficiency. Fig. 10 (a) shows how the fitness
value changes as the algorithm iterates, shedding light on the
algorithm’s ability to improve the quality of solutions. Fig. 10
(b) shows the algorithm’s impact onminimizing total distance
of the drone swarm mission, whereas Fig. 10 (c) shows its
influence on reducing maximum time consumption of the
drone swarm mission.

The range cost of each drone is UAV1: 1187.6 m; UAV2:
505.2 m; UAV3: 1768.41 m. Under the current allocation, the
total range of all the UAVs flying themission is 3461.2m, and
the maximum time for mission completion is 176.8 seconds.
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FIGURE 10. Convergence curve of fitness and indicators.

FIGURE 11. UAV trajectory in task assignment results.

The trajectories of the UAVs according to the assignment
results are shown in Fig. 11, with UAV1’s trajectory in
purple, UAV2’s trajectory in red, and UAV3’s trajectory in
black.

Fig. 11 shows the navigation path of the UAV based
on the assigned results, and it is known that the UAV
reconnoitered all the targets and performed a full coverage
reconnaissance of point, line, surface, and cuboid targets.
Considering the shortest total range, the shortest maximum
time to complete, the heterogeneity of the targets and the
safe flight path, the UAV reasonably visited each target.
Among all targets, reconnaissance of rectangular type T12
and T13 required the greatest time and range cost, where
T13 was assigned to UAV1, which was closest to it.
Compared to UAV3, UAV2 was further away from T12
due to the unknown area or exclusion zone on the right
side of the map, so target 12 was assigned to UAV3; target
11 was a little closer to UAV3, but the total range cost
of UAV2 is not high, so assigning it to UAV2 is a better
choice. From the range cost of each UAV, we can see that
the allocation result makes the cost consumption of each
UAV more balanced. Overall, the proposed task allocation
model and the improved algorithm proved feasible and
effective.

TABLE 3. Algorithm parameters.

TABLE 4. Number of UAVs and targets at different scales.

B. ALGORITHM COMPARISON ANALYSIS
To verify the superiority of the improved algorithm, four
algorithms are compared and analyzed. The proposed
MGSOS algorithm is compared with the conventional SOS
algorithm, the Opposition-based Genetic Algorithm using
Double-chromosomes Encoding and Multiple Mutation
Operators (OGA-DEMMO) algorithm [13], and the GA-PSO
algorithm, where the OGA-DEMMO is an improved task
assignment optimization algorithm for such reconnaissance
tasks mentioned in this paper, and the GA-PSO algorithm is
also used to calculate an assignment solution for a certain
task assignment problem. A more efficient algorithm would
complete its training and generate a workable solution in
less time [8]. The detailed parameters of these algorithms are
listed in Table 3.

The task scenarios were divided into four scales based on
the number of different types of targets, as shown in Table 4.
The scale is increasing due to the rise in UAV numbers and
targets. In this simulation, each algorithm runs 50 times for
each scenario and set the same running time as a stopping
criterion to get statistical results.

In Fig. 12, scale 1–4 represents the four scales of
distribution of UAVs and heterogeneous targets in space,
where the diamond markers are point targets, the lines
indicate line targets, the rectangles with thickened borders
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FIGURE 12. UAV and target distribution at different scales.

TABLE 5. Comparison of statistical results of the four algorithms.

indicate area targets and the cubes indicate cuboid targets.
The ideal detection position of the UAV is set directly above
the target. Table 5 shows the results of 50 independent runs
of the four algorithms under the same conditions. Under
scales 1, 2, 3, and 4, the population sizes are 20, 30, 40,
and 50, respectively, with maximum NFEs of 2, 10, 120, and
500. A total of four scales were tested, and the algorithms
had the same running time at each scale. Fig. 13 shows the
convergence of the four algorithms in different scenarios.
The curves show the average level of the algorithms after
50 independent runs.

For scale 1, the results of MGSOS, SOS, and GA-PSO
solutions are the same. The fitness value of the allocation
scheme obtained by OGA-DEMMO is 1.9 more than that of
the first three algorithms. According to the fitness calculation
formula (4), it can be seen that the OGA-DEMMO algorithm
performs slightly worse but not significantly. In scale 2, after
10 seconds of computation for each algorithm, all algorithms

gradually converge to a stable value. From Fig. 13(b),
we can see that the MGSOS algorithm has the fastest
convergence speed, as well as the best convergence result.
The GA-PSO and OGA-DEMMO algorithms also have a
faster convergence speed, but the quality of the solution
scheme after convergence is not as good as that of MGSOS.
The SOS algorithm also searches for a better allocation
scheme, but its convergence time is relatively longer. In scale
3, MGSOS, GA-PSO, and OGA-DEMMO algorithms all
have faster convergence speeds. However, MGSOS has
stronger search capability and search accuracy compared
with the other two algorithms and gets a better convergence
solution before convergence. In the scale 4 scenario, MGSOS
has a faster convergence speed and stronger search capability
compared to the other algorithms and reaches a better solution
in a short time. As the computation time increases, the
MGSOS explorationmechanismmakes it possible to improve
the accuracy of the results as much as possible.
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FIGURE 13. Convergence curves of four algorithms at different scales.

Overall, The MGSOS algorithm outperforms the other
three algorithms in both optimization capabilities and stabil-
ity. It is noticeable that with an increasing scale, the MGSOS
algorithm exhibits a superior advantage in terms of average
fitness values. In Scale 4, the fitness value of MGSOS is
10.23% better than SOS, 12.8% better than GA-PSO, and
4.57% better than OGA-DEMMO. The MGSOS algorithm
has the fastest convergence speed and the strongest optimality
finding capability among the comparison algorithms. The
algorithm can obtain a better assignment solution than
the other compared algorithms in the shortest time and
has a strong ability to jump out of the local optimum
and continuously optimize the assignment solution as time
increases. Therefore, the MGSOS algorithm has significant
advantages over the other three algorithms in solving the
UAV reconnaissance task assignment problem in urban
environments.

V. CONCLUSION
In this study, a new 3D urban UAV reconnaissance model
is proposed. Targets are classified into point, line, area, and
cuboid targets based on their geometric characteristics, and
are represented using different numbers of feature points.
The optimization objective is to minimize the weighted sum
of the total UAV consumption and the task execution time.
An improved SOS algorithm is proposed to solve GMTSP.
Using real number encoding to describe the result of UAV
assignment to targets. The algorithm is improved using
multiple swarm strategies to maintain biological diversity
and enhance the information interaction among individuals

in the three phases to improve the algorithm’s optimality and
convergence efficiency. Numerical experiments of different
scale scenarios validate the effectiveness ofMGSOS. It is also
compared with GA-PSO and OGA-DEMMO algorithms.
The results show that the MGSOS algorithm can provide
a better quality task assignment solution to the multi-UAV
reconnaissance problem of heterogeneous targets of 3D urban
environments.
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